LIST OF FIGURES

Fig. No.	Figure Title	Page No.
Fig. 1.1	Creation and stabilization of nanoparticles, from the perspective of surface energetics.	07
Fig. 1.2	Schematic illustration of Ostwald ripening.	09
Fig. 1.3	Schematic representation of the parameters of Noyes-Whitney	
0	equation.	11
Fig. 1.4	Schematic diagram of "Top Down" and "Bottom Up" methods for	
	preparation of Nanoparticles (Nano Engineering in	
	Pharmaceuticals).	13
Fig. 1.5	Various approaches for production of	
	Nanoparticle/Nanosuspension.	14
Fig. 1.6	Molecular dimensions, shape and chemical structure, of $\alpha\text{-},\beta\text{-}$	
	and γ -cyclodextrins.	28
Fig. 1.7	Conventional models of drug-cyclodextrin complex formation	
	and equilibrium.	33
Fig. 1.8	Phase solubility relationships.	35
Fig. 1.9	Molecular structure of Diacerein (DAR).	45
Fig. 1.10	Molecular structure of Febuxostat (FBX).	47
Fig. 3.1	(A) Overlay spectra and (B) Calibration curve of DAR in	
	methanol.	71
Fig. 3.2	(A) Overlay spectra and (B) Calibration curve of DAR in distilled	71
Fig 22	(A) Overlay spectra and (B) Calibration curve of DAR in	/1
1 16. 5.5	phosphate Buffer pH 6.8.	71
Fig. 3.4	(A) Overlay spectra and (B) Calibration curve of DAR in acetate	
C	buffer pH 4.5.	72
Fig. 3.5	(A) Overlay spectra and (B) Calibration curve of DAR in acetate	
	buffer pH 4.5.	72
Fig. 3.6	(A) Overlay chromatogram and (B) Calibration curve of DAR in	
	mobile phase.	78
Fig. 3.7	(A) Overlay chromatogram and (B) Calibration curve of DAR in	
	HBSS buffer.	85
Fig. 3.8	(A) Overlay chromatogram and (B) Calibration curve of rhein in	
	plasma.	92
Fig. 3.9	(A) Overlay spectra and (B) Calibration curve of FBX in	
	Methanol.	98
Fig. 3.10	(A) Overlay spectra and (B) Calibration curve of FBX in Distilled	_
	water.	98

Fig. 3.11	(A) Overlay spectra and (B) Calibration curve of FBX in Phosphate Buffer pH 6.8.	99
Fig. 3.12	(A) Overlay spectra and (B) Calibration curve of FBX in Acetate Buffer pH 4.5.	99
Fig. 3.13	(A) Overlay spectra and (B) Calibration curve of FBX in 0.1N HCl.	99
Fig. 3.14	(A) Overlay chromatogram and (B) Calibration curve of FBX in	
	mobile phase.	105
Fig. 3.15	(A) Overlay chromatogram and (B) Calibration curve of FBX in	
	HBSS buffer.	110
Fig. 3.16	(A) Overlay chromatogram and (B) Calibration curve of FBX in	
	plasma.	116
Fig. 4.1	Reduction of yellow Tetrazole into purple Formazan.	136
Fig. 4.2	Diagram of a Caco-2 monolayer grown on a permeable filter.	137
Fig. 4.3	Graphical representation of stabilizer's effect on mean particle size of DAR-NS.	144
Fig. 4.4	Contour plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b)	
	X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_1) on PS	
	of DAR-NS.	153
Fig. 4.5	Contour plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b)	
	X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_1) on SS of DAR-NS.	154
Fig. 4.6	Response surface plots showing effect of (a) X_1 vs X_2 (at 0 level	
	of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of	
	X ₁) on PS of DAR-NS.	155
Fig. 4.7	Response surface plots showing effect of (a) X_1 vs X_2 (at 0 level	
	of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of	
	X ₁) on SS of DAR-NS.	156
Fig. 4.8	Particle size distribution of DAR-NS by Malvern Zetasizer.	160
Fig. 4.9	Particle size distribution of Plain DAR by Malvern Mastersizer	160
Fig. 4.10	Zeta potential report of DAR-NS by Malvern Zetasizer.	161
Fig. 4.11	DSC thermograms of (A) Plain DAR, (B) Poloxamer 407, (C)	
	Trehalose, (D) Physical Mixture for DAR-NS (PM) and (E) Freeze	
	dried DAR-NS.	162
Fig. 4.12	XRD spectra of (A) Plain DAR, (B) Physical Mixture for DAR-NS	
	(PM) and (C) Freeze dried DAR-NS.	163
Fig. 4.13	SEM image of plain DAR.	164
Fig. 4.14	SEM image of DAR-NS.	164
Fig. 4.15	TEM image of DAR-NS	165

Fig. 4.16	Graphical representation of % Cumulative drug release versus sampling time of DAR-P, DAR-M and freeze dried DAR-NS in phosphate buffer pH-6.8 (PB), acetate buffer pH-4.5 (AB), 0.1N HCl and water.	167
Fig. 4.17	In vitro cytotoxicity studies of DAR-P and DAR-NS in Caco2 cell lines at 4 hours.	170
Fig. 4.18	In vitro cytotoxicity studies of DAR-P and DAR-NS in Caco2 cell lines at 24 hours.	171
Fig. 4.19	In vitro cytotoxicity studies of DAR-P and DAR-NS in Caco2 cell lines at 48 hours.	171
Fig. 4.20	Graphical representation of rhein plasma profile for DAR-P, DAR-M and DAR-NS in Albino rabbits following oral	
	administration.	174
Fig. 4.21 Fig. 4.22	Phase solubility studies of DAR with CDs in distilled water. Phase solubility studies of DAR with CDs in Phosphate Buffer	191
	рН6.8.	192
Fig. 4.23	Phase solubility studies of DAR with CDs in 0.1N HCl pH-1.2.	192
Fig. 4.24	IR spectrums of (A) Plain DAR, (B) HP- β -CD, (C) Physical Mixture for DAR:HP- β -CD::(1:2)M, (D) Kneaded Mixture for DAR:HP- β -CD::(1:2)M and (E) Freeze dried inclusion complex of DAR HP β -CD: (1:2)M	
		196
Fig. 4.25	DSC thermograms of (A) Plain DAR, (B) HP- β -CD, (C) Physical Mixture for DAR:HP- β -CD::(1:2)M, (D) Kneaded Mixture for DAR:HP- β -CD::(1:2)M and (E) Freeze dried inclusion complex of	
	DAR:HP-β-CD::(1:2)M	100
Fig. 4.26	XRD patterns of (A) Plain DAR, (B) HP-β-CD, (C) Physical Mixture for DAR:HP-β-CD::(1:2)M, (D) Kneaded Mixture for DAR:HP-β-CD::(1:2)M and (E) Freeze dried inclusion complex of DAR:HP-β-CD::(1:2)M.	190
Fig. 4.27	Graphical representation of % Cumulative drug release versus sampling time of DAR-P, DAR-M and Freeze dried DAR-IC in phosphate buffer pH-6.8 (PB), acetate buffer pH-4.5 (AB), 0.1N HCl and water.	201
Fig. 4.28	In vitro cytotoxicity studies of DAR-P and DAR-IC in Caco2 cell lines at 4 hours.	204
Fig. 4.29	In vitro cytotoxicity studies of DAR-P and DAR-IC in Caco2 cell lines at 24 hours.	205
Fig. 4.30	In vitro cytotoxicity studies of DAR-P and DAR-IC in Caco2 cell lines at 48 hours.	205

Fig. 4.31	Graphical representation of rhein plasma profile for DAR-P, DAR-M and DAR-IC in Albino rabbits following oral administration.	209
Fig. 5.1	Graphical representation of stabilizer's effect on mean particle size of FBX-NS.	230
Fig. 5.2	Contour plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_1) on PS of FBX-NS.	238
Fig. 5.3	Contour plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_1) on SS of FBX-NS.	239
Fig. 5.4	Response surface plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_1) on PS of FBX-NS.	240
Fig. 5.5	Response surface plots showing effect of (a) X_1 vs X_2 (at 0 level of X_3), (b) X_1 vs X_3 (at 0 level of X_2) and (c) X_2 vs X_3 (at 0 level of X_4) on SS of FRV NS	210
	A1) 011 55 01 FDA-NS.	241
Fig. 5.0 Fig 5.7	Particle size distribution of Plain FPV by Malvern Mastersizer.	245
Fig. 5.7 $Fig. 5.8$	Zeta notential report of FRX-NS by Malvern Zetasizer	245
Fig. 5.9	DSC thermograms of (A) Plain FBX, (B) Poloxamer 188, (C) Trehalose, (D) Physical Mixture for FBX-NS (PM) and (E) Freeze dried FBX-NS	243
Fig 5 10	XRD spectra of (A) Plain FRX (B) Physical Mixture for FRX-NS	247
115. 5.10	(PM) and (C) Freeze dried FBX-NS.	248
Fig. 5.11	SEM image of plain FBX.	249
Fig. 5.12	SEM image of FBX-NS.	249
Fig. 5.13	TEM image of FBX-NS.	250
Fig. 5.14	Graphical representation of % Cumulative drug release versus sampling time of FBX-P FBX-M and freeze dried FBX-NS in phosphate buffer pH-6.8 (PB), acetate buffer pH-4.5 (AB), 0.1N	
	HCl and water.	252
Fig. 5.15	In vitro cytotoxicity studies of FBX-P and FBX-NS in Caco2 cell lines at 4 hours.	256
Fig. 5.16	In vitro cytotoxicity studies of FBX-P and FBX-NS in Caco2 cell lines at 24 hours.	256
Fig. 5.17	In vitro cytotoxicity studies of FBX-P and FBX-NS in Caco2 cell lines at 48 hours.	256
Fig. 5.18	Graphical representation of FBX plasma profile for FBX-P, FBX- M and FBX-NS in Albino rabbits following oral administration.	261
Fig. 5.19	Phase solubility studies of FBX with CDs in distilled water.	275

Fig. 5.20	Phase solubility studies of FBX with CDs in Phosphate Buffer	275
Fig. 5.21 Fig. 5.22	Phase solubility studies of FBX with CDs in 0.1N HCl pH-1.2. IR spectrums of (A) Plain FBX, (B) HP-β-CD , (C) Physical Mixture for FBX: HP-β-CD::(1:1)M, (D) Kneaded Mixture for FBX: HP-β-CD::(1:1)M and (E) Freeze dried inclusion complex of FBX: HP-β-CD::(1:1)M.	275 276 280
Fig. 5.23	DSC thermograms of (A) Plain FBX, (B) HP-β-CD, (C) Physical Mixture for FBX:HP-β-CD::(1:1)M, (D) Kneaded Mixture for FBX:HP-β-CD::(1:1)M and (E) Freeze dried inclusion complex of FBX:HP-β-CD::(1:1)M.	282
Fig. 5.24	XRD patterns of (A) Plain FBX, (B) HP-β-CD , (C) Physical Mixture for FBX: HP-β-CD::(1:1)M, (D) Kneaded Mixture for FBX: HP-β-CD::(1:1)M and (E) Freeze dried inclusion complex of FBX: HP-β-CD::(1:1)M.	283
Fig. 5.25	Graphical representation of % Cumulative drug release versus sampling time of FBX-P, FBX-M and Freeze dried FBX-IC in phosphate buffer pH-6.8 (PB), acetate buffer pH-4.5 (AB), 0.1N HCl and water.	285
Fig. 5.26	In vitro cytotoxicity studies of FBX-P and FBX-IC in Caco2 cell lines at 4 hours.	288
Fig. 5.27	In vitro cytotoxicity studies of FBX-P and FBX-IC in Caco2 cell lines at 24 hours.	289
Fig. 5.28	In vitro cytotoxicity studies of FBX-P and FBX-IC in Caco2 cell lines at 48 hours.	289
Fig. 5.29	Graphical representation of FBX plasma profile for FBX-P, FBX- M and FBX-IC in Albino rabbits following oral administration.	293