List of Figures

Figure 2.1	Structure of Human Uterus	16
Figure 2.2	Histology of Human Uterus	17
Figure 2.3	First Uterine Pass Effect	21
Figure 2.4	Types of Uterine Fibroids	23
Figure 2.5	Endometriosis	26
Figure 2.6	Types of Inorganic Nanoparticles	38
Figure 2.7	Polymeric Micelles for Targeted Drug Delivery	39
Figure 2.8	Structure of Dendrimers	40
Figure 2.9	Structure of Carbon Nanotubes	41
Figure 2.10	Structure of Liposomes	43
Figure 2.11	Intra Vaginal Rings	50
Figure 2.12	Matrix and Reservoir Type Intra Vaginal Rings	53
Figure 2.13	Different Types of Ring Inserts	54
Figure 3.1	Calibration Plot of LA in distilled water by UV-	99
	Spectrophotometry	
Figure 3.2	Overlay Plot of LA in distilled water at 279 nm by UV-	99
	Spectrophotometry	
Figure 3.3	Calibration Plot of LA in SVF pH 4.2 by UV-	101
	Spectrophotometry	
Figure 3.4	Overlay Plot of LA in SVF at 280 nm by UV-	101
	Spectrophotometry	
Figure 3.5	Calibration Plot of LA in Rabbit Serum by LCMS-MS	105
Figure 3.6	Chromatograms of calibration plot of LA showing retention	106
	time of 3.72-3.78 min	
Figure 3.7	Calibration Plot of RLX in Methanol: Chloroform (1:9) by	108
	UV-Spectrophotometry	
Figure 3.8	Overlay Plot of RLX in Methanol: Chloroform (1:9) by UV-	108
	Spectrophotometry	
Figure 3.9	Calibration Plot of RLX in SVF by UV-Spectrophotometry	110
Figure 3.10	Overlay Plot of RLX in SVF by UV-Spectrophotometry	110
Figure 3.11	Calibration Plot of RLX in Rabbit Serum by LCMS-MS	115

Figure 3.12	Chromatograms of calibration plot of RLX showing	116
	retention time of 1.68-1.79 min	
Figure 3.13	Calibration Plot of LA in SVF pH 4.2 by UV-	119
	Spectrophotometry for simultaneous estimation method	
Figure 3.14	Calibration Plot of RLX in SVF pH 4.2 by UV-	119
	Spectrophotometry for simultaneous estimation method	
Figure 4.1	Types of Preformulation Studies	124
Figure 4.2	FTIR Spectrum of Leuprolide acetate	128
Figure 4.3	DSC Thermogram of Leuprolide acetate	128
Figure 4.4	FTIR Spectrum of Leuprolide acetate with excipients	129
Figure 4.5	DSC Thermogram of Leuprolide acetate with excipients	130
Figure 4.6	FTIR Spectrum of Raloxifene Hydrochloride	131
Figure 4.7	DSC Thermogram of Raloxifene Hydrochloride	132
Figure 4.8	FTIR Spectrum of Raloxifene Hydrochloride with	133
	excipients	
Figure 4.9	DSC Thermogram of Raloxifene Hydrochloride with	134
	excipients	
Figure 4.10	Microscopic view of Liposomal vesicles	135
Figure 5.1	Response Surface Plot for showing the effect of	147
	independent variables on Vesicle size of RLX-Liposomes	
Figure 5.2	Bubble plot to study the effect of independent factors on	147
	vesicle size of RLX-Liposomes	
Figure 5.3	Bubble plot showing the effect of independent variables on	149
	% EE of RLX-Liposomes	
Figure 5.4	Response Surface Plot for showing the effect of	150
	independent variables on % EE of RLX-Liposomes	
Figure 5.5	Desirability Plot for Optimization of RLX-liposomes	151
Figure 5.6	Response Surface Plot for showing the effect of	156
	independent variables on Vesicle size of LA-Liposomes	
Figure 5.7	Bubble plot showing the effect of independent variables on	157
	Vesicle size of LA-Liposomes	
Figure 5.8	Response Surface Plot for showing the effect of	158

	independent variables on % EE of LA-Liposomes	
Figure 5.9	Bubble plot showing the effect of independent variables on	158
	% EE of LA-Liposomes	
Figure 5.10	Bubble plot to show the relationship between Vesicle size	159
	and % EE of LA-Liposomes	
Figure 5.11	Desirability Plot for Optimization of LA-liposomes	160
Figure 5.12	Response Surface Plot for showing the effect of	165
	independent variables on Vesicle size of dual drug loaded	
	liposomes	
Figure 5.13	Bubble plot showing the effect of independent variables on	166
	vesicle size of dual drug loaded liposomes	
Figure 5.14	Response Surface Plot for showing the effect of	167
	independent variables on % EE of RLX in dual drug loaded	
	liposomes	
Figure 5.15	Response Surface Plot for showing the effect of	167
	independent variables on % EE of LA in dual drug loaded	
	liposomes	
Figure 5.16	Bubble plot showing the effect of independent variables on	168
	% EE of RLX in dual drugs loaded liposomes	
Figure 5.17	Bubble plot showing the effect of independent variables on	169
	% EE of LA in dual drugs loaded liposomes	
Figure 5.18	Bubble plot to show the relationship between Vesicle size	170
	and % EE of LA and RLX in dual drug entrapped liposomes	
Figure 5.19	Bubble plot to show the relationship between $\%$ EE of LA	171
	and % EE of RLX in dual drug entrapped liposomes	
Figure 5.20	Desirability Plot for Optimization of Dual drug (RLX and	172
	LA) loaded liposomes	
Figure 6.1	Vesicle size of optimized batch of RLX-Liposomes	179
Figure 6.2	Vesicle size of optimized batch of LA-Liposomes	180
Figure 6.3	Vesicle size of optimized batch of RLX-LA Liposomes	180
Figure 6.4	Zeta potential of Optimized batch of RLX loaded Liposomes	182
Figure 6.5	Zeta potential of Optimized batch of LA loaded Liposomes	182

Figure 6.6	Zeta potential of Optimized batch of dual drug loaded	183
	Liposomes	
Figure 6.7	TEM images of RLX loaded liposomes	185
Figure 6.8	TEM image of LA loaded liposomes	186
Figure 6.9	TEM image of dual drug (RLX-LA) loaded liposomes	186
Figure 6.10	SEM image of RLX loaded liposomes	187
Figure 6.11	SEM image of LA loaded liposomes	187
Figure 6.12	SEM image of dual drug (RLX-LA) loaded liposomes	188
Figure 6.13	In Vitro Drug release profile of RLX loaded optimized	190
	liposomes	
Figure 6.14	In Vitro Drug release profile of LA loaded optimized	191
	liposomes	
Figure 6.15	In Vitro Drug release profile of Dual Drug loaded optimized	192
	liposomes	
Figure 6.16	In Vitro drug release profile of RLX-liposomes from IVR	193
Figure 6.17	In Vitro drug release profile of LA-liposomes from IVR	194
Figure 6.18	In Vitro drug release profile of dual drug entrapped	195
	liposomes from IVR	
Figure 7.1	Vaginal tissue treated with Phosphate Buffer pH 4.5	199
	(negative control) for A) One week B) Two weeks	
Figure 7.2	Vaginal tissue treated with Isopropyl Alcohol (positive	200
	control) for A) One week B) Two weeks	
Figure 7.3	Vaginal tissue treated with standard RLX for A) One week	200
	B) Two weeks	
Figure 7.4	Vaginal tissue treated with standard LA for A) One week B)	201
	Two weeks	
Figure 7.5	Vaginal tissue treated with RLX-Liposomes for A) One	201
	week B) Two weeks	
Figure 7.6	Vaginal tissue treated with LA-Liposomes for A) One week	202
-	B) Two weeks	
Figure 7.7	Vaginal tissue treated with RLX-LA-Liposomes for A) One	202
-	week B) Two weeks	

Figure 8.1	Schematic presentation of principle for cell cycle analysis using DNA intercalating florescence probe in flow cytometry	206
Figure 8.2	Cytotoxicity of different concentrations of Std RLX and RLX Liposomes at A) 12 hours B) 24 hours C) 48 hours	209-10
Figure 8.3	IC50 values of Std. RLX and RLX-Liposomes in MCF-7 cell line at 12 hours, 24 hours and 48 hours	212
Figure 8.4	Cytotoxicity of different concentrations of Std LA and LA Liposomes at A) 12 hours B) 24 hours C) 48 hours	213-14
Figure 8.5	IC50 values of Std. LA and LA-Liposomes in MCF-7 cell line at 12 hours, 24 hours and 48 hours	215
Figure 8.6	Cytotoxicity comparison of RLX-LA Liposomes, RLX Liposomes and LA Liposomes at A) 12 hours B) 24 hours C) 48 hours	216-17
Figure 8.7	IC50 values of RLX-LA-Liposomes in MCF-7 cell line at 12 hours, 24 hours and 48 hours	218
Figure 8.8	Apoptosis estimation in MCF7 cell line after exposure of standard drugs and liposomal formulations at 12 hours and 24 hours	219-20
Figure 8.9	Effect of UT (Control), Std. RLX, RLX-Liposomes, Std LA, LA- Liposomes, RLX-LA Liposomes exposure on cell cycle distribution in MCF7 cells using FACS as an estimation technique	222
Figure 9.1	DTPA challenge test of A) RLX- ^{99m} Tc complex B) LA- ^{99m} Tc complex	235-36
Figure 9.2	Uterine targeting efficiency of RLX loaded liposomes vs. plain drug	238
Figure 9.3	Gamma Scintigraphy of Rabbit, which was administered 99mTc-Labeled Raloxifene Hydrochloride loaded liposomes via Vaginal route, imaged after A) 0.25 hour; B) 1 hour C) 2 hours D) 4 hours E) 18 hours F) 24 hours	239
Figure 9.4	Gamma Scintigraphy of Rabbit, which was administered	240

	99mTc-Labeled Raloxifene Hydrochloride plain drug via	
	vaginal route, imaged after A) 0.25 hour; B) 1 hour C) 2	
	hours D) 4 hours E) 18 hours F) 24 hours	
Figure 9.5	Uterine targeting efficiency of LA loaded liposomes vs.	242
	plain drug	
Figure 9.6	Gamma Scintigraphy of Rabbit, which was administered	243
	99mTc-Labeled Leuprolide Acetate loaded liposomes via	
	vaginal route, imaged after A) 0.25 hour; B) 1 hour C) 2	
	hours D) 4 hours E) 18 hours F) 24 hours	
Figure 9.7	Gamma Scintigraphy of Rabbit, which was administered	244
	99mTc-Labeled Leuprolide Acetate plain drug via vaginal	
	route, imaged after A) 0.25 hour; B) 1 hour C) 2 hours D) 4	
	hours E) 18 hours F) 24 hours	
Figure 10.1	Relationship of Pharmacokinetics and Pharmacodynamics	247
Figure 10.2	Rabbit with dorsal side shaved for ultrasonography	250
Figure 10.3	Ultrasonography procedure of the rabbits	251
Figure 10.4	Ultrasonography of rabbit uterus depicting clear uterine	252
	lumen (Normal/Negative control)	
Figure 10.5	Ultrasonography of rabbit uterus showing uterine fibroid	253
	in the lumen (Positive control)	
Figure 10.6	Ultrasonography of Rabbit administered with Leuprolide	255
	liposomal formulation after A) 15 days B) 30 days; Rabbit	
	administered with Raloxifene liposomal formulation after	
	C) 15 days D) 30 days; Rabbit administered with dual drug	
	loaded liposomal formulation after E) 15 days E) 30 days	
Figure 10.7	Chromatograms of LA in rabbit plasma at various time	257
	intervals	
Figure 10.8	Chromatograms of RLX in rabbit plasma at various time	258
	intervals	