Contents

List of Figures	v-vii
List of Tables	viii-x
List of Abbreviations	xi-xiii
1. Introduction	1-17
2. Aim and Objectives	18-20
3. Review of Related Literature	21-61
4. Experimental set up	62-65
5. Development of Compression-coated Pulsatile Release (PR) formulation	s_66-226
5.1. Quality by Design (QbD) enabled development of PR Compression-coated	E8
tablets (CCTs) of Prednisone (PRS)	66
5.1.1. PRS drug profile	66
5.1.2. Methods (PRS)	70
5.1.2.1. Analytical method for determination of PRS	70
5.1.2.2. Establishment of Quality Target Product Profile (QTPP)	78
5.1.2.3. Identification of Critical Quality Attributes (CQAs) and their	
Risk assessment	80
5.1.2.4. Risk assessment by Failure Mode and Effects Analysis (FMEA)	80
5.1.2.5. Drug-excipient compatibility	81
5.1.2.6. Preparation of PRS core tablets	81
5.1.2.7. Characterization of PRS core tablets	82
5.1.2.8. Preparation of PRS CCTs	83
5.1.2.9. Characterization of PRS CCTs	84
5.1.2.10. Packaging and stability study (PRS CCTs)	85
5.1.3. Results and discussion (PRS)	86
5.1.3.1. QTPP	86
5.1.3.2. Identification of CQAs and their risk assessment	<u></u> 86
5.1.3.3. Evaluation of PRS core tablets	97
5.1.3.4. Evaluation of PRS CCTs	98
5.1.3.4.1. Selection of lubricant and glidant	98
5.1.3.4.2. Selection of hydrophilic additive	108
5.1.3.4.3. Selection of HPMC MW grade	110
5.1.3.4.4. Risk assessment by FMEA_	123
5.1.3.4.4.1. Risk assessment of core elements	125

5.1.3.4.4.2. Risk assessment of coating elements	_125
5.1.3.4.4.3. Statistical optimization	126
5.1.3.4.4.4. Evaluation of optimized PRS CCTs	
5.1.3.4.4.5. Updated risk assessment	137
5.1.4. Conclusion (PRS)	_143
5.2. Development of PR CCTs of Methylprednisolone (MPR)	145
5.2.1. MPR drug profile	_145
5.2.2. Methods (MPR)	147
5.2.2.1. RP-HPLC method for determination of MPR	_147
5.2.2.2. Drug-excipient compatibility	150
5.2.2.3. Preparation of MPR core tablets	_150
5.2.2.4. Characterization of MPR core tablets	_151
5.2.2.5. Preparation of MPR CCTs	_151
5.2.2.6. Characterization of MPR CCTs	151
5.2.2.7. Packaging and stability study (MPR CCTs)	_151
5.2.3. Results and discussion (MPR)	_152
5.2.3.1. Evaluation of MPR core tablets	_152
5.2.3.2. Evaluation of MPR CCTs	153
5.2.4. Conclusion (MPR)	_155
5.3. Development of PR CCTs of Diclofenac sodium (DIC)	156
5.3.1. DIC drug profile	_156
5.3.2. Methods (DIC)	_158
5.3.2.1. RP-HPLC method for determination of DIC	_158
5.3.2.2. Drug-excipient compatibility	161
5.3.2.3. Preparation of Active Pharmaceutical Ingredient (API) granules of DIC	_161
5.3.2.4. Preparation of DIC core tablets	161
5.3.2.5. Characterization of DIC core tablets	_162
5.3.2.6. Preparation of DIC CCTs	162
5.3.2.7. Characterization of DIC CCTs	_162
5.3.2.8. Packaging and stability study (DIC CCTs)	162
5.3.3. Results and discussion (DIC)	_163
5.3.3.1. Flow property evaluation of DIC compression blends	163
5.3.3.2. Evaluation of DIC core tablets	_163
5.3.3.3. Evaluation of DIC CCTs	164

5.3.4. Conclusion (DIC)	167
5.4. Development of PR CCTs of Diltiazem hydrochloride (DIL)	168
5.4.1. DIL drug profile	168
5.4.2. Methods (DIL)	170
5.4.2.1. RP-HPLC method for determination of DIL	170
5.4.2.2. Drug-excipient compatibility	173
5.4.2.3. Preparation of API granules of DIL	173
5.4.2.4. Preparation of DIL core tablets	173
5.4.2.5. Characterization of DIL core tablets	174
5.4.2.6. Preparation of DIL CCTs	174
5.4.2.7. Characterization of DIL CCTs	174
5.4.2.8. Packaging and stability study (DIL CCTs)	174
5.4.3. Results and discussion (DIL)	175
5.4.3.1. Flow property evaluation of DIL compression blend	175
5.4.3.2. Evaluation of DIL core tablets	175
5.4.3.3. Evaluation of DIL CCTs	176
5.4.4. Conclusion (DIL)	179
5.5. Development of PR CCTs of Nifedipine (NIF)	180
5.5.1. NIF drug profile	180
5.5.2. Methods (NIF)	183
5.5.2.1. RP-HPLC method for determination of NIF	183
5.5.2.2. Drug-excipient compatibility	186
5.5.2.3. Preparation of NIF amorphous solid dispersion (ASD)	
5.5.2.4. Characterization of NIF ASD	186
5.5.2.5. Preparation of NIF core tablets	187
5.5.2.6. Characterization of NIF core tablets	187
5.5.2.7. Preparation of NIF CCTs	188
5.5.2.8. Characterization of NIF CCTs	188
5.5.2.9. Packaging and stability study (NIF CCTs)	188
5.5.3. Results and discussion (NIF)	189
5.5.3.1. Evaluation of NIF ASD	189
5.5.3.2. Evaluation of NIF core tablets	194
5.5.3.3. Evaluation of NIF CCTs	195
5.5.4. Conclusion (NIF)	197

5.6. Development of PR CCTs of Lornoxicam (LOR)	198
5.6.1. LOR drug profile	198
5.6.2. Methods (LOR)	200
5.6.2.1. RP-HPLC method for determination of LOR	200
5.6.2.2. Drug-excipient compatibility	_203
5.6.2.3. Preparation of LOR ASD	203
5.6.2.4. Characterization of LOR ASD	203
5.6.2.5. Preparation of LOR core tablets	204
5.6.2.6. Characterization of LOR core tablets	204
5.6.2.7. Preparation of LOR CCTs	204
5.6.2.8. Characterization of LOR CCTs	204
5.6.2.9. Packaging and stability study (LOR CCTs)	204
5.6.3. Results and discussion (LOR)	205
5.6.3.1. Evaluation of LOR ASD	205
5.6.3.2. Evaluation of LOR core tablets	209
5.6.3.3. Evaluation of LOR CCTs	210
5.6.4. Conclusion (LOR)	212
5.7. Developed compression-coated PR formulation - A platform technology	213
6. Development of Pan-coated PR formulations	227-244
6.1. Methods	_227
6.1.1. Analytical methods for determination of drugs	227
6.1.2. Preparation and characterization of core tablets	227
6.1.3. Preparation of pan-coated tablets (PCTs)	_227
6.1.4. Characterization of PCTs	228
6.1.5. Packaging and stability study	_228
6.1.6. In vivo pharmacokinetic study of DIC PCT formulation	229
6.1.6.1. Quantification of DIC in rabbit plasma using LC-MS method	229
6.2. Results and discussion	233
6.2.1. Evaluation of PCTs	233
6.2.2. Packaging and stability	238
6.2.3. In vivo pharmacokinetic study of DIC PCT formulation	_239
6.3. Conclusion	_241
7. Summary and Conclusion	245 253
	243-233