4.5 In vitro protein expression studies) 5
4.5.1 Cell Lysate Preparation	95
4.5.2 Gel Casting and Electrophoresis	.97
4.5.3 Protein Transfer	99
4.5.4 Western blotting	100
4.6 Biodistribution Studies	.101
4.7 Tumor Regression Studies	.102
4.8 References	.104
Chapter 5. RESULTS AND DISCUSSION	
5.1 Synthesis of Polymer Conjugates	107
5.2 Characterization of Polymer Conjugates	110
5.2.1 Structural Analysis by 1H- NMR	110
5.2.2 SYBR Green I Binding Assay	115
5.2.3 Electrophoretic Mobility Shift Assay (EMSA)	118
5.2.4 DNase I Protection Assay	123
5.2.5 Heparin Challenge/Dissociation Assay	124
5.2.6 Cytotoxicity Assay by MTT	126
5.3 Formulation of Nanoplexes	129
5.4 Characterization of Nanoplexes	130
5.4.1 Dynamic Light Scattering (DLS) Studies	130
5.4.2 Zeta Potential Studies	132
5.4.3 Transmission Electron Microscopy	135
5.4.4 In vitro Transfection (GFP Expression) Studies	136
5.4.4.1 GFP Expression in 293T Cells by Fluorimetry & Microscopy	137
5.4.4.2 GFP Expression in 293T Cells by Flow Cytometry	140
5.4.4.3 GFP Expression in CB-MSC Cells by Fluorimetry	141
5.4.4.4 GFP Expression in CB-MSC by Flow Cytometry and Microscopy	142
5.4.4.5 GFP Expression in U87MG Cells by Flow Cytometry	145
5.4.4.6 GFP Expression in SKOV3 and NT8e cells by Flow cytometry	149
5.4.4.7 GFP Expression in SKOV3 and NT8e cells by Microscopy	152
5.4.5 Time Dependent Transfection Study	153

5.4.6 Stability of Nanoplexes	154
5.4.7 BMP-2 Production in hBMSC cells	156
5.4.8 pDNA (pp53) Digestion Study	157
5.4.8 Cell Cycle Analysis in NT8e cells	158
5.5 In vitro protein expression studies	159
5.6 Biodistribution Studies	162
5.7 Tumor Regression Studies	165
Chapter 6. SUMMARY AND CONCLUSIONS	
6.1 Summary	172
6.2 Conclusions	175

Sr. No.	Figures	P. No.
	Report related to statistics for brain and other nervous system cancer in	
Figure 2.1	the United States provided by National Cancer Institute	10
Figure 2.2	Facts about brain tumors	11
Figure 2.3	Brain and CNS tumors are disseminated according to the site of occurrence	13
Figure 2.4	Brain and CNS tumors are disseminated according to the tumor histology.	13
Figure 2.5	Typical drawing of glial cells	14
Figure 2.6	Overview of the human gene therapy	18
Figure 2.7	Schematic representation of extracellular barriers for nonviral nanoparticulate DNA carriers	26
Figure 2.8	Schematic representation of intracellular barriers for nonviral nanoparticulate DNA carriers	26
Figure 2.9	The transfection of lipid mediated gene carriers after typical internalization by endocytosis	29
Figure 2.10	Barriers to gene transfer	33
Figure 2.11	Various morphological structures arise out of DNA carrier complexes.	36
Figure 2.12	Gene delivery vehicle uptake proceeds via two main endocytic pathways with different intracellular trafficking mechanisms	38
Figure 2.13	Typical sequence of steps occurring from administration to internalization of nonviral gene carriers	38
Figure 2.14	Typical cell cycle	43
Figure 4.1	Schematic overview of the nanoplex preparation and transfection protocol	87
Figure 5.1	Schematic of amide bond formation using carbodiimide chemistry	108
Figure 5.2	Schematic of cholic acid polymer conjugate (PEI-ChA) formation using polyethylenimine and cholic acid	109
Figure 5.3	Schematic of synthesis of cholic acid polymer conjugates with	110

List of Figures

	polyethylenimine/polyallylamine (PEI/PAA)	
Figure 5 Λ	Typical ¹ H-NMR of ChA in D ₂ O showing characteristic peaks	111
Figure 5.4	corresponding to ChA protons ($\delta \sim 0.95$ ppm)	111
	Typical ¹ H-NMR of ChA substituted PEI2 in DMSO, showing	
Figure 5.5	characteristic peaks corresponding to PEI (δ ~2.5-2.8 ppm) and ChA	112
	protons (δ~0.95 ppm)	
	Typical ¹ H-NMR of ChA substituted PAA15 in D2O, showing	
Figure 5.6	characteristic peaks corresponding to PAA ($\delta \sim 1.3-1.7$ ppm) and ChA	112
	protons (δ~0.95 ppm)	
	¹ H-NMR spectra PEI2 and ChA substituted PEI2 in DMSO, showing	
Figure 5.7	characteristic peaks corresponding to PEI (δ ~2.5-2.8 ppm) and ChA	113
	protons (δ~0.95 ppm)	
	¹ H-NMR spectra PAA15 and ChA substituted PAA15 in D2O,	
Figure 5.8	showing characteristic peaks corresponding to PAA (δ ~1.3-1.7 ppm)	113
	and ChA protons ($\delta \sim 0.95$ ppm)	
	Correlation between the lipid:polymer feed ratio (mol:mol) and the	
Figure 5.9	substitution levels achieved for PEI2-ChA, PEI25-ChA and PAA15-	114
	ChA conjugates	
	Binding curves for three series of polymer conjugates (A. PEI2, B.	
	PEI25, and C. PAA15) as obtained after complexation with pDNA at	
Figure 5.10	different polymer:plasmid weight ratios. %pDNA binding values	116
	obtained from SYBR green I assay were plotted against	
	polymer:plasmid weight ratios	
Figure 5.11	EMSA for PEI2 and PEI2-ChA conjugates	120
Figure 5.12	EMSA for PEI25 and PEI25-ChA conjugates	121
Figure 5.13	EMSA for PAA15 and PAA15-ChA conjugates	122
Figure 5.14	Comparison of BC50 values and 100% binding values as obtained by	
	SYBR green I assay and EMSA, respectively, for three different	123
	polymers and their conjugates at various polymer:plasmid DNA weight	
	ratios	

Figure 5.15	Protection of plasmid DNA by polymer and polymer conjugates	124
0	against DNase I treatment	
Figure 5 16	Qualitative evaluation of dissociation of nanoplexes of polymer	
	conjugates with pDNA by anion (heparin) challenge at concentrations	125
Figure 5.10	0.01, 0.05, 0.1, 0.5 mg/ml (the complexes were formed in 150 mM	
	saline)	
	Dissociation assay for nanoplexes by anion challenge (heparin), at	
	concentrations ranging from 0.01 mg/ml to 1.0 mg/ml (the complexes	
Figure 5.17	were formed in 150 mM saline with 10% DMEM containing 5%	126
	serum) A. assay results for PEI2 and B. assay results for PEI2-ChA	
	nanoplexes	
E'	The cytotoxicity of PEI2 (Panel A), PEI25 (Panel B) and PAA15	129
Figure 5.18	(Panel C) polymers and their ChA conjugates on 293T cells	128
F' 5 10	Particle size of the nanoplexes prepared with different polymers (PEI2,	121
Figure 5.19	PEI25 and PAA15) or their conjugates	131
E	Typical particle size distribution graph showing hydrodynamic	122
Figure 5.20	diameter (in nm)	132
E	Zeta potential (ζ) of nanoplexes prepared with different polymers	10.1
Figure 5.21	(PEI2, PEI25 and PAA15) or their conjugates	134
Eigung 5 22	Typical zeta potential (ζ) graph showing zeta potential (ζ) in mV for	125
Figure 5.22	nanoplexes with Tf (A) and without Tf (B)	155
	Morphology of nanoplexes (89,000× magnification) made with	
Eigung 5 22	unmodified and modified polymers (PEI2, PEI25 and PAA15) with	136
Figure 5.25	plasmid DNA at weight ratio 10, as observed by Transmission Electron	
	Microscopy (Philips/FEI (Morgagni)	
	Transfection efficiencies of polymer conjugates with different	
	substitution ratios from three different polymer series (A. PEI2, B.	120
Figure 5.24	PEI25 and C. PAA15) as evaluated in 293T cells using gWIZ-GFP	138
	plasmid.	
Eine 5.25	Representative fluorescent microscopy images of 293T cells 24 h after	100
Figure 5.25	treatment of polyplexes of indicated polymers and gWIZ-GFP. The	139

	polymer:pDNA ratio was 10 for PEI25 and 15 for all the other	
	polymers	
	Transfection efficiencies of PEI2, PEI25 and PEI2-ChA with different	
Figure 5.26	levels of lipid substitution evaluated in 293T cells using gWIZ-GFP	141
	plasmid, 24 h post nanoplexes addition	
	Transfection efficiencies of polymer conjugates of PEI2 (PEI2-ChA),	
Figure 5.27	as evaluated in 293T cells using gWIZ-GFP plasmid 24 h post	142
	nanoplexes addition	
	Fluorescent images of CB-MSC, 48 after treatment of nanoplexes of	
Figure 5.28	polymer or polymer conjugates and plasmid gWIZ-GFP at polymer to	143
	plasmid weight ratio 10	
	Transfection efficiency of nanoplexes prepared with polymer or	
	polymer conjugates with different substitution ratios from two polymer	
	series (PEI2, PEI25) evaluated in CB-MSC using gWIZ-GFP plasmid	
Figure 5.29	as analyzed by flow cytometry. Panel A, B and C represents mean	144
	GFP fluorescence, %GFP positive cells and cell concentration for PEI2	
	and its conjugates, whereas panel D, E and F represent same	
	parameters, respectively, for PEI25 and its conjugates	
	Correlation between number of lipids/PEI and transfection efficiency	
Figure 5.20	of polymer conjugates in terms of mean GFP fluorescence obtained in	145
Figure 5.50	CB-MSC using gWIZ-GFP (r^2 value of 0.498 and 0.300 was obtained	143
	for PEI2 and PEI25 conjugates, respectively)	
	The % GFP positive U87MG cells (after normalization)	
Figure 5.31	corresponding to different treatment groups with and without	147
	transferrin	
	Flow cytogram showing GFP positive and negative cells (shift from	
Figure 5.32	gated region) corresponding to different treatment groups with and	148
	without transferrin	
Figure 5.33	Gated region of control cell population for NT8e cells	149
Figure 5.34	GFP expression for nanoplexes prepared in 150 mM saline with	150

	polymer to plasmid weight ratio of 10 (B) and 12 (C) in NT8e cells after	
	48 h by fluorescence microscopy; A is cells treated only with 150 mM	
	saline	
Figure 5.35	Gated region of control cell population for SKOV-3 cells	151
	GFP expression for nanoplexes prepared in 150 mM saline with	
Eigung 5.26	polymer to plasmid weight ratio of 10 (B) and 12 (C) in SKOV-3 cells	151
Figure 5.50	after 48 h by fluorescence microscopy; A is cells treated only with 150	
	mM saline	
	GFP expression for nanoplexes prepared in 150 mM saline with	
Figure 5 27	polymer to plasmid weight ratio of 10 (B) and 12 (C) in NT8e cells after	150
Figure 5.57	48 h by fluorescence microscopy; A is cells treated only with 150 mM	132
	saline	
	GFP expression for nanoplexes prepared in 150 mM saline with	
Eigung 5 29	polymer to plasmid weight ratio of 10 (B) and 12 (C) in SKOV-3 cells	152
Figure 5.58	after 48 h by fluorescence microscopy; A is cells treated only with 150	
	mM saline	
	Time course study with successful polymer conjugates from PEI2 and	
	PEI25 conjugates as evaluated in CB-MSC using gWIZ-GFP plasmid.	
Eigung 5 20	Panels A, B and C represents mean GFP fluorescence, %GFP of	1 - 4
Figure 5.59	positive cells and mean GFP fluorescence of GFP positive cells for	134
	PEI2 and its conjugates, while panels D, E anf F represents the same	
	parameters for PEI25 and its conjugates)	
	Mean fluorescence intensity of FL1+ cells for treatment groups with	
Figure 5.40	nanoplexes with 'no incubation' after preparation and '24 h incubation'	155
	after preparation (incubation at RT)	
	BMP-2 production in hBMSC cells using the nanoplexes prepared with	
	PEI2-ChA and PEI25. No treatment group was used as a control (with	157
Figure 3.41	150 mM saline) and plasmid BMP-2 group was used as negative	137
	control	

Figure 5.43	Cell cycle analysis in NT8e cells showing cell polulation corresponding cell cycle phases (G0-G1, G2-M and S phases)	158
Figure 5.44	Calibration curve of BSA by Lowry's protein estimation assay.	160
Figure 5.45	The p53 protein was harvested (25 μ g) and analyzed for the expression by western blot analysis using anti-mouse primary antibody p53 in NT8e cells (A) and SKOV-3 cells (B)	161
Figure 5.46	In vivo imaging of mice treated with nanoplexes of PEI2-ChA without transferrin (A, B & C) and with transferrin (D, E & F). Control mice (G) wers treated only with 150 mM saline. H & I are images for organs isolated from animals treated with and without transferrin	163
Figure 5.47	Bright light (A) and UV light (B) images of organs isolated from the mouse treated with transferrin containing nanoplexes of polymer conjugate (PEI2-ChA) with pDNA	164
Figure 5.48	Treatment with wild-type plasmid p53 induces regression of ectopic solid tumors. Pictures showing tumor volume of untreated/control mice (B) and mice treated with transferrin containing nanoplexes of PEI2- ChA with plasmid p53 (A). The numbers in the pictures denotes in- house animal numbers for identification and are unique for each animal	165
Figure 5.49	Tumor size of two groups (termed as control and treated) after tumor induction (cm)	167
Figure 5.50	Tumor size of control and treated group after treatment (cm) (p<0.001)	167

List of Tables

Sr. No.	Tables	P. No.
Table 2.1	Spending by Therapeutic Area in 2017, Pharmerging Markets	9
Table 2.2	Commonly inherited cancers and associated tumor suppressor genes	19
Table 2.3	Distinct characteristics of viral and nonviral gene carriers	23
Table 1 4	The various cationic polymers, copolymers both block and grafted	30
	studied as gene carriers.	50
Table 4.1	Solubility studies for polymers (PEI2, PEI25 & PAA15 and ChA) used	75
	for polymer conjugate synthesis	
	Reactants and their quantities used for synthesis of polymer conjugates	
Table 4.2	of PEI 2 kDa. Values in the bracket represents theoretical feed ratio	77
	chosen for actual reaction	
	Reactants and their quantities used for synthesis of polymer conjugates	
Table 4.3	of PEI 25 kDa. Values in the bracket represents theoretical feed ratio	77
	chosen for actual reaction	
	Reactants and their quantities used for synthesis of polymer conjugates	
Table 4.4	of PAA 15 kDa. Values in the bracket represents theoretical feed ratio	78
	chosen for actual reaction	
	Calculation of polymer, conjugates, plasmid DNA and SYBR Green	
Table 4.5	dye I as per volume and weight basis for pDNA binding studies by	80
	SYBR Green I assay	
Table 16	Calculation of polymer or conjugates, plasmid DNA and gel loading	Q1
1 able 4.0	dye as per volume basis for pDNA binding studies by EMSA	01
Table 4.7	Calculation of polymer or conjugates, plasmid DNA and gel loading	82
1 able 4.7	dye for DNase I protection assay	02
	Calculation of quantity of polymer conjugate, plasmid DNA and	
Table 4.8	heparin used for preparation of nanoplexes in 150 mM HEPES buffered	83
	saline for anion challenge assay	
Table 4.0	Calculation of quantity of polymer or polymer conjugate, plasmid DNA	02
Table 4.9	and heparin used for preparation of nanoplexes in 150 mM HEPES	63

	buffered saline for anion challenge assay	
Table	Calculation of quantity of polymer/ polymer conjugate for cytotoxicity	84
4.10	study in 293T cell line using MTT assay	04
Table	Treatment of 293T cells with nanoplexes prepared with different	97
4.11	polymer or polymer conjugates in 150 mM saline	87
Table	Treatment of U87MG cells with nanoplexes prepared with different	
1 abic 1 1 2	polymer or polymer conjugates with or without transferrin in 150 mM	90
4.12	saline	
Table	Sample preparation for standard graph using bovine serum albumin	
1 12	(BSA) for total protein estimation using Lowry's protein estimation	96
4.15	assay	
Table	Dilution of cell lysates from the NT8e and SKOV-3 cells for estimation	96
4.14	of total protein using Lowry's protein assay	70
Table 5.1	Substitution level achieved for polymer conjugates corresponding to	114
	theoretical feed ratio of lipid:polymer (mol/mol)	114
	Average % bound pDNA values for unmodified polymer and its	
Table 5.2	conjugates (PEI2) corresponding to different polymer to plasmid DNA	117
	weight ratio	
	Average % bound pDNA values for unmodified polymers and their	
Table 5.3	conjugates (PEI25) corresponding to different polymer to plasmid DNA	118
	weight ratio	
	Average % bound pDNA values for unmodified polymers and their	
Table 5.4	conjugates (PAA15) corresponding to different polymer to plasmid	118
	DNA weight ratio	
	Particle size of the nanoplexes prepared with different polymers or	
Table 5.5	polymer conjugates (three different series) prepared in 150 mM saline	130
	at polymer:plasmid ratio of 10	
T-11 5 5	Zeta potential (ζ) of the nanoplexes prepared with different polymers or	133
	polymer conjugates	155
Table 5.7	Treatment groups of nanoplexes with corresponding mean %GFP	146

	positive cells after normalization in U87MG cells	
Table 5.8	Cell cycle analysis in NT8e cells	159
Table 5.9	Calibration plot of BSA by Lowry's protein estimation assay	159
Table 5.10	Treatment groups for protein expression studies of p53 in two different cell lines (i.e. NT8e and SKOV-3 cells). PEI25 was used as positive control and naked pDNA as negative control	160
Table 5.11	Tumor size of control group at tumor induction and post-tumor induction (cm ³)	166
Table5.12	Tumor size of treated group before and after treatment (cm ³)	166