CHAPTER VII

STANDARDIZATION PROCEDURE

Standardization is the culmination of the process of the try-out. It is through this procedure that we confirm our selection and elimination statistically by administering the test to a representative sample of the population. In testing, standards are not fixed arbitrarily on a priori ground by a group of persons interested in this domain but are evolved out of the statistical devices. So far as the steps of standardization are concerned, they are as follows:

- (i) Standardization of material.
- (ii) Standardization of method.
- (iii) Standardization of results.

The material and method have been standardized in the pilot test. The present chapter deals with the third step, the standardization of results which involves the following steps:

I Statistical analysis of the data;II Determining reliability of the test;

III Determining validity of the test;

IV Fixing the norms.

I. Statistical Analysis of the Test Results

Before the test scores or rather quantitative data can be made comprehensible, interpretable and meaningful, it is always necessary to subject them to statistical treatment.

The number of items in the test is 170. The number of items in the first five subtests is 80 and one mark was given for each item. The number of items in the two substitution tables is 90 and the total score of these two subtests was reduced to one-fourth. Thus the maximum possible score on the test as a whole is 102.5. The highest score obtained on the test was 93 and the lowest one was 5. Thus the range of the scores is 88. This range within which all the scores were distributed was divided into ten class intervals, each interval being of ten units. The agewise distribution of scores is shown on the next page.

	,		v dulant Distriction of	5 CONOC	09 = M)	6037) ·	
0	, 6	TO TO TO STATE			13	14	Total
0	0	0	0	0	Q		
Ð	0	N	10	JO	75	103	200
ល	4	29	20	86	151	240	547
47	40	80	77	215	183	201	843
52	108	140	201	160	250	100	ILOI
06	201	302	200	119	100	76	1088
259	267	235	134	50	60	45	1050
276	163	105	103	.40	50	TT	748
153	, 1 03	50	52	25	21	ß	409
68	50	19	12	ri	ග	0	138
950	915	962	808	718	899	899 784	6037

· ·

,

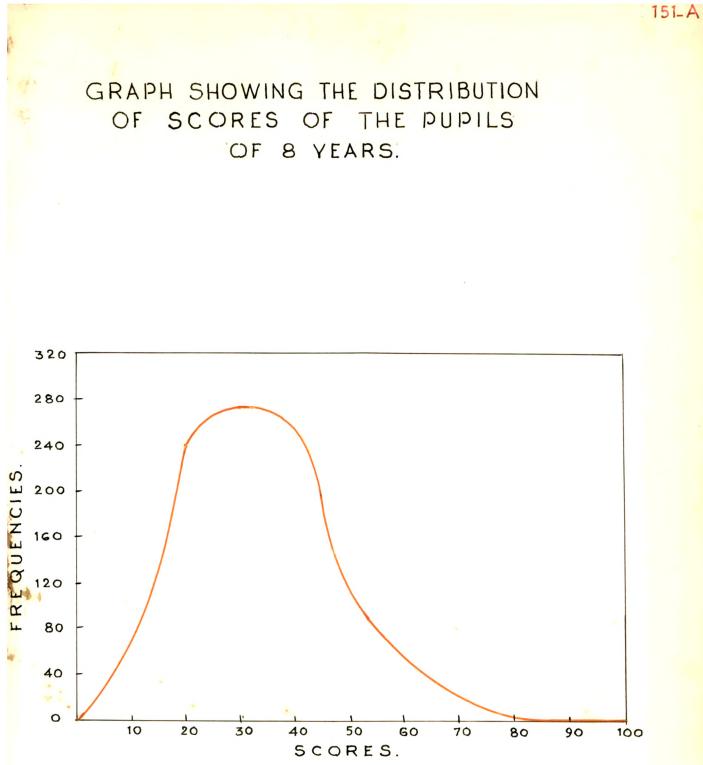
- 151

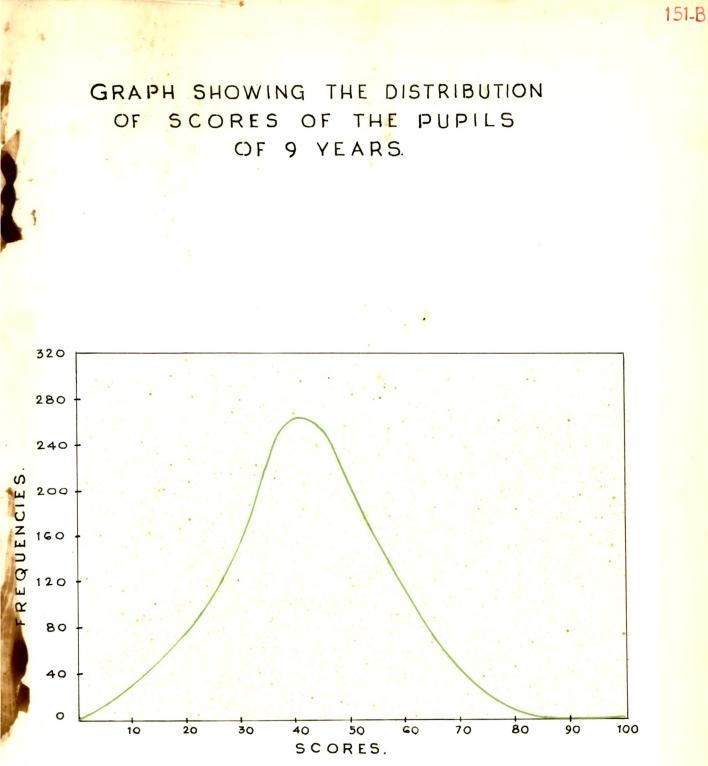
TABLE 34

Agewise	Means	and	Standard	Devia-
-	t	:1ons	3	

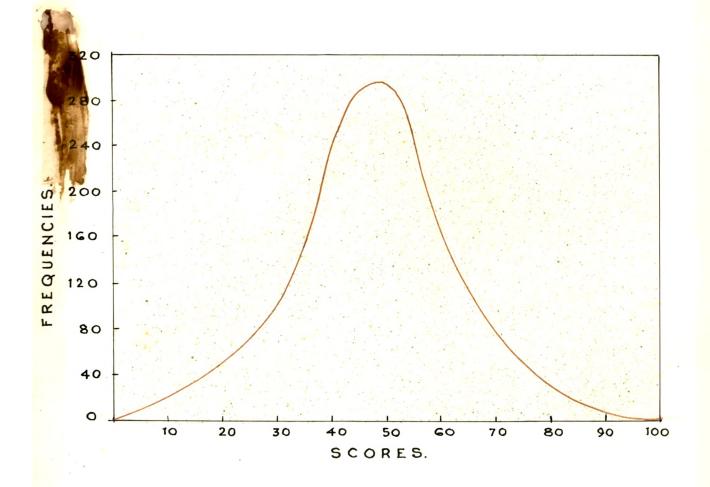
***				~~~~
Age	N	Mean	S.D.	
ann aite ain air ain air an	****		******	
8	950	29.96	14.8	
9	915	35.55	14.3	
10	962	41.64	14.6	
11	809	43.4	15.9	
12	718	54.5	15.8	
13	899	56.86	17.5	
14	784	64.5	15.1	
			-	

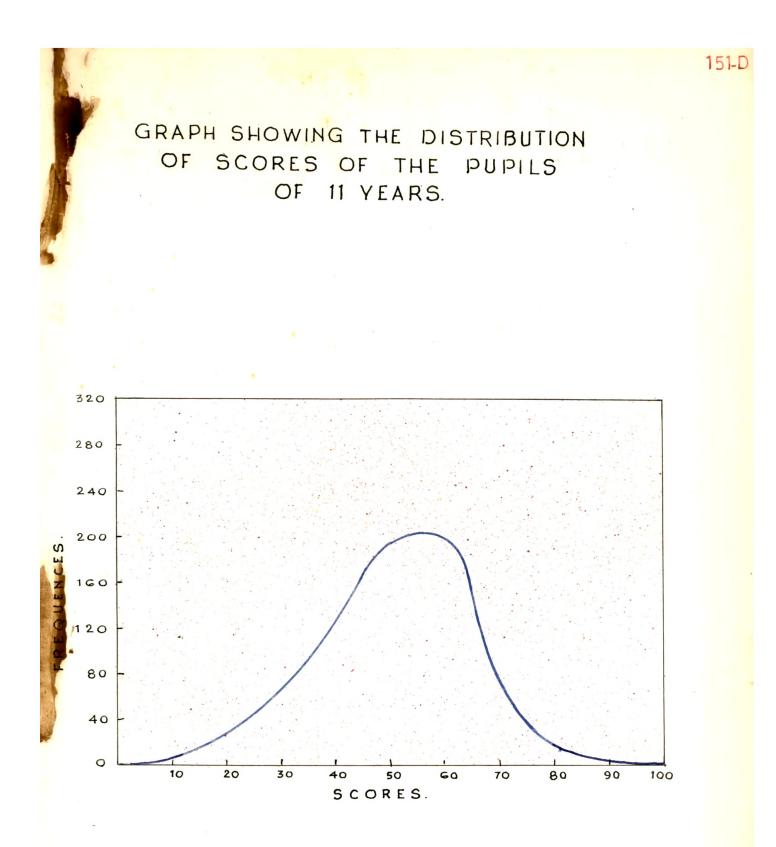
The nature of distribution of scores for different ages and of the group as a whole can be studied from the graphs given hereafter.

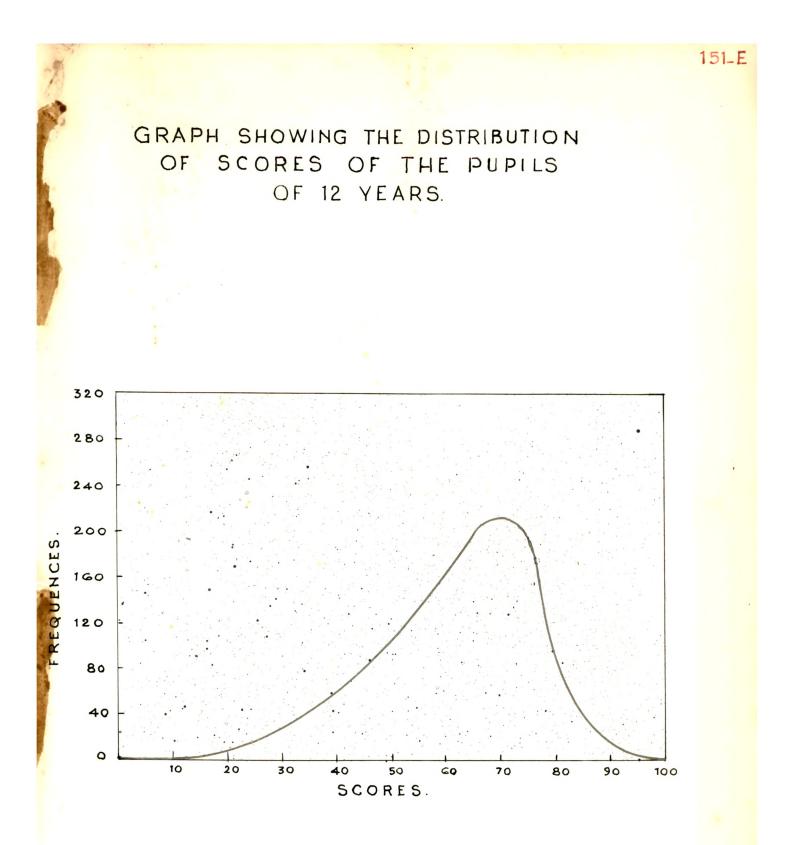

Some Statistics of the Total Distribution

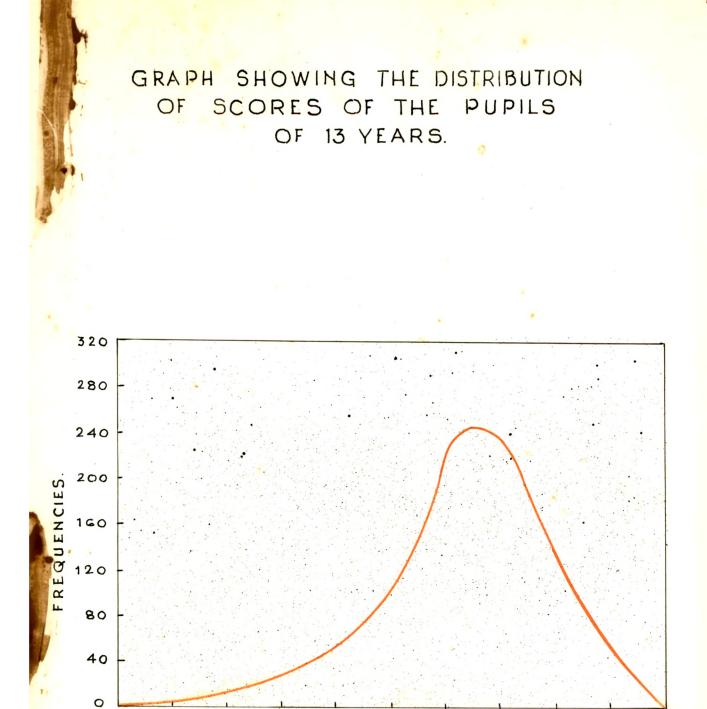

J.

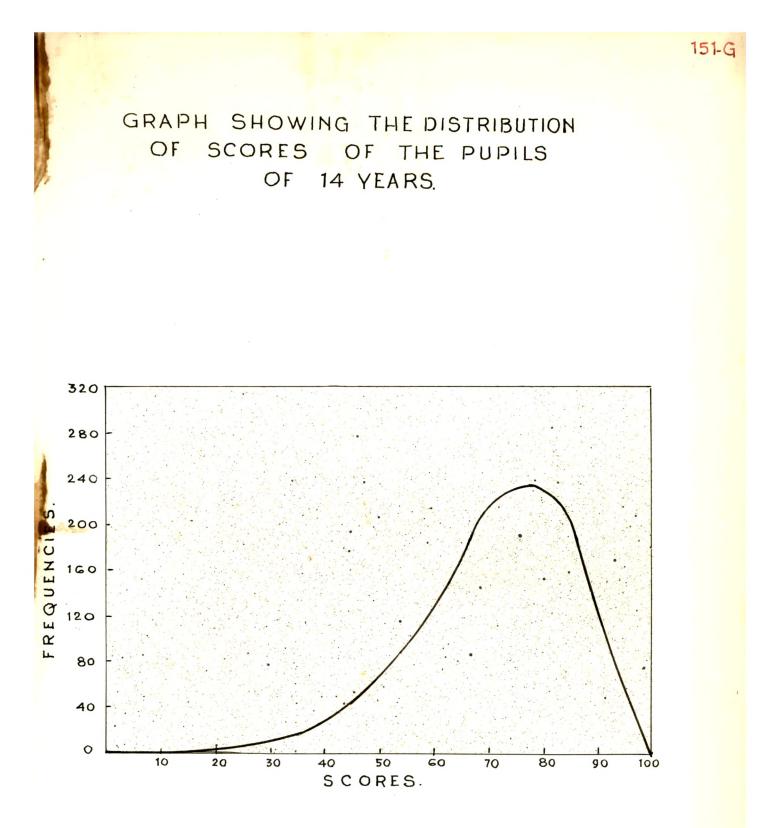
.


· .

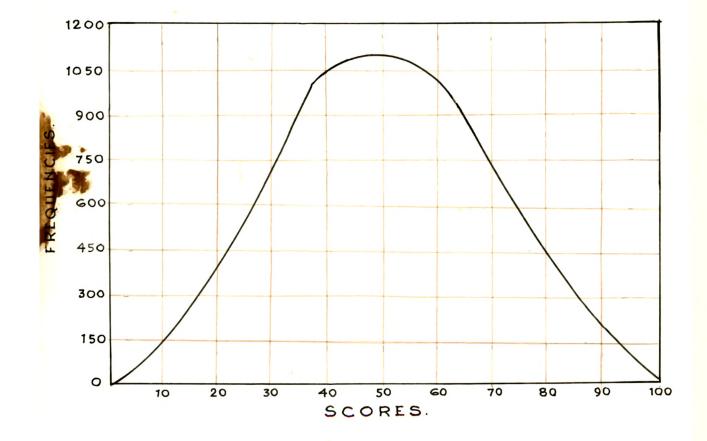

1. Mean		=	45.7
2. Median		Ē	45.69
3. Standard	deviation	=	19.2
4. Quartile	deviation	=	14.47
5. Skewness	(SK)	=	0.0015
6. Kurtosis	(Ku)	=	0.292



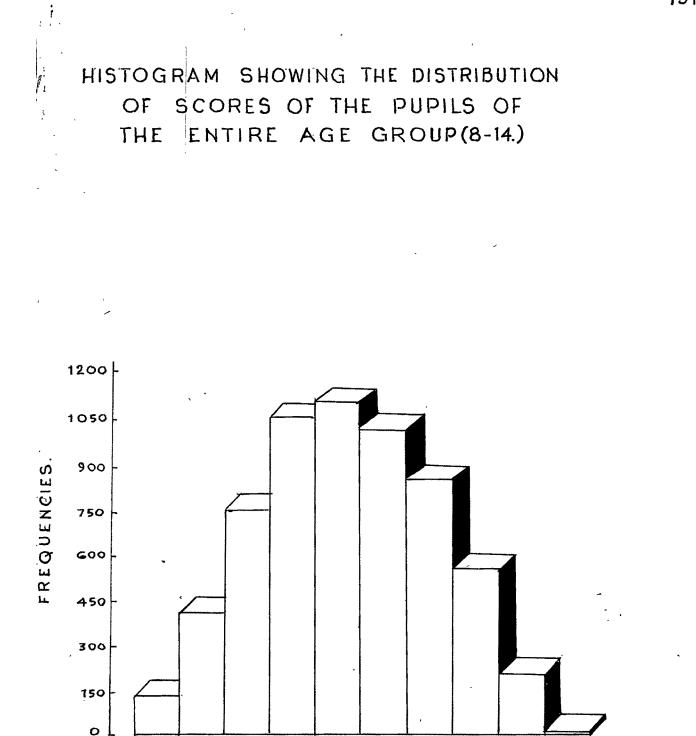

GRAPH SHOWING THE DISTRIBUTION OF SCORES OF THE PUPILS OF 10 YEARS.



•



SCORES.


151-F

GRAPH SHOWING THE DISTRIBUTION OF SCORES OF THE PUPILS OF THE ENTIRE AGE GROUP(8-14.)

•

-

SCORES.

- ,

- ,

151-I

Reliability of the Statistics

(i) Reliability of the Mean σ SE_{Mean} where or is the standard deviation of the distri-bution and N is the number /N of children included in the sample. 19.2 6037 .247 The 'true' mean lies between 45.7 + 2.58 x .247 (99 per cent level of confidence) i.e. between 46.34 and 45.06.

This narrow range within which the 'true' mean lies shows that the obtained mean is highly reliable.

> 1.253 SEMDN N 1.253 x 0.247 = 0.31 The 'true' median lies between 45.69 <u>+</u> 2.58 x 0.31 (99 per cent level of confidence) .

i.e. between 46.49 and 44.89.

152

(ii) Reliability of the Median

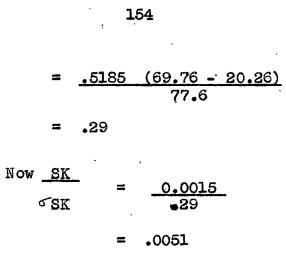
This narrow range within which the 'true' median lies shows that the obtained median is highly reliable.

> (iii) <u>Reliability of the Standard Deviation</u> SE_{S.D.} = $\frac{0.71^{\circ}}{\sqrt{N}}$ = 0.71 x 0.247 = 0.17

The $\frac{1}{6}$ 'true' standard deviation lies between 19.2 \pm 2.58 x 0.17 i.e. between 19.64 and 18.76

This narrow range within which the true standard deviation lies shows that the obtained standard deviation is highly reliable.

(iv) <u>Reliability of the Skewness</u>


To find this we have to determine the critical ratio 't' as measured by the formula:

 $t = \underline{SK}$

o∕ SK

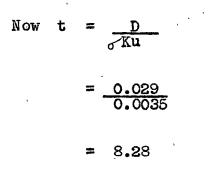
where σ SK is the standard error of the skewness. Now σ SK is obtained by using the formula:

$$\sigma SK = \frac{.5185 (P_{90} - P_{10})}{\sqrt{N}}$$

From the table of testing significance, it can be seen that this value is not at all significant. Hence 0.0015 represents no real deviation of the frequency distribution from normality.

(v) Reliability of the Kurtosis

۰.


The Kurtosis of the obtained distribution is 0.292 and that of the normal curve is 0.263. Hence the significance of this difference is to be tested. The difference D between these values is 0.292 - 0.263 = 0.029.

Standard error of the Kurtosis ' Ku' is obtained by the formula:

$$\sigma Ku = \frac{.27779}{\sqrt{N}}$$

$$so \quad \sigma Ku = \frac{.27779}{77.6}$$

= .0035

19 T .

This value is significant for N = 6037 so the conclusion is that the curve is significantly platykurtic in nature.

The next step was to see whether the test discriminates pupils from year to year. This can be seen from the table and the graph given hereafter.

`1 ,

. .

.

`.

.

TABLE 35 Significance of Difference Between Means of Different

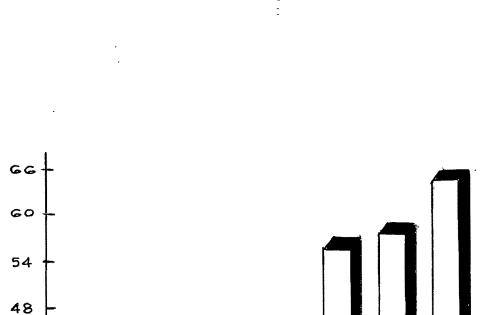
,

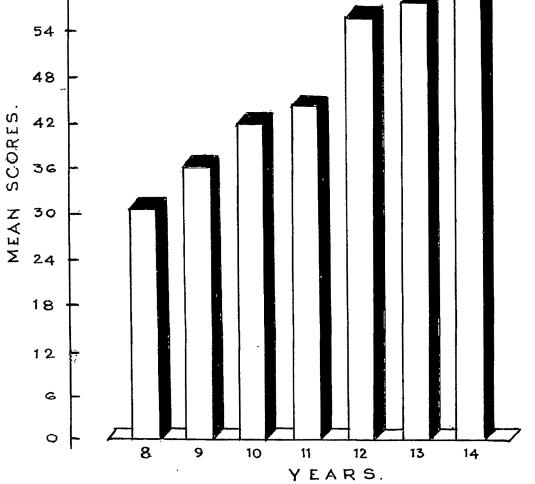
Between ages	Age	Mean	S.D.	Difference in Means	N	SED	Critical ratio	Significance	
	8 years	29,96	14.8	- # # # # # # # # # # # # # # # # # # #	950	8 9 9 9 9 9 1 1 1			
ා න්	. `			5.59		0.67	8.34	at 0.01 level	,
	9 years	35.55	14.3		915				
	9 years	35.55	14.3		915	• -	٤	04 574 474 675 474	
9-10	·)		,	6.09		0.66	9.23	at 0.01 level	156
	10 years	41.64	14.6		962				ı
	10 years	41.64	14.6	•	962	, ⁻	1	Cianifiant	
10-11		·		1.76		0.72	2.44	at 0.05 level	• ,
	11 years	43.4	15.9		809				
1	11 years	43.4	15 . 9	r r	808	0		Significant	
, 21-11	12 years	54.5	15.8	T•T	718	0. 5	ים פי פי		

٦ 56

.

Between ages	Age	Mean	S.D. Difference N SED Critical Significance in Means ratio	Difference in Means		SED	Critical ratio	Significance
12-13	12 years	54.5	°.	2 . 36		88 0	2 68	Significant at 0.01 level
	13 years	56,86	17.5		899		•	
5 5 6	13 years	56,86	17.5	5 0 1	899			Significant at
	14 years	64.5	16.1	/•04	784	20°0	ст•21	Tevel turo


٠


4

,

• ,

÷.

GRAPH SHOWING THE MEAN SCORES OF ALL THE AGES (8-14)

and the graph, From the table it is observed that there is a steady rise in the mean scores as we go from lower age to higher one. It is to be noted that there is not much difference in standard deviations of the scores of different ages. The critical ratios for different pairs of ages were referred to the table for testing significance. The table shows that the differences between the means of different ages were significant. In fine, it can be concluded from the above table that the test discriminates children from year to year.

The next step was to see whether the test discriminates children even half yearly. The following table gives the means and standard deviations for every half year. The results were treated for testing the significance of difference between the half yearly means once again.

158

monuns 7-6 to 7-11 27.62 8 years 7-12 to 8-5 30.09 8-6 to 8-11 34.33 9 years 8-12 to 9-5 35.92 9 years 9 years 9 6 to 9-11 39.69 10 years 9-6 to 9-11 39.69				SE_{D}	Critical	Significance
7-12 to 8-5 30 8-6 to 8-11 34 8-12 to 9-5 35 9-6 to 9-11 39 9-12 to 10-5 42	14.21	435	Means			
8-6 to 8-11 34 8-12 to 9-5 35 9-6 to 9-11 39 9-12 to 10-5 42	14.53	415	2.47	0.98	2.52	at 0.05 level
8-12 to 9- 5 35 9- 6 to 9-11 39 9-12 to 10- 5 42	14.61	437				Not signifi-61
9-6 to 9-11 39 9-12 to 10-5 42	14.6	478	1. 59	0.94	1.69	
9.12 to 10- 5 42	15.19	452	,		,	Significant
			2.61	1.01	2,58	at 0.01 level
	14.89	510		•	τ	
. 10-6 to 10-11 42.52	15.3	428				Stenificant
years	·	, ,	2.04	0.34	5.97	at 0.01 level

· · ·

`````

e = 1

| 11- 6 to 11-11 (             |       |      |     |             |             | ratio       | -<br>-<br><b>3</b>           |     |
|------------------------------|-------|------|-----|-------------|-------------|-------------|------------------------------|-----|
|                              | 54.3  | 15.9 | 339 | 18 0        | 61-1        | 0,68        | Not signific-<br>ant         |     |
| 11-12 to 12- 5 (             | 55.11 | 16.1 | 379 |             |             |             |                              | ,   |
| 12- 6 to 12-11               | 55.93 | 16.3 | 403 | o<br>c      | , (         |             | Significant<br>at 0.05 level | 160 |
| L3 years<br>12-12 to 13- 5 ( | 58.21 | 16.2 | 496 | 0<br>•<br>N | 0<br>0<br>4 | 0<br>•<br>• |                              |     |
| 13- 6 to 13-11 (             | 60.43 | 15.2 | 360 | ı<br>,      |             | ,           | Significant                  |     |
| 14 years<br>13-12 to 14- 5 ( | 64.88 | 16.1 | 424 | 4.45        | 1.08        | 4.1         | at 0.01 level                | •   |

From the table, it can be observed that the differences between half yearly means of different ages are significant except in cases of 9 and 12 years. This speaks for how well the test discriminates children even half yearly.

#### II. Reliability of the Test

A test is said to be reliable if repeated measurements would give us more or less similar results. Scores achieved on unreliable tests are neither stable nor trustworthy. Stability and trustworthiness depend upon the degree to which the score is an index of "true ability" is free of chance error. The Stanford-Binet I.Q., for example, is known to be a dependable measure. Hence, if a child's I.Q. is reported to be 110 by a competent examiner, we feel confident that this "score" is a good estimate of the child's ability to handle tasks like those represented by the test. The correlation of the test with itself is called the reliability coefficient of the test.

There are four methods in common use for computing the reliability coefficient of a test. These are:

- (i) Test-retest method.
- (ii) Split-half method.

#### 161

(iii) Method of Rational Equivalence.

(iv) Alternate or parallel forms methods.

All these methods furnish estimates of the reproducibility of test scores; sometimes one method and sometimes another will provide the better measure. With regard to the present test the first three methods were used for computing the self-correlation of the test.

## (i) <u>Test-Retest Method</u>

To apply this method, 400 pupils of two schools were tested again after an interval of about four months from the date of the first testing. The two sets of scores in the two trials were then correlated and the coefficient of reliability was found to be 0.94.

| 37    |  |
|-------|--|
| TABLE |  |

Reliability by Test - Retest Method N = (400)

|                    | 9-9 | 10-19                                  | 20-29        | 30-39                      | 40-49                      | 50-59                           | 60-69                           | 70-79                                | 80-89      | 90-99 | Total        |
|--------------------|-----|----------------------------------------|--------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|------------|-------|--------------|
| 90-99              |     | 1 .<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |              | E<br>9<br>9<br>8<br>8<br>8 | *<br>*<br>*<br>*<br>*<br>* | t<br>3<br>4<br>7<br>7<br>8<br>8 | 5<br>5<br>6<br>9<br>9<br>1<br>1 | 6<br>2<br>2<br>2<br>3<br>7<br>3<br>7 | -<br>-<br> |       |              |
| <b>80-</b> 89      |     |                                        |              |                            |                            |                                 | Ч                               | ຸ രൂ                                 | თ          | •     | 12           |
| 70 <del>-</del> 79 |     |                                        |              |                            |                            | . 2                             | 1                               | 03<br>03                             |            |       | 40           |
|                    | ŗ   |                                        | Ļ            | ž                          |                            | 23                              | 43                              |                                      |            |       | 67           |
| 50-59              |     |                                        |              | ო                          | 31                         | 66                              | ,                               |                                      |            |       | <b>1</b> 00, |
| 40-49              |     |                                        | ς ι <b>Ω</b> | 9                          | 83<br>83                   |                                 |                                 |                                      |            | ,     | - 94         |
| 30-39              |     |                                        | 2            | 39                         |                            | ,                               |                                 |                                      | -          | 1     | 46           |
| 20-29              |     | Q                                      | 19           |                            |                            |                                 |                                 |                                      |            |       | 25           |
| 10-19              |     | 10                                     |              | <b>,</b>                   | <i>ر</i>                   |                                 |                                 |                                      |            | ,     | 0T           |
| ი<br>ი             | 4   |                                        |              |                            |                            |                                 |                                 |                                      |            | ı     | 4            |
| Total              | 4   | 16                                     | 32           | 48                         | 114                        | 96                              | 55                              | 24                                   | 0          | 01    | 400          |

.94 <u>+</u> .0057 (.99 confidence interval)

•

``

ı

H

н

\*

•

,

# (ii) Split-half Method

To apply this method, the tests were split up into two halves, one containing only odd items and the other containing only even items. The test booklets of 400 pupils were selected at random for this purpose. From the reliability of the half test, the self correlation of the whole test was then estimated by the Spearman-Brown-Prophecy formula.

| •              | 20             | 70-14                      | DT-OT | サジーンシ                                                   |    |                                           |        | ザザーンザ                                      |              | 10001 |
|----------------|----------------|----------------------------|-------|---------------------------------------------------------|----|-------------------------------------------|--------|--------------------------------------------|--------------|-------|
| 45-49          | <br> <br> <br> | 5<br>5<br>1<br>5<br>5<br>5 |       | )<br> <br> |    | 6<br>†<br>3<br>3<br>5<br>5<br>8<br>1<br>1 |        | c :<br>: : : : : : : : : : : : : : : : : : |              | r-1   |
| 40-44          |                | -                          |       |                                                         |    |                                           |        |                                            | ŝ            | ო     |
| 35 <b>-</b> 39 |                |                            |       |                                                         | ŗ  | -                                         | 11     | Ч<br>4                                     | 10           | 35    |
| <b>30-</b> 34  |                |                            |       |                                                         | Ч  | 00                                        | 15     | 16                                         |              | 40    |
| 25-29          |                | -                          |       | ŝ                                                       | сл | 39                                        | 20     |                                            |              | 99    |
| 20-24          |                | ,                          | ູທ    | 4                                                       | 23 | 84                                        |        |                                            |              | 116   |
| 15-19          |                | 01                         | 15    | 32                                                      | 57 |                                           |        |                                            |              | 106   |
| 10-14          |                | 01                         | 80    | 10                                                      |    |                                           |        |                                            |              | 32    |
| 5 <b>-</b> 9   | , –            |                            |       | -                                                       |    |                                           | ,<br>, |                                            | 、  <br> <br> |       |
| Total          | i d            | 4                          | 40    | 48                                                      | 86 | 131                                       | 46     | 46 30                                      | 14           | 400   |

(.99 confidence interval)

TABLE 38

**16**5

í

(iii) Method of Rational Equivalence

The method stresses the inter-correlations of the items in the test and the correlations of the items with the test as a whole. The formula for determining test reliability is:

$$r_{11} = \frac{n}{(n-1)} \times \frac{r_{t}^{2} - \epsilon pq}{r_{t}^{2} + t}$$

in which r<sub>11</sub> reliability coefficient of = the whole test. number of items in the test. n ----ot = the S.D.of the test. proportion of the group answerр ing a test item correctly. ۰. = (1-p) = the proportion of the group answering a test item q incorrectly.

TABLE 39

Reliability by Rational Equivalence Methods (N = 400)

|            | `           |       |         |             |       |          |
|------------|-------------|-------|---------|-------------|-------|----------|
| Subtest    | Item<br>No. | A     | P=A/400 | Q = 1-p     | PQ    | • ••• •• |
| Similarity | 1           | 300   | •75     | <b>-</b> 25 | .1875 | ú        |
|            | 2           | - 279 | .697    | .303        | .2112 |          |
|            | 3           | 271   | .677    | .323        | .2187 |          |
|            | 4           | 275   | .687    | .313        | 2150  |          |
| ,          | <b>5</b> ., | 260   | •65     | •35         | .2275 |          |

٢

| Subtest             | Item<br>No. | A<br> | P=A/400          | Q=1-p        | PQ            |
|---------------------|-------------|-------|------------------|--------------|---------------|
|                     | 6           | 269   | .673             | .327         | .3201         |
|                     | 7           | 289   | .722             | .278         | •2007         |
|                     | 8           | 242   | •585             | .415         | •2428         |
| ,                   | 9           | 235   | .587             | .413         | .2424         |
|                     | 10          | 235   | .587             | .413         | .2424         |
| ~                   | 11          | 194   | .485             | .515         | •2498         |
| -<br>4              | 12          | 181   | •452             | <b>.5</b> 48 | .2477 -       |
|                     | 13          | 179   | .447             | •553         | .2472         |
|                     | 14          | 150   | <b>•</b> 375     | .625         | <b>.</b> 2344 |
| Classifica-<br>tion | 1           | 311   | •777             | .223         | .1733         |
| .011                | 2           | 300   | .75              | .25          | .1875         |
| · · ·               | 3           | 291   | .727             | .273         | .1985         |
|                     | 4           | 265   | <b>.</b> 662     | .338         | .2229         |
|                     | 5           | 274   | <b>.</b> 685     | .315         | <b>.215</b> 8 |
|                     | 6           | 236   | •59              | .41          | .2419         |
|                     | 7           | 193   | .482             | .518         | .2497         |
|                     | ,<br>8      | 215   | .537             | •463         | <b>.</b> 2486 |
|                     | 9           | 221   | .552             | •448         | .2473         |
|                     | 10          | 180   | •45              | .55          | .2475         |
|                     | 117         | 115   | .287             | .713         | .2046         |
|                     | 12          | 125   | ′ · <b>.31</b> 2 | .688         | .2147         |
|                     | 13          | 100   | .25              | .75 •        | .1875         |
|                     | 14          | 85    | .212             | .788         | .1704         |

,

.

.

1

| Subtest   | Item<br>No. | A            | P=A/400 | Q=1-p        | PQ            |
|-----------|-------------|--------------|---------|--------------|---------------|
| Analogy   | 1           | 280          | •7      | .3           | .21           |
|           | 2           | 249          | .622    | .378         | <b>.241</b> 3 |
|           | 3           | 230          | .575    | .425         | •2444         |
|           | 4           | 198          | •495    | .505         | .2500         |
|           | 5           | 189          | .472    | .528         | •2492         |
|           | 6           | 157          | .377    | .623         | .2349         |
| • ,       | ʻ <b>7</b>  | 121          | .302    | .698         | .2108         |
| ŧ         | 8           | 97           | .242    | •758         | .1834         |
|           | 9           | 91           | .227    | .773         | .1755         |
|           | 10          | 102          | .255    | .745         | .1900         |
|           | 11          | 80           | .2      | •8           | .16           |
|           | 12          | 75           | .187    | .813         | .1520         |
|           | 13          | 74           | .185    | .815         | .1508         |
|           | 14          | 74           | .185    | .815         | .1508         |
|           | 15          | 68           | .17     | .83          | .1411         |
|           | 16          | 71           | .177    | .823         | .1457         |
|           | 17          | 62           | .155    | .845         | .1310         |
| Absurdity | 1           | 301          | •752    | •248         | .1865         |
|           | 2           | 305          | .762    | .238         | .1813         |
|           | 3           | 2 <b>8</b> 6 | .715    | •285         | <b>•20</b> 38 |
|           | 4           | <b>281</b> , | .702    | <b>.</b> 298 | .2092         |
|           | 5 ົ         | 283          | .707    | .293         | .2071         |
|           | 6           | 280          | •7      | .3           | .21           |

~

,

ſ

7

ł

| Subtest                               | Item<br>No. | A           | P=A/400      | Q <b>=1-</b> p | PQ            |
|---------------------------------------|-------------|-------------|--------------|----------------|---------------|
|                                       | 7           | 259         | .647         | .353           | <b>.22</b> 84 |
| · · · · · · · · · · · · · · · · · · · | . 8         | <b>26</b> 8 | .67          | .33            | .2211         |
|                                       | 9           | 235         | •587         | .413           | •2424         |
|                                       | 10          | 223         | .557         | •443           | .2467         |
|                                       | 11          | 225         | .562         | •438           | .2462         |
|                                       | 12          | 198         | .495         | .505           | •2500         |
|                                       | 13          | 201         | •502         | .498           | <b>.25</b> 00 |
|                                       | 14          | 161         | ,402         | .598           | <b>.</b> 2405 |
|                                       | 15          | 150         | .375         | .625           | <b>.</b> 2344 |
| · · · ·                               | 16          | 153         | .382         | .618           | .2361         |
|                                       | 17          | 149         | .372         | .628           | .2336         |
|                                       | 18          | 131         | .327         | .673           | .2201         |
| Progressive                           | 1           | 280         | •7           | •3             | .21           |
| series                                | 2           | 284         | .71          | .29            | .2059         |
|                                       | 3           | 281         | .702         | .298           | .2092         |
|                                       | 4           | 263         | .657         | •343           | .2253         |
|                                       | 5           | 259         | <b>.</b> 647 | •353           | .2284         |
|                                       | 6           | 235         | •587         | .413           | <b>.</b> 2424 |
|                                       | 7           | 230         | •575         | <b>.</b> 425   | •2444         |
|                                       | 8           | 235         | .587         | .413           | .2424         |
| -                                     | . 9         | 210         | .525         | .476           | .2494         |
|                                       | 10          | 207         | .517         | .483           | .2497         |
|                                       | 11          | 198         | .495         | •505           | .2500         |
|                                       |             |             | ,            | •              | ı             |

x

۲.

| Subtest | Item<br>No. | A   | P=A/400 | Q=1-p        | PQ            |  |
|---------|-------------|-----|---------|--------------|---------------|--|
|         | 12          | 183 | •457    | <b>.5</b> 43 | .2478         |  |
|         | 13          | 187 | .467    | •533         | .2489         |  |
| -       | 14          | 161 | .377    | <b>.62</b> 3 | <b>.</b> 2359 |  |
| -       | 15          | 109 | .272    | .728         | .1980         |  |
|         | 16          | 89  | .222    | .778         | .1727         |  |
|         | 17          | 89  | .222    | .778         | .1727         |  |
|         | 18          | 80  | .2      | •8           | .16           |  |
|         | ,           |     |         | EPQ          | 17.5500       |  |

$$r_{11} = \frac{n}{n-1} \qquad x \qquad \frac{2t - \epsilon pq}{\frac{2t}{\epsilon^2 t}}$$

where  $r_{11}$  = reliability coefficient of the whole test. n = number of items in the test.  $\sigma t$  = the S.D. of the test scores. p = the proportion of the group answering a test item correctly. q = (1-p) = the proportion of the group answering a test item incorrectly.  $r_{11} = \frac{80}{79} - (1 - \frac{17.55}{(18.5)^2})$   $= \frac{80}{79} - (1 - 0.051)$  $= .961 \pm 0.0098$  (.99 confidence interval) It should be moted here that the higher coefficients of correlation in the split-half technique and rational equivalence method should be looked upon with caution. Speed tests are tests in which the time limit imposed is so short that usually not all examinees can attempt all of the items. Speed tests such as this are of low difficulty level. In fact, the odd-even split-half reliability procedure is vitiated by the element of speed.

As Garrett puts it:

The split-half technique and the rational-equivalence methods should not be employed with speed tests.1

There are other measures of reliability which may be employed to corroborate and reinforce the indications of these two methods. As regards the present test the reliability coefficient as computed by the test-retest method is significantly high and it provides a reason why the indications of the other two methods should not be suspected.

#### III. Validity of the Test

The validity of a test depends upon the fidelity with which it measures what it purports to measure. The

1 Garrett, H.E., <u>Statistics in Psychology and Education</u>, Allied Pacific Private Ltd., p. 353. present test is expected to measure intelligence and hence it should be made sure whether it actually does so. There are two main types of evidence bearing on the validity of a test: (i) rational and (ii) empirical or statistical.

Sometimes we judge the validity of a test by rational analysis. This analysis may be of the areas included in the test - its content. This type of analysis is done to ascertain the content validity of the test. We may also analyse the functions or processes it measures to see how well they correspond to the concept that we have set out to appraise. This analysis is done to ascertain the concept validity of the test. In the words of Thorndike and Hagen:

> In practice, establishing the content and the concept validity of a test are often closely interwoven.1

In the present investigation such rational analysis was done while selecting the subtests and constructing the items. The detailed account of the analysis  $\tilde{\bullet}$ is given in the chapter on 'Planning and Preparing the test'.

(ii) The second type of evidence of validity is

2 Thorndike and Hagen: <u>Measurement and Evaluation in</u> <u>Psychology and Evaluation</u>, New York, John Wiley and Sons, Inc., 1955, p. 214.

172

empirical or statistical. This type of evidence comes from the relationship of the instrument to some other measure. Sometimes we may gather statistical evidence of validity. The statistical evidence will usually be in the form of correlations with other measures. The correlation of a test with an existing similar measure of the same function provides evidence on congruent validity of the test. The correlation of a test with some other measure obtained at the same time provides evidence on the concurrent validity of the test.

In the present investigation empirical (or statistical) validity was determined by:

- (a) correlating the test with the intelligence test of the Faculty of Education and Psychology, Bardda;
- (b) correlating the test with the total of the examination scores of the four subjects (Science, Mathematics, English and Gujarati); and

(c) correlating the test with the teachers' estimates of intelligence.

## (a) <u>Correlation of the Present Test with</u> <u>the Verbal Test of the Faculty of</u> <u>Education and Psychology</u>; Baroda

The Research Department of the Faculty of Education and Psychology, Baroda, has prepared a verbal group test of intelligence under the guidance of Lele. The present test scores were correlated with the scores of that test. The following table shows the correlation between the two sets of scores. TABLE 40

ł

Correlation of the Scores of the Present Test with the Verbal Test

٤ ۰.

· 1

|                |            |                                                                                             |       |                                                     |                                 |         | •     |       |                | 1      |
|----------------|------------|---------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|---------------------------------|---------|-------|-------|----------------|--------|
| ·              | 8-0        | 10-19                                                                                       | 20-29 | 30-39                                               | 40-49                           | 50-59   | 60-69 | 70-79 | 80-89          | Total  |
| 66 - 06        |            | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, |       | ,<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | 1<br>1<br>1<br>1<br>1<br>1<br>1 | . I     | N     |       | ,<br><b>\$</b> | C3     |
|                | _ <b>1</b> | 8                                                                                           | 1     | 1                                                   | <b>.</b>                        | ო       | က     | I     | 1              | Q      |
| н<br>1 70-79   | 1          | •                                                                                           | 1     | <b>ი</b> ,                                          | , <b>O</b>                      | O       | က     | t     | Ŧ              | 18     |
| 60 <b>-</b> 69 | •          | , <b>N</b>                                                                                  | Ø     | <b>o</b>                                            | 15                              | თ       | ŝ     | იე    | 1              | 48     |
| 50-59          | ı          | <b>,</b>                                                                                    | 17    | SS<br>SS                                            | 50                              | 23      | 03    | н     | 0              | 67     |
|                | ł          | ຕາ                                                                                          | 18    | 15                                                  | 14                              | ო       | r-1   | н     | ` <b>)</b>     | 55     |
| 30-39          | ł          | 4                                                                                           | 17    | Q                                                   | 4                               | ື<br>ຕາ | i     | 8     | ł              | 30     |
|                | 4          | 16                                                                                          | 14    | t                                                   | I                               | 1       | ı     | t     | 1              | 34     |
|                | 9          | 15                                                                                          | 0     | t                                                   | I                               | 0       | ł     | t<br> | ŧ              | 31     |
| ດ<br>-         | I          | •                                                                                           | က     | ۰                                                   | 8                               |         | I     | I     | 1              | e<br>S |
| Total          | 01         | 40                                                                                          | 85    | 55                                                  | 68                              | 49      | 16    | 1     | 5 2            | 330    |

.

175

,

.

)

#### (b) <u>Correlation of IQs with</u> Examination Marks

Scores of four subjects viz: Science, Mathematics, English and Gujarati were taken instead of taking the aggregate score at the annual examination which includes scores of physical training and other subject as well. Moreover, the scores in these subjects were converted into standard scores with 100 as the mean; and 20 as the standard deviation so that the marks of the schools might be comparable. The following table shows the correlation of the IQs with the standard scores.

| 80 | 17 |
|----|----|
| 15 | 21 |
| 26 | 14 |
|    |    |

- . .

## (c) <u>Correlation of IQs with Teachers'</u> <u>Estimates of Intelligence</u>

The validity of the test was tested by correlating IQs of pupils with teachers' estimates of their intelligence. The teachers were instructed to classify the pupils into the following categories:

- A. Very superior
- B. Superior
- C. Average
- D. Inferior

٦.,

E. Very inferior.

The following table shows the correlation of IQs with teachers' estimates of intelligence:

#### TABLE 42

Correlation of IQs with Teachers' Estimates of Intelligence

| ***                                                                                         | 186 196 446 466 466 i                  |                  | ang | I       | Qs        |           | · · · · · · · · · · · · · · · · · · · |                                            |
|---------------------------------------------------------------------------------------------|----------------------------------------|------------------|-----------------------------------------|---------|-----------|-----------|---------------------------------------|--------------------------------------------|
| S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |                                        | 70-79            | <b>80-</b> 89                           | 90-99   | 100-109   | 110-119   | 120-129                               | Total                                      |
| estimates<br>Lligence                                                                       | A                                      |                  | -                                       | -       | 1         | 4         | 2                                     | 7                                          |
| est<br>Llig                                                                                 | В                                      | -                | -                                       | 32      | 12        | 5         | 4                                     | 53                                         |
| rs'<br>ntel                                                                                 | C                                      | -                | 17                                      | 75      | 64        | 10        | <b>-</b> ,                            | 166                                        |
| Teachers'<br>of inte                                                                        | D                                      | 12               | <b>2</b> 3                              | 17      | 7         | -         | -                                     | 59                                         |
| Tea                                                                                         | Е                                      | 6                | 12                                      | 27      | -         | -         | -                                     | 45                                         |
|                                                                                             | Total                                  | 18               | 52                                      | 151     | . 84      | 19        | 6                                     | 330                                        |
|                                                                                             | a genetik mantif sebaka nagatik mantif | $\mathbf{r} = 0$ | <b>.</b> 53 <u>+</u> 0                  | .01 (.9 | 9 confide | ençe inte | erval)                                | الله الْجَعْ لَيْنَ اللهُ عنه من يورد الله |

From what has been discussed above it can be concluded that the present test is a fairly reliable and valid instrument of measuring intelligence of the pupils of the prescribed age limit. The above correlational evidence are indicative to the extent to which the present test is dependable.

#### Factor Analysis

In the statistical method called factor analysis, the intercorrelations of subtests are examined and if possible accounted for in terms of a much smaller number of more general "factors" or trait categories. The factor presumably run through the often complex abilities measured by the individual tests. This is a specialized mathematical technique widely used and highly important in modern test construction.

According to Cronbach, "It is hard to gain even a partial understanding of factor analysis."<sup>3</sup> Although, the treatment is mathematical the technique involves considerable judgement. In the present case, the centroid method developed by Thurstone was used. For this purpose, the internal correlations of the 6 subtests calculated for the final test have been used. The sample selected for this was 1000. The results of the factor analysis

3 Cronbach, <u>Essentials of Psychological Testing</u>, New York, Harper & Brothers, Publishers, 1960, p. 247. were verified by Spearman's formula for 'g' saturation.

. **'**•

|       | Origina | al Correl | ation Mat | rix (N = | = 1000)     |     | , |
|-------|---------|-----------|-----------|----------|-------------|-----|---|
| ***** | 1       | 2         | 3         | 4        | 5           | 6   |   |
| 1     | -       | -51       | .60       | .29      | .41         | .37 |   |
| 2,    | .51     | -         | .59       | .48      | <b>•5</b> 6 | .51 |   |
| 3     | .60     | .59       | -         | .45      | •56         | .50 |   |
| 4     | .29     | .48       | .45       | -        | •35         | •32 |   |
| 5     | .41     | •56       | .56       | .35      | -           | •48 |   |
| 6     | .37     | .51       | .50       | •32      | <b>.</b> 48 | -   |   |

### TABLE 43

In the correlation matrix rewritten below, the diagonal cells are filled in with the highest correlation of respective columns.

0

### TABLE 44

1 2 З 4 5 6 (0.60) .51 .60 1 .29 .41 .37 .51 (0.59) .59 .48 .56 .51 2 .60 **.59 (0.60) .**45 **.5**6 .60 3 .29 .48 .45 (0.48) .35 .32 4 5 .41 .56 .56 .35 (0.56) .48 .37 .51 .50 6 .32 .48 (0.51)\*\*\*\*\*\* jl 2.18 2.65 2.70 1.89 2.36 2.18 = 13.96 tjl 2.78 3.24 3.30 2.37 2.92 2.69 = 17.30 ajl 0.6684 0.7790 0.7934 0.5698 0.7020 0.6467 = 4.1593

$$T_{1} = 17.30$$

$$\sqrt{T_{1}} = 4.1593$$

$$\frac{1}{\sqrt{T_{1}}} = 0.2404251$$

$$\varepsilon_{a,11} = 4.1593$$

Rearranged Correlation Matrix (N = 1000)

|             |                                          |                              | First Residual                   | dual Correlation Matrix         | n Matrix                                |                                  | ĩ                              |
|-------------|------------------------------------------|------------------------------|----------------------------------|---------------------------------|-----------------------------------------|----------------------------------|--------------------------------|
|             | .6684                                    | *<br>*                       | . 79,34                          | *<br>5698                       | *<br>*                                  | *<br>6467                        | ţ                              |
| Test<br>No. | н                                        | 0                            | co                               | 4                               | 5                                       | ÿ                                | 1                              |
| н           | .0909<br>(+.1532)                        | -0107                        | .0697                            | 6060 • +                        | + .0592                                 | 0623                             | ,<br>2                         |
| 0           | ±.0107                                   | .0361<br>(0168)              | <b>1</b> 820 <b>-</b>            | + .0361                         | + •0131                                 | + .0062                          | 18                             |
| ო           | +•0697                                   |                              | • 0697<br>(- • 0295)             | - 0020                          | • • • • • • • • • • • • • • • • • • • • | <b>1</b> 510. <u>+</u>           | 22                             |
| *<br>*      | 60 <b>80 • </b> +                        | + .0361                      | <b>±</b> .0020                   | •0909<br>(+ •1553)              | 0500                                    | 0485                             |                                |
| ິດ<br>*     | <b>+</b> 0592                            | + •0131                      | <b>+</b> •0030                   | 0500<br>(+ .0672)               | • 0592                                  | + .0260                          |                                |
| 9<br>*      | <b>+</b> .0623                           | + .0062                      | ±.0131                           | • 0485                          | + .0260                                 | .0623<br>(+ .0918)               |                                |
| C01.        | 4 + 0284<br>2 - 0498<br>6 1744<br>5 2928 | 0556<br>0556<br>0680<br>0942 | .0335<br>.0897<br>.1159<br>.1099 | . <u>1553</u><br>.2275<br>.1305 | + 0329<br>0067<br>0453                  | + 0053 = +<br>0071 = +<br>0591 = | 0.1998<br>4222<br>4506<br>6318 |
| 9<br>9<br>9 | .3837                                    | .1303                        | .1796<br>.1760                   | .1214                           | .1045<br>.1024                          |                                  | <b>1.</b> 0409                 |
|             | 72                                       | = 1.0409                     | T2 = 1.0203                      | 03 1                            | = 0°9801039                             | Eaj2 =                           | 1.0202                         |

à

|                                    | F          | ,              |        |                     | נ               | .83              |                   |                  |           |                                      |                  | œ             |
|------------------------------------|------------|----------------|--------|---------------------|-----------------|------------------|-------------------|------------------|-----------|--------------------------------------|------------------|---------------|
| ,                                  |            |                |        |                     |                 |                  |                   | ·                |           | - 1816<br>1256<br>+ 3720<br>4200     | . 7120<br>. 8438 | ≨aj3 = 0.8438 |
| on Matrix                          | . (0       | .1190          | .0175  | 0600 • <del>-</del> | <b>+</b> •0078  | ±.0627           | • 0138            | .0627<br>(.0481) | 1000 · Ø- | - 0482<br>0772<br>0952<br>1108       | .1735            | = 1.1851149   |
| Second Residual Correlation Matrix | ß          | .1024          | .0207  | • • 0000            | <u>+</u> .0210  | +.0622           | .0622<br>( .0487) | .0138            | • 0000    | - 0487<br>0757<br>0757<br>1177       | 1799<br>2132     | <b>1</b>      |
| ond Residua.                       | * 4        | <b>0611.</b> + | 0461   | • 0209              | 0189            | +.0627<br>(0767) | ±.0622            | <u>+</u> •0627   | 1000      | 0768<br>0768<br>1186<br>0808         | .1435            | 8438          |
| 2<br>8<br>9<br>0                   | <b>*</b> ന | .1760          | - 0035 | .0056               | .0210<br>.0387) | - 0189           | 1.0210            | <b>±</b> •0078   | 1000.+    | 0386<br>0008<br>0120<br>0120         | 0330<br>0391     | 20            |
|                                    | * 03       | .1277          | ±.0373 | .0373               | • 0056          | • 0209           | ••0000            | <b>+</b> •0000   | •0000     | 0198<br>0616<br>+ 0728               | .1101            | T3 = ,7120    |
|                                    |            | 3761           | .0461  |                     | 0035            | 0461             | .0207             | .0175            | 1000      | • 0505<br>• 0417<br>• 0329<br>• 0259 | .0720<br>.0863   |               |
|                                    |            | Test No.       | н      | Ń<br># 5            | က<br>* ျ        | *<br>4           | ŝ                 | ບໍ               |           | 501. 24<br>Col. 24<br>Col. 28        | <b>ء</b> اع .    | •             |

.

.

TABLE 46

•

.

•

,

.

,

r

, 183

.

| TABLE 47 | Third Residual Correlation Matrix | .1305 .0391 .1701 .2132 .2056 | 2 3 4 5 6   | +.026200680606 +.0025 .0000 | .0278 +.0005001302780178<br>(+.0203) | +.0005 .02550255 +.01270002 (+.0195) | 00130255 .0606 +.0259 +.0277<br>(+.0338) | 0278 +.0127 +.0259 .03000300<br>(+.0167) | 01780002 +.02770300 .0300 (+.0205) | +.0001 +.0002 .0000 +.0002 | 0193033801670203 | ł     |                  | .1014 .0322 .2016 .0385 .0457<br>.1358 .0431 .2700 .0516 .0612 | $5575$ $T4 = .7466$ $1 = 1.3392977$ $\leq 14 = .7467$ |
|----------|-----------------------------------|-------------------------------|-------------|-----------------------------|--------------------------------------|--------------------------------------|------------------------------------------|------------------------------------------|------------------------------------|----------------------------|------------------|-------|------------------|----------------------------------------------------------------|-------------------------------------------------------|
| ,<br>,   |                                   | .1305                         | ຸ           |                             | •0278<br>•0203)                      |                                      | . *                                      | •0278                                    | .0178                              |                            | 0202             | ł     | • <b>+</b>       | 1014<br>1358                                                   | 575 T4 =                                              |
| ŕ        |                                   | •0863                         | Ч           | .0606<br>(+.0338)           | +.0262                               | - • 0068                             | • • 0606                                 | +.0025                                   | • 0000                             | +•000 <b>1</b>             | 0387             | •     | +.0775<br>+.0775 | 1381<br>1850                                                   | T4 =                                                  |
|          |                                   | -                             | Test<br>No. |                             | 63                                   | ო                                    | 4                                        | Ģ                                        | ÿ                                  | <b>1</b> 4                 | Col.1            | Col.1 | Col.3<br>Col.3   | t 14<br>814                                                    | •                                                     |

,

184

~

~

•

•

`

.

Centroid Factor Matrix

| No. | Subtest            | Factor<br>I | Factor | Factor<br>III    |
|-----|--------------------|-------------|--------|------------------|
| ĺ   | Similarity         | 0.54        | •48    | •26 <sup>°</sup> |
| 2   | Classification     | 0.72        | •00    | .36              |
| 3   | Analogy            | 0.73        | .31    | .19              |
| 4   | Absurdity          | 0.51        | 02     | .33              |
| 5   | Progressive series | 0.74        | . 02   | .01              |
| 6   | Substitution       | 0.69        | 01     | •00              |

It can be seen from the table that there is one common factor (say 'g'). The second factor common to test first and third is not exactly identified and hence no attempt is made to specify it. The third factor common to first four tests can be identified as eduction of correlates. The next step will be to see how the first general factor common to all the subtests corresponds to 'g' saturation found out by Spearman's method.

#### Spearman's Method of Determining 'g' Saturations of the Tests

'g' saturations of the tests may be directly determined by the formula:<sup>4</sup>

4 Fruchter Benjamin, <u>Introduction to Factor Analysis</u>, New York, D.Van Nostrand Company, Inc., 1954, p.9.

$$g = \sqrt{\frac{Aj^2 - A'j}{T - 2Aj}}$$

where T = Sum of all the correlations (where each occurs twice and the diagonal cells are empty);

- Aj = Sum of all the correlations in raw j;
- A'j = Sum of the squared correlations in row j;

$$Aj^2$$
 = the square of  $Aj$ .

Step 1

, <del>~</del>

Calculation of  $Aj^2$ 

Original Matrix

| **** | 1   | 2            | 3   | 4     | 5             | 6   | Aj <sup>2</sup> |
|------|-----|--------------|-----|-------|---------------|-----|-----------------|
| 1    | •   | .51          | .60 | .29   | .41           | .37 | 4.7524          |
| 2    | .51 | )<br>• • · - | .59 | 48    | •56           | .51 | 7.0225          |
| З    | .60 | .59          | •   | . •45 | , <b>•5</b> 6 | •50 | 7.29            |
| 4    | .29 | .48          | •45 | -     | .35           | •32 | 3.5721          |
| 5    | .41 | .56          | .56 | •35   | -             | .48 | 5.5696          |
| 6    | .37 | .51          | •50 | .32   | •48           | -   | 4.7524          |
|      |     |              |     |       |               |     | ***             |

2.18 2.65 2.70 1.89 2.36 2.18 T=13.96

٠.

.

Calculation of A'j

) -

1

.

, -

.

ı

.

1

1

-

,

|     |      |            | 3    |      | ,          | <u> </u> |       |       |
|-----|------|------------|------|------|------------|----------|-------|-------|
|     | 1    | 2          | . 3  | 4    | 5          | 6        | A'j   |       |
| 1   | -    | •260       | .360 | .084 | .168       | .137     | 1.009 | · · · |
| 2   | .260 | - ,<br>- , | .348 | .230 | .314       | •260     | 1.412 |       |
| 3   | .360 | •348       | •    | .202 | .314       | .250     | 1.474 | "     |
| , 4 | •084 | .230       | .202 | -    | .122       | .102     | •740  |       |
| 5   | .168 | .314       | .314 | ,122 | <b>-</b> · | .230     | 1,148 |       |
| 6   | .137 | .260       | 250  | .102 | •230       |          | .979  | 1     |

λ.

\*\*\*

.

,

.

187

¢

|             |                 |       | OTALUATAD          | nortarion of 'g' saturation | IL STOTI             |                |
|-------------|-----------------|-------|--------------------|-----------------------------|----------------------|----------------|
| Test<br>No. | Aj <sup>2</sup> | Å'j   | F                  | 2A j                        | A12 - A'J<br>T - 2Aj | 'g' saturation |
|             | 4.7524          | 1.009 | <br>13 <b>.</b> 96 | 4.36                        | •3899                | .6244          |
| CN          | 7.0225          | 1.412 | 13.96              | <b>5.</b> 3                 | .6478                | •8048          |
| n           | 7.29            | 1.474 | 13.96              | 5.4                         | .6792                | .8241          |
|             | 3.5721          | • 740 | 13,96              | 3.78                        | .2782                | .5274          |
| ۍ<br>ا      | 5,5696          | 1.148 | <b>13.</b> 96      | 4.72                        | .4785                | .6916          |
| Q           | 4.7524          | .979  | 13,96              | 4.36                        | .3930                | .6368          |

đ

~

7

TABLE 49

, <sub>1</sub>

188

.

### TABLE 50

Comparison of the 'g' SaturationsObtained by Thurstone's Centroid Method and Spearman's Method

| No.        | Test               | 'g! Satur                         | ation                |
|------------|--------------------|-----------------------------------|----------------------|
|            |                    | By Thurstone's<br>Centroid Method | Spearman's<br>Method |
| 1          | Similarity         | •54                               | •6244                |
| 2          | Classification     | ,72                               | .8048                |
| <b>`</b> 3 | Analogy            | •73                               | .8241                |
| 4          | Absurdity          | .51                               | .5271                |
| 5          | Progressive series | .74                               | .6916                |
| 6          | Substitution       | .69                               | <b>•6368</b>         |

It will be seen from the table that the 'g' saturations of the tests calculated by both the methods are almost the same. Furthermore, they are quite high showing that the tests are good measures of intelligence.

### IV. Fixing the Norms

In order to compare any two pupils on the test, we need a standard. Instead of putting an arbitrary passmark, we evolve a relative standard of performance from the results of this large group of subjects. Such standards are called norms. By norms are meant specimens of work which represent the commonest type of achievement for the whole group in question. They constitute the means by which the degrees of abnormality, shown by testees above or below the normal, can be measured. It is generally recognised that valid norms are essential for dependable interpretations of individual and group measures.

Generally two types of norms are established for intelligence tests:

- (i) Age norms;
- (ii) Grade norms.

Sex norms, occupational norms and norms for rural and urban areas are also sometimes determined to show the effects of varying environments. But age-norms are the most useful in intelligence testing. In the present case, age norms have been prepared by the method of indirect standardization. The steps followed were as follows:

- (1) Average scores were computed half-yearly for all the ages. The mean scores from quarter of an year to quarter of an year were not significantly different.
- (2) The standard deviations were also computed half-yearly for all the ages.
- (3) The arbitrary range fixed for IQs is 60-140
  i.e. 100 ± 40. If the mean average of an

age score distribution is equated at 100 IQ, then the maximum score that can be reached by pupils is 40 unit scores on either side i.e.  $100 \pm 40$  unit scores. IQs are assumed to be normally distributed over a range of  $3_{0}$  on either side. So, the unit score will be 40/34

(4) This standard scatter is superimposed on the scatter of various age groups. Hence the formula for deriving IQs is:

IQ = 100 - (M - S) + 40/3where M is the mean of age group,

S is the score obtained on the test.

The credit of first introducing this method goes to Prof. T.P.Lele of the Faculty of Education and Psychology, Baroda and it has been found to give good results. He has prepared the verbal group test of intelligence and norms for the test have been established by using the same method. By following the steps listed above, the ready reckoner showing IQs corresponding to various scores of different age-groups has been prepared as shown below: TABLE 51

Ready Reckoner for IQs

.

,

Age-Group (8-14+) (Half Yearly)

| Age           | <b>CO</b> .                                 | ~                          | 0)<br>O | •             |      | 0             |              | 1              |                                           | 12             | -1            | ຄ                          | 14             | -41               |
|---------------|---------------------------------------------|----------------------------|---------|---------------|------|---------------|--------------|----------------|-------------------------------------------|----------------|---------------|----------------------------|----------------|-------------------|
| In '<br>Vears | TT-2                                        | <b>9 -</b> 8               | TT-8    | 9 -6          | TT-6 | S -0T         | ττ-οτ        | 9 -TT          | 11-11                                     | 75 <b>-</b> 57 | 11-81         | 9 <b>-</b> 8T              | 1 <b>1-</b> 81 | 9 <del>-</del> 7T |
| and<br>months | ot                                          | ot                         | ot      | ot :          | ot   | ot ;          | oj i         | ot :           | ot i                                      | ot (           | ot é          | ot (                       | ot ë           | ot S              |
| •             | 9 -2                                        | 2 <b>-</b> 73              | 9 -8    | 8 <b>-</b> 73 | 9 -6 | 3 <b>T-</b> 6 | <b>σ</b> -οτ | sτ <b>-</b> οτ | 9 <b>2-</b> 17                            | 31-11          | 78 <b>-</b> 6 | 3 <b>T-</b> 2 <b>T</b>     | э -ет          | 3 <b>T-</b> ET    |
| Score         | T 2 4 9 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | T<br>8<br>8<br>1<br>1<br>1 |         |               |      |               |              |                |                                           |                |               |                            |                |                   |
|               | 0                                           | 0                          | 4       | S             | 9    | 2             | ø            | 6              | 2                                         | 7              | 12            | 13                         | 14             | 15                |
| · <b>-</b>    | 75                                          | 74                         | 69      | 68            | 65   | 63            | 64           | 62             | 55                                        | 55             | 55            | 53                         | 47             | 44                |
| 103           | 26                                          | 74                         | 202     | 69            | 99   | 64            | 65           | 63             | 56                                        | <b>5</b> 6     | 56            | 54                         | 48             | 45                |
| 23            | 77                                          | 75                         | 17      | 20            | 67   | 65            | 00           | 64             | 57                                        | 57             | 57            | រ<br>រ<br>រ<br>រ<br>រ<br>រ | 40             | 40                |
| 4             | 78                                          | 76                         | 22      | 7             | 68   | <u>6</u> 6    | 90           | <u>65</u>      | 80<br>00000000000000000000000000000000000 | <b>2</b> 8     | 57            | 50                         | 20             | 40                |
| ŝ             | 79                                          | 77                         | 73      | 72            | 69   | 67            | 67           | <b>9</b> 0     | <b>28</b>                                 | <b>2</b> 0     | <b>2</b> 8    | 50<br>20                   | 5              | 47                |
| 00            | 80                                          | 78                         | 74      | 73            | 20   | 68            | 68           | <u>6</u> 6     | <b>2</b> 9                                | 59             | 59            | 57                         | 25             | .48               |
| ~             | 81                                          | 62                         | 75      | 74            | れ    | 69            | 69           | 67             | 00                                        | 60             | 60            | <b>5</b> 8                 | <b>5</b> 3     | 49                |
| 00            | 82                                          | 8                          | 76      | 75            | 22   | 69            | 2            | <b>6</b> 8     | 61                                        | <b>1</b> 9     | <b>1</b> 9    | <b>5</b> 9                 | 54             | 50                |
| •<br>の        | 83                                          | 80                         | 22      | 26            | 73   | 20            | 7            | 69             | 62                                        | 62             | <b>62</b>     | 60                         | <b>2</b> 2     | 51                |
| 10            | 84                                          | 83<br>83                   | 78      | 76            | 74   | 5             | 72           | 70             | 63                                        | 63             | 62            | 60                         | 55             | 52                |
| H             | 85                                          | <b>8</b>                   | 79      | 77            | 74   | 22            | 73           | <b>5</b>       | 64                                        | 63             | ်<br>လိ       |                            |                | 53                |
| 6             | 0                                           | 0                          | 00      | 00            | ŭ    |               | C            |                | • 0                                       | •              | ţ             | 44 C (4                    |                | Ċ                 |

192

ł

,

|   |    |    |                        |            |           |    |      |          |         |          |            |          |            | •                 |          |          |          |            |           |            |            |            |          |            |                         |            |           |     |            |            |                |
|---|----|----|------------------------|------------|-----------|----|------|----------|---------|----------|------------|----------|------------|-------------------|----------|----------|----------|------------|-----------|------------|------------|------------|----------|------------|-------------------------|------------|-----------|-----|------------|------------|----------------|
|   | 15 | 54 | 55                     | 20         | 57        | 80 | 50   | 09       | 19      | 61<br>0  | 20         | 63       | 64         | 65<br>0           | 90       | 67       | 00<br>00 | 000<br>000 | 60        | <u>02</u>  | 21         | 22.        | 52       | 74         | 22                      | 75         | 76        | 22  | 78         | 62<br>92   | 22             |
|   | 14 | 58 | 59                     | 60         | 61        | 61 | 62   | 6.0<br>0 | 64      | 65<br>0  | 66         | 67       | <b>8</b> 9 | 68                | 69       | 70       | 12       | 72         | 73        | 74         | 75         | 26         | 26       | 22         | 78                      | 79         | 80        | 81  | 85         | 88         | 29<br>20<br>20 |
|   | 13 | 63 | <b>4</b> 0<br><b>4</b> | <b>65</b>  | 65        | 66 | 67   | 68       | 69      | 69       | 202        | 2        | 72         | 73                | 74       | 74       | 75       | 76         | 22        | 78         | 29         | 62         | 80       | <b>1</b> 8 | <mark>ര്</mark> സ്<br>മ | 83         | 83<br>83  | 2   | 58         | မ္တ        | 87             |
|   | 12 | 65 | <u>66</u>              | <u>6</u> 6 | 67        | 68 | 69   | 20       | 2       | ź        | 72         | 73       | 74         | 75                | 75       | 26       | 77       | 78         | 20        | 80         | 80         | <b>6</b>   | လ္လ<br>တ | င္ထ        | 2                       | <b>8</b> 4 | 85        | 80  | 87         | 88         | 68             |
| / | 11 | 65 | 66<br>0                | 67         | <u>68</u> | 68 | 69   | 20       | 12      | 72       | 73         | 73       | 74         | 75                | 76       | 77       | 78       | 78         | 79        | 80         | 81         | 88<br>88   | 83<br>83 | 83<br>83   | <b>2</b> 2              | 85         | 86<br>86  | 87  | 88         | <b>8</b> 8 | 68 .           |
|   | 10 | 65 | <b>6</b> 6             | 67         | 68        | 69 | 20   | 20       | 71      | 72       | 73         | 74       | 75         | 75                | 76       | 77       | 78       | 79         | 80        | 80         | 81         | 88<br>80   | 83<br>83 | <b>4</b> 8 | 85<br>85                | 85         | 86        | 87  | 88         | 80         | 06             |
|   | 0  | 73 | 73                     | 74         | 75        | 76 | 77   | 78       | 62      | 80       | 8          | 8        | 88         | <del>ന</del><br>8 | <b>8</b> | 85       | 86<br>86 | 86         | 83        | 88         | <b>8</b> 0 | 8          | 91       | 85<br>85   | ,<br>03<br>,            | 80<br>0    | <b>94</b> | 96  | <u>9</u> 0 | 97         | 86<br>98       |
|   | 00 | 74 | . 75                   | 76         | 77        | 78 | 79   | 80       | 80      | 8        | 88<br>88   | <b>8</b> | 28         | 8 <b>5</b>        | 86<br>86 | 80<br>80 | 87       | 88         | <u>68</u> | <b>0</b> 6 | 16         | 80<br>80   | 93<br>93 | 89<br>93   | 94                      | 95         | 96        | 97  | <b>86</b>  | 66         | 100            |
|   | 2  | 74 | 75                     | 76         | 77        | 22 | . 78 | 79       | 80      | <b>5</b> | 82         | 83<br>83 | <b>8</b> 4 | ŝ                 | 85       | 86       | 87       | 88         | <b>68</b> | 06         | 16         | <b>3</b> 6 | 93<br>93 | 94         | 94                      | 6          | 96        | 97  | 98         | 66         | 100            |
|   | 9  | 76 | 22                     | 78         | 29        | 80 | 8    | 88       | 88      | с<br>Ю   | <b>2</b> 5 | 85<br>85 | 86<br>86   | 87                | 88       | 00<br>00 | 000      | 06         | 16        | <b>8</b> 6 | <b>6</b> 3 | 94         | 95       | 90<br>00   | 62                      | . 86<br>0  | 80        | 66  | 001        | 101        | 102            |
|   | 2  | 62 | 80                     | 5          | ୍ଷ<br>80  | 83 | 84   | 85       | 86<br>8 | 86       | 87         | 88       | <b>68</b>  | <b>0</b> 6        | 81       | 02<br>0  | 93       | 94         | 95        | 96         | 96         | 97         | 98<br>86 | 66         | 001                     | 101        | 102       | 103 | 101        | 105        | 106            |
|   | 9  | 80 | 8                      | 88         | 80        | 84 | 85   | 80       | 87      | 80<br>80 | 68<br>8    | <b>6</b> | 16         | 16                | 80       | 93       | 8        | 95         | 8         | 97         | 98         | 66         | 100      | 101        | 201                     |            | 103       | 101 | 105        | 106        | 107            |
|   | 9  | 85 | 80                     | 87         | 88        | 68 | 06   | 16       | 92      | 93<br>93 | 94         | 92       | 95         | 90<br>90          | 97       | 86       | 66       | 100        | 101       | 102        | 103        | 104        | 105      | 105        | 80                      | 201        | 108       | 601 | 110        | 111        | 112            |
|   | 0  | 86 | 8                      | . 88       | 68        | 06 | 6    | 80       | 63      | 94       | <b>9</b> 2 | 90       | 97         | 98                | 86       | 66       | 100      | 101        | 102       | 103        | 104        | 105        | 106      | 107        |                         | 501        | 110       |     | 112        | 112        | 113            |
|   | -  | 13 | 14                     | 12         | 16        | 12 | 18   | 19       | 202     | 5        | 22         | 23       | 24         | 25                | 80       | 22       | 00       | 29         | g         | 31         | 200        | 33         | 12       | 35         |                         | 5 č        | - 00<br>  | 000 | 94<br>04   | 41         | 42             |
|   |    |    |                        |            |           |    |      |          |         |          |            |          |            |                   |          |          |          |            |           |            |            |            |          |            |                         |            |           |     |            |            |                |

193

,

.

.

-

| 1    | 194<br>0 - N N T T D D                         |
|------|------------------------------------------------|
| 15   | 88888888888888888888888888888888888888         |
| 14   | 88888888888888888888888888888888888888         |
| . 13 | 88888888888888888888888888888888888888         |
| 12   | 888 288 288 288 288 288 288 288 288 288        |
| H    |                                                |
| 10   |                                                |
| თ    |                                                |
| œ    |                                                |
| 2    |                                                |
| 9    |                                                |
| S    |                                                |
| 4    |                                                |
| ო    |                                                |
| 03   |                                                |
| ы    | <u>,</u> 4444444666666666666666666666666666666 |

|        | 190                                                                          |   |
|--------|------------------------------------------------------------------------------|---|
| 15     | 132<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132<br>132           |   |
| 14     | 138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138<br>138           |   |
| 13     | 115<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115<br>115           | , |
| 12     | 1156<br>1156<br>1157<br>1158<br>1158<br>1158<br>1158<br>1158<br>1158<br>1158 |   |
| 11     |                                                                              |   |
| 10     |                                                                              |   |
| 6      | 1280<br>1280<br>1280<br>1280<br>1280<br>1280<br>1280<br>1280                 |   |
| 00     | 122<br>122<br>122<br>122<br>122<br>122<br>122<br>122<br>122<br>122           |   |
| 2      | $\begin{array}{c} 128\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 158\\ 15$        |   |
| ø      | $\begin{array}{c} 133\\ 155\\ 155\\ 155\\ 155\\ 155\\ 155\\ 155\\$           |   |
| 5<br>C | $\begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$         |   |
| 4      | $\begin{array}{c} 133\\ 133\\ 133\\ 153\\ 155\\ 155\\ 155\\ 155\\$           | 1 |
| 3      |                                                                              |   |
| 0      | 1440<br>4440<br>4440<br>1440<br>1440<br>1440<br>1440<br>1440                 |   |
| -1     | 47777<br>4777<br>888<br>888<br>888<br>888<br>888<br>888<br>888<br>8          |   |

195

.

# Decile Points of Raw Scores

This is the graphic way of fixing the point of reference. Here the whole range of distribution is divided into as many percentile groups as deemed feasible. These percentiles give fairly reliable picture of the distribution of scores. For example, we may calculate certain percentiles as 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 100th percentiles.

the Suppose/30th percentile comes out to be 21.8, it indicates that the persons securing 21.8 are better than 30 per cent of the group or in other words are inferior to 70 per cent of the group. If a pupil of 8 years secures 40, then to decide his place on the percentile scale, we will compare his score with the near about percentile scores. This will give the idea of relative standing of a pupil in a particular age-group. In the table below are given the age-wise decile points. It can be seen from the chart that there is no overlapping of scores and the distinctions are clear from one decile point to the other for each age-group.

|                 |                                          |              |               | TABLE 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                                                                                                        |          |    |
|-----------------|------------------------------------------|--------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|----------|----|
|                 |                                          |              | Decil         | Decile Points of<br>Scores                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r Raw        |                                                                                                        |          |    |
| Decile<br>point | 8 years                                  | 9 years      | 10 years      | 11 years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 years     | 13 years                                                                                               | 14 years |    |
| 06              | 51,2                                     | 55.1         | 61.5          | 62.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.2         | 78.5                                                                                                   | 82.2     | (  |
| 80              | 39.9                                     | 44.5         | 53.7          | 56.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 67.8         | 72.6                                                                                                   | 77.4     |    |
| 70              | 36.0                                     | 43.4         | 48.3          | 52.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 64.5         | 67.1                                                                                                   | 74.1     |    |
| 60              | 32.3                                     | 38 .9        | 46.1          | 48.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.2         | 61.7                                                                                                   | 70.9     |    |
| 50              | 29.1                                     | 36.9         | 6.14          | 44.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.3         | 57.9                                                                                                   | 67.2     |    |
| 40              | 25.3                                     | 32 • 2       | 38.5          | 40.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>52.</b> 8 | <b>53</b> ,3                                                                                           | 63.3     |    |
| 30              | 21.8                                     | 28.3         | 34.8          | 35.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.9         | 50.9                                                                                                   | 59.3     |    |
| 20              | 17.5                                     | 22.7         | 30 <b>.</b> 3 | 31.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.8         | 43.5                                                                                                   | 51.5     |    |
| JO              | 11.3                                     | <b>15.</b> 6 | 22.1          | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.0         | 31.2                                                                                                   | 41.8     |    |
|                 | ▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖▖<br>▖▖▖▖▖▖▖▖▖▖▖▖ |              |               | 5 -12 (P (R (A) IP (R (A) IP (R (A) IP (A) IP (R (A) IP |              | یک رسید بیشتر است. است است است است است است است است است.<br>این است |          | 58 |

20 TARTE

> . ,

-

,

ŧ

,

ŧ

197

,

ſ

\$

# Classification of Pupils

The widespread application of intelligence tests to a large number of children and adults has established quite clearly the range of intelligence to be expected in the population at large. In statistical language intelligence is said to be distributed normally i.e. in accordance with the normal probability curve. Terman has classified the children in his investigation into the following categories:

| Range of I.Q. | Category                 | Percentage of general population |
|---------------|--------------------------|----------------------------------|
| 140 and above | Near genius or Genius    | 1.5                              |
| 120 - 139     | Superior or Very bright  | 11.0                             |
| 110 - 119     | Bright                   | 18.0                             |
| 90 - 109      | Average or Normal        | 48.0                             |
| 80 - 89       | Dull Normal or Backward  | 14.0                             |
| 70 - 79       | Border line or Very dull | L 5.0                            |
| 0 - 69        | Feeble-Minded            | 2.5                              |

The Feeble-Minded are further divided into three

categories:

| Class     | Range of I.Q. | Mental<br>age | Remarks                                                       |
|-----------|---------------|---------------|---------------------------------------------------------------|
| Morons    | 50 to 70      | 8 to 11       | To be shifted to<br>special schools for<br>mentally deficient |
| Imbeciles | 20 to 50      | 3 to 8        | To be engaged in occupational centres                         |
| Idiots    | Below 20      | Below 3       | Absolutely ineduca-<br>ble. Need only to<br>be protected.     |

,

Desai has classified the secondary school population of Gujarat in the following way:

| Near Genius or Genius | 140 and above |
|-----------------------|---------------|
| Extra ordinary        | 130-139       |
| Very Superior         | 120-129       |
| Superior              | 110-119       |
| Normal                | 90-109        |
| Backward              | 80- 89        |
| Very Backward         | 70- 79        |
| Borderline Deficiency | Below 70      |

In the present case the pupils were classified into the following five categories:

. .

.

-

199

r,

r

-,**-**

| Category              | Range of I.Q.     |
|-----------------------|-------------------|
| Very superior         | 140 and above     |
| Superior              | 116 <b>- 13</b> 9 |
| Normal                | 85 - 115          |
| Dull                  | 70 - 84           |
| Borderline Deficiency | Below 70          |
| ··· · · · ·           | •                 |

Classifying the 6037 cases according to this . classification we get the distribution of cases as under:

|       | TABLI | C - 53 |
|-------|-------|--------|
| <br>- | ~ -   | -      |

Agewise Classification of Pupils (N = 6037)

| Age    | Borderline<br>Deficiency | Dull | Normal      | Superior | Very<br>superior       |
|--------|--------------------------|------|-------------|----------|------------------------|
| 8      | 45                       | 130  | 592         | 150      | 33                     |
| 9      | 30                       | 169  | 612         | 89       | 15                     |
| 10     | 40                       | 98   | 673         | 111      | 40                     |
| 11     | 57                       | 120  | 528         | 75       | <b>29</b> <sup>′</sup> |
| 12     | 28                       | 81   | <b>4</b> 80 | 102      | 27                     |
| 13     | 39                       | 123  | 648         | 55       | 34                     |
| 14     | 25                       | 159  | 485         | 101      | 14                     |
| N=603' | 7 264                    | 880  | 4018        | 683      | 192                    |

ł

200

\*\*\*

٠

. .

The percentage of cases would be as follows:

| Very superior         | 3.18 per cent  |
|-----------------------|----------------|
| Superior              | 11.31 per cent |
| Normal                | 66.55 per cent |
| Dull                  | 14.57 per cent |
| Borderline Deficiency | 4.37 per cent  |

Thus the present test can be profitably used for broad classification of pupils into the above categories.

To conclude, the present chapter comprises the complete account of the procedure followed for standardizaof the tion\_test. The statistical analysis of the results given in this chapter reveals that the test is a dependable instrument of measuring intelligence of the pupils within the prescribed age group.

#### REFERENCES

# Cronbach, L.J., <u>Essentials of Psychological Testing</u>, Harper & Brothers, Publishers, New York, 1960.

## Desai, K. G., <u>The Construction and Standardization of a</u> <u>Battery of Group Tests of Intelligence in</u> <u>Gujarati</u>, Bharat Prakashan, Ahmedabad, 1954.

- Downie, N.M., <u>Fundamentals</u> of <u>Measurement</u>, Oxford University Press, New York, 1958.
- Fruchter Benjamin, <u>Introduction</u> to <u>Factor</u> <u>Analysis</u>, D.Van Nostrand Company, Inc., New York.
- Garett, H.E., <u>Statistics in Psychology</u> and <u>Education</u>, McGraw Hill Book Co., New York, 1956.
- Kamat, V.V., <u>Measuring Intelligence of Indian Children</u>, Oxford University Press, Indian Branch, Bombay, 1940.
- Mehrotra, L.P. and Mehrotra, K., <u>Mental Testing & Standardi-</u> zation of <u>Tests</u>, Ram Narain Lal, Allahabad.

Thorndike and Hagen, <u>Measurement</u> and <u>Evaluation</u> <u>in</u> <u>Psycho-logy</u> and <u>Education</u>, John Wiley & Sons, Inc., New York, 1955.