CHAPTER 4

RATE OF CONVERGENCE IN LOCAL LIMIT THEOREM:
DOMAIN OF NON-NORMAL ATTRACTION OF A STABLE LAW

WITH INDEX a # 1, o # 2

4.1 INTRODUCTION:

Let {X,} be a sequence of independent r.v.s each
having a common d.f. F;. Suppose that F; belongs to the
domain of attraction of the stable law Fy with index «,
o< a< 2, o # 1. That is, there exist real sequences {Ap}
and {Bp, Bp> 0} such that Z, = (Sp-Ap)/B, converges in
law to the stable r.v. with d.f. Fg.

In this chapter, we obtain an uniform rate of
convergence in (3.1.1) with ¢(x) replaced by vg(x), the
p.d.f. corresponding to stable law F,. We state below the

main result of this chapter.

THEOREM 4.1.1: Under the assumptions [Al]-[A5], stated in
Section 4.2 below, for large n,

Supyxer Ap(x)s C {(1/log n) + ¥y + Lul}

where ¥, = InB;°H(Bp) -1l and

-1 €
{n = n J cos{tuB, }dFq(u).
Juf>B,
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Remark 4.1.1: The uniform convergence rate in Theorem
4.1.1 has three components. The first component viz.
(1/log n), depends on the size of the sample only,
whereas the remaining two components depend on the
properties of the d.f. F; (which is in the domain of non-
normal attraction of stable law). The effect of behaviour
of truncated variance function H(Bp) for large values of
n, is reflected in the convergence rate through the term
¥p. The tail behaviour of the c.f. of corresponding Fj is

reflected is in |{pul term.

We prove Theorem 4.1.1 in Section 4.4. The notations
and assumptions are introduced in Section 4.2. In Section

4.3, we prove some lemmas which will be useful in proving

Theorem 4.1.1.

4.2 NOTATIONS AND ASSUMPTIONS:

Throughout this chapter, we will use notation define
Section 3.2. While using these notations, d.f.s F and ¢
introduced in Section 3.1 (of Chapter 3) will be replaced

"by d.f.s F; and F, introduced in the previous section

respectively.
Suppose r.v. ¥; ~ Fy for i = 0, 1.
Without loss of generality, we assume that EX; = O,

whenever it exists. Since Ap can be taken as 0, under our

assumptions, for all t,
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limg . off1(tBo) )" = exp{-cltl®} = £o(t). . (4.2.1)
Further, for k = 0, 1,
R (x) = P(I¥kl> x) = x %oy (x) r (%) S (4.2.2)

where the function sy(x) is such that si(x) - cx as x =
©», ¢y being a positive constant and the function ry(x) is
slowly varying in the sense of Karamata. In fact, rg(x)

asymptotically equals a constant and
limp 5 o an"arl(Bn) = constant. ... (4.2.3)

We now make the following assumptionsg:

[A1] The d.f. F; is symmetric and absolutely continuous;

[A2] There exists an integer rz 1 such that

LSTIEL(E) Tdt< w;

[A3] The d.f. F; belongs to the domain of non-normal
attraction of the stable law F, with index a, 0< a< 2, «

* 1;

[n~n/logn] -1 - -6~
[A4] S | I cos(tuBp )dFq(u)|™ = o(n™@®7),
k=[n/lognl+1 !uISBn

for every a< 8< a+l. Here 7y = 1/a; and

[AB] {pn = n [ cos (tuB;})dFl(u) - 0 as n - =,
[u[)Bn
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4.3 PRELIMINARY RESULTS:

We shall need the following lemmas.

Lemma 4.3.1: Under the assumptions [A1l] and [A3], there
exist positive constants, €, A< «, C; and c such that for

all large n,
1£1(tBy ™) I”s Cyexp{-clti®p, (t)) ... (4.3.1)

for all t with |ti= €Bp.

Proof: We notice, as a consequence of Karamata Indices
Theorem, that a positive measurable function h is slowly
varying iff c(h) = d(h) = 0 ({(see Definition 3.3.1). In
the light of this, Proposition 2.2.3 of Bingham et
al. (1987, p.73) becomes:

(i) Let h be a slowly varying function. Then for every
8,> 0 and Aq> 1 there exists Xj = X1(A1,8,) such that
hiy)/hi(x) = Ay (y/0% (v x= X7).

(ii) Let h be a slowly varying function. Then for every
8;< 0 and Aj; € (0,1) there exists X5 = X3(Aj,8,;) such
that

hiy) /h(x) = By (y/x)°1  (yz x= X3) .

Recall that the function rq (x) defined through (4.2.2) is
a slowly wvarying funcfion at infinity. Applying both
lower bound and upper bound type results for rq(x), we
ocbserve that for every A> 0, c1< 1 and cp> "1, there

exists positive constants €1,such that, for all large n,
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r1(By/ith)= cpititry (Bp) ...{(4.3.2a)
whenever |tl=s 1;
r1(Bp)= cyltltry (By/lit]) ...{4.3.2b)

whenever 1= {t|= €1Bp.
Also, by a Lemma in Gnedenko and Kolmogorov (1968, p.238-
240), there exists a positive constant €;, such that for

It]= £9Bp,
[£1 (B ") I"s exp{-cnRq (B/1t])}. ... (4.3.3)

Using (4.3.2a), (4.3.2b) in (4.3.3), we observe that

there exist an €> 0, such that for all large n,

£ (tB; 1) s Clexp{~cltlaPA(t)}, for all t with Jtls

£€Bp .0

Lemma 4.3.2: Under the assumptions [Al] and [A3], there
exist constants €, A< o, both sufficiently small, ¢ and C

such that for all large n,
[An (t,1) |= Cexp{~cttIaPA(t)} ... (4.3.4)

for all t with ltis eBp.

Remark 4.3.1 : This Lemma can be proved along the lines

of Lemma 3.3.2.
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Next, for every integer n and real x, define

dp(t,x) = n{an(tBnﬂ,x)-exp{—cltlaBﬂQH(Bn)}}, ...(4.3.5)

Sn(t,x) =

nty {ay (£B, Y, %) )" exp{-clt1%B, 2H(By) (k-1)} ...(4.3.86)
k=1

Property of the function dp(t,1)
Lemma 4.3.3: Under the assumptions of Lemma 4.3.2, for

all values of t, we have, for sufficiently large n,
ldn (t,1) Is Py (1th)n™2. C(4.3.7)
Proof: Consider 0< a< 1 case.

ndp (t,1) 1 = log(tBy ™", 1) -exp{-clt1®*ByH(By) } |

| § cos (tuBp')dFq (u)-exp{-clt|®By*H(By) }!

Jul=n,

]

| (cos (tuBy ')-1)dFq(u) + J dF; (u)

lul=s, ful=B,
-{exp{-clt1®B,?H(By) } -1} -1|

= [ Jcos(tuBy™')-1]dF (u)+Rq (Bp)

ful=B,

+1{exp{-clt1®ByH(By) } -1}

1A

I (t%a®B,%/2))dFq ()

ful=s,

Ry (Bp) +clt|¥B;H(By)

+

max{t®/2,clt1®}{Bn°H (By) +Rq (Bp) }

A

1A

max{t®/2,cltl,c} {Bp°H(Bp)+Ry (Bp) }
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A

P(1t1){BR’H (By) +Rq (By) }

A

P(Iti)n', because nRq(Bp) - constant.
Now, consider 1< a< 2 case.
ndny(t, 1)1 = lap (eBy ™, 1) -exp{-cliti®B, “H(By) }

| [ cos (tuBnﬂ)dFl(u)—exp{—cltIaBﬁeH(Bn)}i

[u‘SBn

[

= | J (cos (tuBy')-1+(t?/2)u’By®) dF; (u)

|ul=B,
+ I arp(uw) - J (t%/2)u’Bp’dFy (u)
[u!ﬁBn IuISBn

~{exp{-clt1¥B, %1 (By) }-1+cit1¥BR%H(BL) }

-1+clt]®BR%H (By) |

= [ lcos (tuBy ") -1+(t%/2)uB;%1dFq (u) +Rq (Bp)
fu!SBn

+lexp{-clt1®By?H(By) } -1+cit1%u®B;2

+BH (Bp) {Icltl®-t%/21)

A

Ittty /2)aF ()

ul=B,

Ry (Bp) +(cltI®BR%H(By))?/2+P(1t])BA°H (By) .

+

because [cos(x)-1+x2/235 x'/2.

P(It]){Bn’H (By) +Ry (By) +Bp H (By) }

A

A

P([tl){BH(By) +Ry (By) }

1A

P(it)n™.

This proves (4.3.7).o
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Properties of functions ap(t,x) and Bp(t,x)
Lemma 4.3.4: For all x=0, every large integer s, there

exists a constant C such that

Plag (t,x)1"dt = o(By ™)), ...(4.3.8)
00

Plag (£, %) 1?%dt= ¢, ... (4.3.9)

I”1Bp (£, %) 1%%at= C. ... (4.3.10)
-00

Remark 4.3.2: The proof of this lemma follows from Basu

et al. (1980; (3.3) - (3.5)).m

Property of function Sp(t,1)
Lemma 4.3.5: Under the assumptions [Al], [A3] and [A4],
we have, for all t with |t|= €By and all large n,

a
~clt] TPy (v)

ISp(t,1) 1= (C/logBple ... {4.3.11)

Proof: Write S,(t,1) as

(n/loan] [n-(n/logB}] n

nSp(t,1)=4{ ) + Y . ) b

k=1 k={n/logB ]+1 k={n-n/logB,1+1

(o (EB -1 1)}n-ke-cttiann‘aﬂ(sn)(k—l)
n n

= Sp1(t,1)+Spa(t,1)+Sp3(t,1), say. .. (4.3.12)

Consider first Spq(t,1l). Using Lemma 4.3.3, we have, for

sufficiently large n,
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ISpa (€, 1)1

{n/loan]
o -2
-1 ~k -Clt] B_ "“H(B,) (k-1)}
= | Z {oan (EBR 7, 1)} e 178, e, !
k=1
[n/loanJ
-1 1-k/n)
= Y lan(tBy 7, 1) "0
k=1
[n/loan]
—C!t‘aPA(t) - (k/n) cltlaPA(t) {k/n)
< Ce )y C {e }
k=1
ln/loanl
o
- ~{1 ~(1/10ogB
< cecltl Py (£) z max{C”“’,C“ og n)}
k=1

24
Cit] Py (t)y(1/logB,)
{e ft] 7Py ¢ }( ogBy,

A

o o
(n/loan)Cae-cltl Ph(t){eclﬂ P;‘m}s

a a
-clt| TPy r+cit]| Tpy (2E

1A

(n/logBp) Ce

o
—cle] Py vy a1-)

A

(n/logByp) Ce

o
—clt] TPy (1)

A

(n/logBn) Ce ...(4.3.13)

Next, we consider Spp(t,1). In view of the assumption
[A4] and Lemma 4.3.2, we have, for sufficiently large n,

[n-(n/logB,}1}

Y log(tBy 7, 1)1

k=[n/logB,]+1

a
nk ~Clt | 7B, 2H(B,) (k-1)

1A

{n-{n/logB,}]

o
ce AW Yy e 1)

k=[n/logB, 1+1

1A

o
Ce—cltl P?x‘“o(n“‘e“’"?;

iA

o
n—<6~awe-cltl

1A

C , A< B< a+l. ... {4.3.14)
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Finally, consider Sp3(t,1).

n

5 loy, (EBp Y, 1)

k={n-n/logB 1+1

n-k,~C [t1%8_ ~2r(B,) (k-1)

A

n
z o C [t1%B_~2H(B,) (n-n/l0gB,)

1A

k=[n-n/logB,1+1

-clt|%nB,"2H(B,) (1-1/10gB,)

1A

(n/logBple

o 2
-clti®a-g)
e el

{A

(n/logBp , as nBp°H(Bp) - 1

. a
C{n/logBp)e clel , ...{(4.3.15)

A

Thus combining the results of (4.3.13), (4.3.14) and
(4.3.15) at (4.3.12), we obtain, for sufficiently large
n,

(0]
Sp(t,1) = (C/logBy)e S/t A 4
Lemma 4.3.6: Let €> 0, 0< A< a and ¢ be as in Lemma
4.3.2. Then there exists a polynomial P(it|) in [t} with
non-negative coefficients independent of n such that for
all t with |[tl|= ¢Bp and all large n,

4

«cltla

|Ap (t,1) -e I

o4
= e CItTPAY p(iey) {(1/10g n)+ogt, .o (4e3.18)

where ¥, = InBL°H(Bpy)-11.
Proof: We write

-clel®

Aplt,1)-e = Dip(t,1)+Dyp () oo (4.3.17)
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where

~elt1%nB%H (By)

Dyn(t,1) = An(t,1)-e ...(4.3.18)

-clt!1nB’H (By) _-clt|®

Doplt) = e ... (4.3.19)

Note that in view of Lemma 4.3.3 and Lemma 4.3.5, for all
t with |t! = eBy and all large n, there exists a
polynomial P{ltl) in |t| with positive coefficients such

that
IDip(t, 1)1

o
e—chﬂ Pl“)(n/loan) P(lt]) {BQ?H(BH)+R1(BH)}

o
e CItIPA® b el (n/logBy) {BS2H(B,) +Rq (By) b

-CitlaP;\(t)
e

1A

P(lt]) (1/logBp) {nBp°H(Bp)+nRy (By) }

< e—CitlaPth P(It]) (1/logBy) .
because nBL’H(By) -» 1 and nRq (Bp) - C> 0.
= e"chjapl“) P(lt]) (1/log n).
Thus, for sufficiently large n,
ID1p (t,1) Is e“cltlaph“’ P(Itl) (1/1log n) . ... (4.3.20)

On the other hand, proceeding exactly similar to the
proof of (3.3.32), we obtain

—clel®

lDzn(t)lvS ﬂne P(‘tl). ...(4.3.21)

Equations (4.3.17), (4.3.20) and (4.3.21) now prove the

desired result.o
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We quote in the following lemma which can be proved along

the lines of Lemma 3.3.8.

Lemma 4.3.7: Let £> 0 be as same as in Lemma 4.3.2 and
let ny be a positive integer. Let @ = {|{t, x, n)i: [x|=
1, {tiz €, n=z no}. Then, under the assumptions of Lemma

4.3.2, p = sgp lap (t,x} | satisfies 0s p< 1.

4.4 PROOF OF THE THEOREM:

Proof of Theorem 4.1.1:

By inversion formula for absolutely continuous density,
we have

2nlvp (x) -vg (x) ]

24
= 1 e {E (kB Yo ST gy

-0

1A

04
PRI {£q (£By ) )P-e 1T ae
-0

—cltl®

1A

JP1AL (t,1) +Bp (£, 1) -e tdt, using (3.2.12)
-00

-cle®

1A

1AL (€, 1) -e

-

ldt+ J”IBp(t,1) 14t
-

i

I3nt+Izn, say. ... {a.4.1)

Consider Iqp first.

o
Iin = S¥Aag(t, 1) -e S1Fae
—cltl“
= I |By(t,1)-e ldt+ [ 1Ap(t,1)1dt
[0 4
+  J e Clt g
it1>eBp
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= I1n1+Iin2+Iin3., say. ... (4.4.2)

In view of Lemma 4.3.6, we have

—cltla
Iipy = 5 AL (t, 1) -e ldt

lti=eBp

1A

o
C{(1/log my+syt T e CHIPAMp(epac
ltl=eBp

1A

¢{ (1/1log n)+8pn}, ... (4.4.3)

for all large n, where 9, = [nBﬁ?H(Bn)—ll.

Now, for sufficiently large n, we have

Iy = J [An(t,1)]dt
[t|>eBp

ft

I lag(EBp', 1) 1"at
itl>eBy

it

Bn J !‘xn(t,l){ndt
lti>e

n-28

By J lap(t,1) 1™ ay(t,1)1%%at

[tise

A

B, J {sup lan(t, 1)} *%lay(t,1)1%%dt

[ti>e
= By 1% Mg (t,1) 1®ae
-
n-28 .
= CBpM , using (4.3.9). ... {4.4.4)

Finally, we consider Ijp3. For sufficiently large n,

[+ 4
IlnB = f e Clt* dt

It]>eBy

o

2 Ime—Ct dt

£Bp

i

cBLY ! e CBn, ...(4.4.5)

1A

Combining (4.4.3), (4.4.4), (4.4.5) and using Lemma 4.3.8

we get from (4.4.2),
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Iins Cf(1/log n)+8n} + B S + cBy?™ e ©Bn,
= ¢{(1/log n)+8, + Bpu™" + B e‘CBn}
= C{(1/1log n)+8n}. ...(4.4.6)

Now we consider the estimation of Ipp.
From the definition of Bp(t,1) at (3.2.11), we find for

sufficiently large but fixed s,

Izn = __I"IBq(e,1)1de

o«

) ¥ [;1] lag (€BL 7Y, 1) 1™ 1R (kB ™, 1) Hdt
=1

A

|
R aet]

m S lan (B, 1) 1M g (eBy T, 1) P
3=t

[n/2] n-2s n o _ n-
{L+ ¥ + I }H_oof lag (£By 1, 1) 177

j=1  j=In/2}+1 I=n-2s+1 J

1l

IBn (tBy ", 1) 1Mdt

I

Jq (n)}+J3(n) +J3(n), say. ... {4.4.7)

Firstly, let us consider Jq(n). In view of assumption

[A5], we have

J7 (n)

[n/2]} - - -
) [;‘] S lan (8B 1) 1M, (8B, 1) 1de
j=1

[n/2] @ - -
¥oml/5n) Plageg™, 1) !
=1 -

1A

| J cos(tuBy ')dFq(u)}’ldt
|u|>Bn

S9



in/2]

T 108nl* /30 Br Plagys (b, 1/v2) 1M3de
j=1 —00

in/2] . -1 )

Y | 1Cq!?/31)BrO(B, ), using (4.3.8)
j=1

A

1A

iA

C(e'C"l—l)

3

Next we estimate Jo(n). In view of Lemma 4.3.5,

for sufficiently large but fixed s, that

Jo (n)

i

n-2s - - -
) [’]‘] LS lan (e, 1) 1% gy (BT, 1) Pt
J=Iln/2}+1

IA

n-2s © - n-
T {ﬂ e (eBy 7, 1) MR (1X11> Bp) Mdt
j=In/2]1+1

n-2s - -
< {PIX1l> By} 7% m e (B, 1) 1M e
J=Ins21+1 J
n/2+1 n-2s n % 2s
= {P|X11> Bp)} By | lap(e,1)17a
j=Ins21+1 J

A

{PIX11> By }¥**! By C 27, using (4.3.9)

= CBpRy (Bp) [4Ry (By)1™?

n/2

114

C BpRq (By) [4Cq/n)

= o(1/1log n).
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Finally, we estimate J3(n). Using Lemma 4.3.4, for

sufficiently large but fixed s and n large, we find that

J

J3ny= ¥ H S e (8B, 1) 1M 1B, (6B, 1) de

j=n—2s+1

A

J

J=n-2s+1

)’:‘: {n} _mfw‘Bn (tBn—l 1) ij-—25-&2szdt

= ¥ " m-i) D {PUXLI> By}
=n—-2s+1
Bp_J"18n(t, 1) 1%at
=B, ¥  (@@m-9)1) {PUXLl> By }E
J=n-2s+1

A

1A

c Bn 1’125‘1 {Cl/n}n-tlsﬂ

A

2s-1-(n~ -
C Bn n 5 (n: stl)cln 4s+1

~n+65~2 IN~4s+1

BnC

1A

Cn

L]

o0(1/log n).

Combining the results of (4.4.7),

(4.4.10), we obtain,

Iopn = J1(n)+Jy(n)+J3 (n)

A

Cp1ICpl+Co(1/1og n) +C3(1/1log n)

A

C11€pl+Co(1/1log n).

Therefore, {4.4.1), (4.4.6) and

theorem.n
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By 020 { P(IX11> Bp) )™ (n-n+2s-1)

... (4.4.10)

(4.4.8), (4.4.9) and

.. {4.4.11)

(4.4.11) prove the



CONCLUDING REMARKS:

In this chapter we proved uniform rate of
convergence type results under the assumption that the
d.f. of the summands is in the domain of non-normal
attraction of a stable law (with a#1, a#2). In the next
chapter we shall consider a kind of non-identically
distributed summands but all in the domain of normal
attraction of the same non-normal stable law. We shall
prove both uniform and non-uniform rates of convergence

type results.
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