CHAPTER 8

A LOCAL LIMIT THEOREM WHEN SUMMANDS COME RANDOMLY FROM r POPULATIONS

8.1 INTRODUCTION AND STATEMENT OF THE MAIN RESULT:

Let $\{X_n\}$ be a sequence of mutually independent r.v.s with respective d.f.s $\{G_n\}$, all of which belong to the domain of normal attraction of a symmetric stable law G with index α , 0< α < 2. Suppose further that at most two of the d.f.s $\{G_n\}$ are distinct, i.e. $G_n \in \{F_1, F_2\}$.

Without loss of generality assume that $EX_i = 0$, i = 1, 2, ... whenever it exists.

For each n, let $\tau_1(n)$ be the number of r.v.s among X_1, X_2, \ldots, X_n which have F_1 as their d.f. Assume that $\tau_1(n)$ and $\{X_n\}$ are independent.

If $\tau_1(n)$ is a non-random function of n such that 0< $\lim_{n \to \infty} \tau_1(n)/n = \lambda < 1$, then from the Theorem 5.1.1 it follows that

 $\sup_{x \in R} |v_n(x) - v_o(x)| = o(1)$... (8.1.1)

where v_n and v_o denote the p.d.f.s of S_n , properly normalized, and symmetric stable law with index α respectively.

In case $\tau_1(n)$ is not random, say $\tau_1(n) = k(n)$, as pointed out earlier the limit distribution of S_n , properly normalized always exists. In case the original r.v.s have an absolutely continuous distribution, the p.d.f. $v_{n,k(n)}$ of S_n , properly normalized, will converge to v_0 .

In this chapter, we take $\tau_1(n)$ as r.v. satisfying the conditions:

[A1] $\tau_1(n)/n \rightarrow \lambda$ in probability, 0< λ < 1, λ constant.

[A2] G_1 and G_2 are absolutely continuous d.f. belonging to the domain of normal attraction of a symmetric stable law with index α , 0< α < 2.

[A3] for every n and k(n) = k, $|v_{n,k}(x)| \le M$ for some positive constant M and for all $x \in \mathbb{R}$.

 $[\mathbf{A4}]_{-\infty} \int_{-\infty}^{\infty} u^{[\alpha]+1} |v_k^*(u) - v_0(u)| du < \infty, v_k^* \text{ being the p.d.f.}$ corresponding to the d.f. F_k , k = 1, 2.

[A5] If $w_j(t)$ represents the c.f. corresponding to the d.f. F_j then for some integer $p \ge 1$, $\int_{-\infty}^{\infty} |w_j(t)|^p dt < \infty$, j = 1, 2.

We prove the following theorem:

THEOREM 8.1.1: Under the assumption [A1]-[A5],

 $\sup_{\mathbf{x} \in \mathbb{R}} |\mathbf{v}_{n}(\mathbf{x}) - \mathbf{v}_{o}(\mathbf{x})| = o(1) \text{ as } n \to \infty.$

We prove this theorem in the Section 8.2.

8.2 PROOF OF THE THEOREM:

Let $0 < \lambda < 1$. Let $\varepsilon < \min(\lambda, 1-\lambda)$. then given $\delta > 0$, there exists positive integer N(ϵ) such that, for all $n \ge N(\varepsilon)$, we have $P\{|\tau_1(n)/n - \lambda| \le \varepsilon\} > 1-\delta$. That is, $P\{|\tau_1(n)/n - \lambda| > \varepsilon\} < \delta \text{ or }$ $\mathbb{P}\{\tau_1(n) < (\lambda - \varepsilon)n \text{ or } \tau_1(n) > (\lambda + \varepsilon)n\} \le \delta.$... (8.2.1) Consider $|v_n(x) - v_o(x)|$ $= \sum_{k=1}^{n} P(\tau_{1}(n) = k) |v_{n,k}(x) - v_{0}(x)|$ $\leq 2M\delta + \sum P(\tau_1(n) = k) |v_{n,k}(x) - v_0(x)|,$ $k = [(\lambda - \varepsilon)n]$ using (8.2.1), where M is the bound on the p.d.f. $[(\lambda + \varepsilon)n]$ ≤ 2Mδ +∑ $P(\tau_1(n) = k) \sup_{x \in \mathbb{R}} |v_{n,k}(x) - v_0(x)|$ $k = [(\lambda - \varepsilon)n]$

Here last but second inequality follows from the assumption [A3] and the fact that all stable densities are bounded; whereas the last inequality follows from Theorem 5.1.1.

Thus we have,

 $\sup_{x \in \mathbb{R}} |v_n(x) - v_o(x)| \leq 2M\delta + C_1 n^{1 - ([\alpha]+1)\gamma} = o(1) . \Box$

Remark 8.2.1: This result can be extended, in general, to r (finite positive integer) populations.