CHAPTER 8

A LOCAL LIMIT THEOREM WHEN SUMMANDS COME RANDOMLY

FROM r POPULATIONS

8.1 INTRODUCTION AND STATEMENT OF THE MAIN RESULT:

Let {X,} be a sequence of mutually independent r.v.s
with respective d.f.s {Gp}, all of which belong to the
domain of normal attraction of a symmetric stable law G
with index «, 0< a< 2. Suppose further that at most two
of the d.f.s {Gp} are distinct, i.e. G e {F1, Fp}.

Without loss of generality assume that EXj; = 0, i =
1, 2, ... whenever it exists.

For each n, let tT1{n) be the number of r.v.s among
X1, X3, ... , Xp which have F; as their d.f. Assume that
T1(n) and {X,} are independent.

If t7{n) is a non-random function of n such that 0<
limp 5, 4 T1(n)/n = a< 1, then from the Theorem 5.1.1 it

follows that
SUpy, e rivp{x)-vo(x)!| = o(1} ... (8.1.1)

where vy and Vv, denote the p.d.f.s of 8S,, properly
normalized, and symmetric stable law with index «
respectively.

In case t1(n) is not random, say ti(n) = k(n), as pointed
out earlier the limit distribution of S, properly

normalized always exists. In case the original r.v.s have
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an absolutely continuous distribution, the p.d.f. vp k(n)

of Sp, properly normalized, will converge to vg.

In this chapter, we take tT1(n) as r.v. satisfying
the conditions:

[A1] T1(n)/n -» A in probability, 0O< A< 1, A constant.

[A2] G and G5 are absolutely continuous d.f. belonging
to the domain of normal attraction of a symmetric stable

law with index a, 0< o< 2.

[A3] for every n and ki{(n) = k, lvp k(x)l= M for some

positive constant M and for all x € R.

oo [O(]+1

(A4] __Ju [vii* (W) -vg(u) ldu< ®, vk being the p.d.f.

corresponding to the d.£. Fy, k = 1, 2.

[AB] If Wj(t) represents the c.f. corresponding to the

d.f. Fy then for some integer p= 1, Jmiwj(t)Wdt< ©, 3

-0

=1, 2.

We prove the following theorem:

THEOREM 8.1.1: Under the assumption [Al1]-[A5],

sup, e rlvp({x)-vg(x)|l = 0(1) as n » «.

We prove this theorem in the Section 8.2.
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8.2 PROOF OF THE THEOREM:

Let O0< A< 1. Let €< min(a, 1-A).

then given &> 0, there exists positive integer N(g) such
that, for all nz N{e), we have P{lty(n)/n - Als g}> 1-§.
That 1is,

P{lty(n)/n - Al> €}< 8 or

P{t1(n)< (A-g)n or Ti(n)> (A+e)n}= §. ... (8.2.1)

Consider |[vp(x)-vg(x)|

= T P(Ti(n) = k) lvy, k(%) v (x) |
k=1

({A+E)n]

= 2M§ + 7 P(t1(n) = k)lvp, k(x)-vo(x)1,
k= [ (A~€)n]

using (8.2.1), where M is the bound on the p.d.f.

[(A+E€)n]

= 2M8 + Y} P({t1(n) = k) Supser!Vn,x (X)-vo(x)|
k= [ (A-E)n]

-

Here last but second inequality follows from the
assumption [A3] and the fact that all stable densities
are Dbounded; whereas the last inequality follows from
Theorem 5.1.1.

Thus we have,

1-([XI+1) Y

SUPyer!vn (X) vy (x) | = 2M8+Cqn = o(l).o

Remark 8.2.1: This result can be extended, in general, to

r (finite positive integer) populations.
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