
CHAPTER 9

SOME OPEN PROBLEMS AND APPLICATIONS

9.1 APPLICATIONS:
There are many applications of uniform and non- 

uniform local limit results to the entropy problems, 
occupation time problems. Abelian and Tauberian theorems, 
probabilistic number theory, probabilistic methods for 
obtaining mathematical results, etc.

We discuss two broad areas of application of our 

results.
(A) : It is well known that stable laws are considered to 
be su-itable replacements to normal law in various fields 
such as behaviour of stock market prices. The point of 
interest is to get results applicable in the cases where 
distributions involved have 'heavy-tail' behaviour.

Tail behaviour of convolutions of densities has been 
found to be of interest in some HIV-latency time problem 
(see: Berman (1992)). It is expected that rate of 
convergence type results will be required to get finer 
approximation.? of convolutions of densities in similar 
problems.

(B) : As pointed out in the introduction, problems 
involving random number of random variables arise in a 
natural way in reliability studies. It is expected that
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results of Chapters 7 and 8 will be found useful when the 
components used in the reliability system could be coming 
from two or more populations the availability of the 
components being controlled by a random mechanism.

9.2 SUMMARY AND OPEN PROBLEMS:
We may summarize the various results obtained in the 

previous Chapters in a convenient tabulated form as 
follows.

Chapter
No.

Assumptions on the original 
r .v. s

Type of result 
concerning local 
limit theorem

3 IID with d.f. F e Dnna*2) Uniform rate
Non-uniform bound

4 IID with d.f. F e %Na(«5 
a * 1, a * 2

Uniform rate

5 Independent r.v.s with 
parent distributions
F1 G %A(«) / f2 e %a(«) 
a * 1, a * 2

Uniform rate 
Non-uniform rate

6 Independent r.v.s with 
parent distributions
F1 6 %A^al)' f2 € %A^a2)
0< a^< a.2< 2

Uniform rate 
Non-uniform rate

7 Independent r.v.s coming 
randomly from F^ and F2,
Fl> F2 e ^NA^) < a< 2

Central Limit 
Theorem

8 Independent r.v.s coming 
randomly from F^ and F2,
Fl» f2 e ^TA^^ • a< 2

Local Limit
Theorem
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(A) : It is evident from the above table that results of 
Chapters 3 and 4 need extension to the level of results 

of Chapter 5 as a first step.

(B) : The restriction of D^A f°r Fi and F2 as made in 
Chapter 6 need extension to the Dj^sja set UP-

(C) : In the random sampling scheme set up in Chapters 7 
and 8, there appears to be hardly any work and that too 
with the assumptions of normal attraction, it will be 
worthwhile to consider non-normal attraction case as well 
as rate of convergence in the local limit theorem.

(D) : Also non-uniform bound type results need to be 
strengthened to get non-uniform rate type results.
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