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A CLT WHEN SUMMANDS COME RANDOMLY
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ABSTRACT: Let { X, } bo a sequence of mutually independent random
variables {r.v.s.) defined on a probability space (£, 8, P) with respective distribu-
tion functions (d.f.5.) {Fn }, all of which belong to the domain of normal atira-
ction of a symmetric stable law with characteristic exponent a, 0 <a<(2. Suppose
furtber that at most r of the d.f.s. {Fu } are distinct, i.e. F, € {G,, Ga,--.G,}.

A Central Limit Theorem type result is proved when the number of variables
among {X;, X5, ., Xa} that follow a Gy is a r.v. satisfying certain conditions.
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Symmetric stable law, Stible process
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULT

Let {X,} be a sequence of mutually independent random variables
{r.v.s.) defined on a probability space (£, 8, P) with respective distri-
bution functions (d.f s.) {F,}, all of which belong to the domain of
normal attraction of a symmetric stable law G with characteristic
exponent a, 0 <a< 2. Suppose further that at most r of the d.f.s. {F,}
are distinct i.e. F, ¢ {Gy, Gg, .... G}

Without loss of generality assume that EX(=0, i=1, 2, ... when-
ever it exists.
For each », let 7,;(n) be the number of r.v.s. among Xy, X,, ..., X,
which have G;(x) as their d.f,

Suppose that 74(n), for fixed j, is a r.v. possibly depending upon
{Xa}
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Define S, = ‘i" X
-y
If 74(n), j=1,2, ..., r are constants dependent ou n, Sreehari [4]
and Mason [2] have proved that
P{S, < x B} — G(x),

» 1la

with B, = [‘2 C“;(r,(n))] . Here C (n) 1s proportional to n31°,
-l

the constant of proportionahty changing with j.

In this paper, we take =,(n), y=1, 2, ..., r as r.v.s. satisfying the
condition: For j=1,2, ,r
z,(n)[n—N, in probability, where P(N; > 0)=1.
We prove the following theorem.

Theorem P[S, < x v(n)} — G(x), where v(n) is such that
Viny= ‘{71 Ciry(m)

The proof of this theorem is given in section 3.

2. PRELIMINARY RBSULTS

This section is devoted to some preliminary results required for
the proof of the theorem. For 4, Be 8, denote the conditional
probability of 4 given B by P(4{B). If P{B)=0, then we use the
convention P(4]B) = P(4).

Definition 1 : A sequence {4,} of events is said to be P-mixing if
lim [P(A4.14) ~ P(4,)] =0 for every 4¢ 8.
nre

Definition 2 :  Let £(r) be an 1ndependent separable homogeneous
process with independent increments defined on [0, 1] such that
£(0)=0and (0

(1) is stochastically continuous on the right,

(2) has at most a denumerable number of discontinuities, all of
the first kind, and

(3) is defined by E exp {i u §()} =exp { -1 6 [u]*} O<agg2, 65 0.

Then the process {§(1)} is called a symmetric stable process with
exponent a.
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Lemma 1. (Barndorff-Neilson Lemma)

Let {k,} and {m,} with k,<m, be two increasing sequences of
positive itegers with k,—ec and let {A,} be a sequence of events of B
such that 4, depends only on X, , ..., X,,,”. Then {A,} is P-mixing.

Whenever the observations do not come randomly from r popula-
tions (1 e. 74(n) are not random variables) but positive integer valued

function of n such that 2,: 7,(n) =n, then = (n) will be, mn the remain-
1=1

ing part of thus section, denoted by £,(n), j=1,2, ~, r. Letus

define

ge)= L CHt ), Z ty(m)=n.
[ =X

Lemma 2. The sequence {A,} defined by A,={S,<x¢p(n)} is
P-mixing.

Proof: Let «>0 be an arbitrary constant and let 4 be any
event.

Define E, ={|Stog njl > € ¥ln)}
where [x] is n if n€x<n+ 1, n is an integer.
Denote 8, = P(E,]4).
Writing
P[S.<x ¢$(n)1A]
=P[S, = Stuog n1 + Stiog n1 < XP(1)|4]
and intersecting with the event £, we get after usual manipulations
PLS,, ~ Stiog u1 S (x = ()} 4] ~ Gu
S P[Sagx Yin)4]
& P[S,, — Stiog wi< (X + €)P(n)]|A] + 0. - @1
Note that 8, = P, E, 4]
= P{|Snog nil>e(§(n) 4 (log n)) Y(log n)]{P(4)

-0 because ¢(n)fy{log n)—e0 as n—oo,
Similarly, it can be proved that

P[Sn = Stiog i< (x =€) ()] - 53
<[Sa<x $(m)]
KPSy~ Stog my < (x+€) h(m)]+85 e (22)
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where 8)=P(E,).
Inequalities (1) and (2) imply that

P[S, - S[los n) K (x—¢) (n)] | 4]
~ P[S, ~ Stiog n < (% +€) ()]} - 6, — 3,
<SPS, < x 4(m))d] - P[S, < x ¢(n)]
< P[S, ~ Sttog ny < (x+¢) (n)} 4]
~ P[S, - Stiog ny < (x~€) ${m)]+ 8, +8.. . (2.3)
Note that in view of Lemma 1, the lmit of the first term of the
inequality (3), after adding and subtracting the term P[S, — Sqiop n; <
(x - €) $(n)], will be bounded below by G(x — 2¢)—G{(x+2¢), whereas
the himit of the third term of the inequality (3), after addmg and

subtracting the term P{Sy ~ Syog n; < (x-+¢) ¢(n)], will be bounded
above by G(x+2¢) — G(x ~ 2¢), and hence for n—oo, we get

~[G(x +26) - G(x - 2¢)] < lim {P[S, <x $(m)|4]—P[S,<x $(m)]}
& [G(x+ 2¢) - G(x - 2¢)]
Now, allowing «—0, we have the result that
P[S, < x $m|d] - P[S, < x $h(n)]-0 as n—roo
which proves the lemma.

Lemma 3. Let
H(x)=P[ sup [£(t*)]<x],
oLiex

Then
hm P{ max (S, |<x B,]=H(x)
1sicn

7w
for an appropriately chosen normalizing sequence of positive constants
B,.

Proof: This lemma is due to Sreehari [3], (Theorem : 5. 2) and
hence the proof is omitted.

3. PrOOF OF THE THEOREM

We shall prove the theorem for r==2; for r>2, the proofis
analogous.

Let k be a positive integer to be chosen later appropriately.
For convenience we shall denote N, by Nand N, by 1 - N.
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Let us denote for a positive integer k,
Bi={(ilk) < NS ({+ DK} i=0,1,2, -, k-1
Dy, = {l(ry(m)n) - N| < (1/k)}
v (n)=Ci(ry(m) + C3(ro(n))

Jim=P{{S, £ xv(m)} N Dy 3 N Byl
=12, .., k-2

7,=Pl{Sy € xv(m} N Dy, i NAN>(k~ 1)/k}]
Yn”P{{Sn < x"(n)} nb,,;n {Né (Ilk)}]
én "'P[{Sn < x¥m} N Dy, 4l

where D', ;, is the complement of D,,, ;. in 2.
We have

T
P[S, < X Wm)=tutyn+tnat Z T, (). - (31)
]

For fixed i, define
ay = [n(i-1)/k], B =[n(i +2)[K]
Opi=n—ang , - 8y ¢=n— By
";("; )= C;(ani) + C;(‘Sni)
va(n, 1) = C3(Bn o)+ C5(0, ).

On the event {BiND,, 1}, v(n) € [v;(n, ), va(n, D))
We first prove the theorem inthe case x > 0: when x < 0
the steps will be exactly similar,

Let
Co. s(M=P{S, < xvy(n, D} N D, 5 N B,]
Cy, i(n)=P[{Sy < xvy(n, )} N Dy, N B
Then note that
C;. ()< Pl{Sa < xv(m} N D, N B, <C,. . ... (3.2)
Further
C,. «(n)
= P[{Sy < xvs(n, D} 0 D, 5 0 B,)

<PlS,, 8, * S owT, WA 181, 4=81. |
n

-—s”‘?’g”‘ 'SQ. j“Sﬂ’ O'HI s * Pg(ﬂ, I')} n D"""‘ n B(I- i (3-3)
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Let

Vs, = max |S,,, -5, > n, i
PPN g’n¢<i<ﬂn¢ 181, s =3, 8, | > €vyln, D)}

Wa, n o= max |S,, ,—S., > evg(n, i
3, % g {"m<’<°n¢, 2/ 3 2 aml € vy(nm, i)}

Then using clementary results in probabulity we get from (3.3)
Ca, o(n) < PI{Sy, 6, ,+Sar0,, < (X+2¢)va(n, 1} N B,]
+P(Vy, 0 ¢ N BY+P(W,y, ,, . 0 B)
Now using Lemmas I, 2 and 3 we get from (3.1)
limsup P[S, < x v(n)]
<':2:::P(B‘) [imsup P (S;, 5 + S, 6,, < (x+26) v (n, D))

+limsup P (¥, », )+ limsup P (W, ,,, I
+P{N < (1/k)}+ P{N > ((k—1)[k)}

=5 PB,) [6lx +20)+ 21— H(e(k-+3)[37)}]

+ P{N < (LJk} + PIN > (k- 1)/k)}
< G(x+2¢)

- (34
by letting k— = because H is proper d.f.

Now consider,
- k-
‘2” C,, on)= g:sP[{S,. < xvy(n, D} N Dy x 0 B,
-l ™%

k-8

> S PUS,, o 485, + max [S, ,~S

o 3 8 ’ :
=1 1 Sng P hns By SI%B,, 5. 5 1o

—8e, 5,0 <X V2, 0} N B,]

u(l

+ max IS, ,
by Si<oy,

_.P(D,hl k)
k-2

?i%‘IP(B‘) {P[{Su LN +Sz, s
—P(V.l, " clB|)
- P(Wx. " (IBi)"P(D,n. k)

where ¥y, 5, o ={ max
FpySi<Byg

"‘g(x—-ZG)v, (ﬂ, f)HBJ

ls.l. 7 "Sl. ﬂ'"> € vl(nv 1)}

W:L. n. l={ max

1Sy, , =Sy, > e v, (n,i
bogeido,, Tt T oyl 1(m, i3}
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By using Lemmas 1, 2 and 3 we get from (3.1)
liminf P[S, < x v(n)]

= S:-EP(Bg)hmlnf P[{Sl L * SQ Sy < (x—-2c) V;(ﬂ, i)}]
§m1

~limsup P(V, ,. ,)-lmsup P(W, , 3)-limsup PD,.
- P{N < (1/l} ~ PIN > ((k - 1)/k)}

- ':)E”P(B.) [GCx —2€) = 241 — H{(elk ~ 3)[3)V/)}]

- PIN < (1/B)} - PIN > ((k—1)[k)}
2 G(x-2e) . (3.9
by letting k—oo.

The required result now follows from (3.4) and (3.5) on allowing
0.
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SUMMARY Let {X,}, n = 1,2,3, be a sequence of independent random variables with cor-
responding sequence of distribution functions {G,}, n = 1,2,3, Suppose that, for every n,G, €
{F,F2, ,Fn} Let F1,Fy, ,Fmn belong to the domain of normal attraction of a stable law with index
a0 <a <2 DefineT, = X; + + X, Under farly mld assumptions, a non-umform rate of

convergence 16 obtained for the density version of central hnut thoerem for normahzed sums T,
1 INTRODUCTION

Let {X,} be a sequence of mutually independent random variables (r.v.s) with
corresponding sequence of absolutely continuous distribution functions (d.f.s) {G.}.
Suppose, for each n,G, € {F1, 3, , F}; m being a fixed positive integer. For each
n, let 7, = 7,(n) be the number of r.vs among X;, ,X, which have F, as their

m n
df., 7=1,2, ,m. Note that ZT] =n. Set T, = ZX,, forn=1,2,.

7=1 1=1

Suppose that each F, belongs to the domam of normal attraction of the stable
law Fp with characteristic exponent o,0 < a < 2 By Theorem 3.1 of Srechari
{1970), T, properly normalized, converges in distribution to a stable r.v. with d.f.
Fy. Kruglov (1968) proved that if the df F,,3=1,2,..,m are absolutely
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continuous with probability density function {p.d.f.) v,,7 = 1,2, .,m, then

sup | fn(z) — vo(z)| = O(1) as n — oo,

~ 00 <00

fn(z) being the p.d.f. of T}, properly normalized, and v being the pd.f of Fy
Basu et al. (1979), under certain regularity conditions, obtained a non-uniform rate
of convergence in a local hmit theorem concermng i i.d r.v.s in the domain of normal
attraction of a stable law. The rate was found to be of the order n!~{elr ¢ < o <
2,7 = 1/a;[z] denotes the largest integer less than or equal to z. In this study, we
obtain uniform as well as non-uniform rates of convergence of the density f, to v
for the above set up. This improves Kruglov’s result and generalizes work of Basu
et al. (1979) from i.i.d. set up to independent non-identical r.v.s. set up. We state
our theorems first:

Theorem 1. Under the assumptions, [A;] ~ [4s], stated below,

up |fa(z) — o(z)] = O (D7) 37 = oo,
<o

Theorem 2. Under the assumptions, [A,] - [As], stated below,

sup (14 [z[)|fa(x) ~ vo(z)| = O (n!~eHD) a5 n — oo,
[ 24 24+ o)

We prove the theorems in section 4. We introduce the notations and assumptions
in section 2. In section 3, we prove some lemmas which will be helpful in section 4
Some of these lemmas are also of independent interest.

2.  NOTATIONS AND ASSUMPTIONS

Let Yy denote a stable or a strictly stable r.v. with exponent ¢, according as
l<a<2or0 < o<1, having the d.f. F with EYy = 0, whenever 1t exists,

and let wy denote its characteristic function (c f.). We assume EX, = 0, whenever
it exits. It is known that Z, == T,/B, converges in distribution to r.v. Yp, with

B = Zdj’r., d, depends only on d.l. F,. For the sake of simplicity in the proof we

=1
shall take By = n" without any loss of generality.

We write m
¢n(t) = Elexp utZ,] = H{UJ‘(m&r)}T'x
1=]
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where w, 13 the ¢ . corresponding to the d.f. F, Note that we have from the
canonical representation of ¢ f wp(t) that for all ¢

wo(t) = [ J{we(tn™")}". . (21)

=]

Then as potinted out n section 1,

lim dn(t) = wy(t) for all ¢ . (22)

For each positive integer n and real number z, we define for £ = 0,1,. .,m; and
1=12,..,m

opr, (L, 2) = / exp(utu)dF(u) (2 3)
ul<)zirr
B, (b, 3) = wi(t) — oy, (¢, ) (24)
Ak, (t,2) = {agy, (tn™", 2)}7 . (2.5)
By (tz) = {:uk(tn“')}fi —{arg, (tn™", z)}"
= 37 )t oy eyt @0
h=1
Note that for

futu) = 2" [ a1 L (27)

the inversion integral on right hand side is absolutely convergent, The absolutely
convergent integral provides the continuous p d {. that we shall use in our theorems.

In what follows ¢, cg, €1, , etc. will denote some positive constants, independent
of n and z and their values are not of much unportance and may change from one
step to another. Also Py(),{), will denote polynomials in positive varables
having non-negative coeflicient independent of n and z. They may vary from one
step to another. Finally, for any function g(t) and any positive integer k, let g(")(t)
denote the k' derivative of g(t) whenever such a derivative exists. We now make
the following assumptions;

[A1] All thed.fs F;, 3 = 1,2, ., m are absolutely continuous.

[Az] If w,(t) represents the ¢ f. corresponding to the d.f. F},7=1,2, . ,m
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then for some integer p > 1,

oo

/ Jw, ()Pt < oo

—00

oo
[As] [ )™, (u) — vo(u)|du < oo, 3 =1,2,...,m.

[Ad lim 2 =1,>0, 7=1,2, ,m.

n—oo N

[As] F, belongs to the domain of normal attraction of the stable law Fp.

Further let

{w,(tn™")}" — wp(t), the c.f. of Fy, as n — o0

From the proof it will be clear that it is sufficient if

0<lun % for all j instead of (A4).

3. PRELIMINARY RESULTS

Now we mention some preliminary lemmas required to prove the theorems of

section 1.

Lemma 1. For k=0,1,...,m and a .r.v. Y; with d.f. F, as z — oo we have

¢))
PR(2)=2P(N]>2) G > G

{2) whenever 0 < a <1,

| wiaA =0 @+
luiss
(3) whenever a =1,
[ b =0
luj>z
and
[ wane =0 @
{u<z

.(3.1)

..(32)

. .(33)

.(34)
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Proof Using the definition of ¢,{¢), the equation (31) and by adding and
subtracting the terms

J m
H{w,(tn")}" H{wg(tn")}” for 7=12, ,m-—1,

k=1+1]

we get on sumplification

m

0a(t) —wo()] < D Huwltn Y = {woltn ™)}

A

IA

n!=(el+Dr p (1)) exp{—c|t|*} using Banys’ Lemma.
Lemma 5. Under the assumption [As], there exists a polynomaal Pi() such
that for large n, the relation
g (tn™", x) — ot M (tn ", )|
< 7l p o -V 1<) <, k=1,2 ; 310
< YR eapl-c - D)1y S k=120 i .@10)

holds for all t in the range |t] K€" and all T wnth 2] > 1

Proof The proof is similar to that of Lemma 2.3 of Basu et al. (1980). In fact,
the adjustments necessary are rather casy m view of the assumption {A3)

Now we define two functions which will be useful i the proofs of the theorems
and some of the lemmas For 3:==1,2 ,milet

4, (t.2) = 7 {a, 1) (tn"". &) —ao, (tn 7, x)} 311
1,~h

Sptm) =713 {ay., (tn ".2) P {ag, (tn ", £)} ! (312)
b=

Lemmas 6-8 give bounds on the functious agy, {t, £).d., (t, £), Sy, (t, x) and thewr first
and second derivatives with respect to t The prools are based on the techmques of
the proof of Lemima 5 presented abvoe and hence omitted The results of Lemma 8
follow from Lemmas 2 and 7; whereas equations (3 22), (3 23), (3 24) of Lemma 7
follow from Basu et ol (1980, (3 3) - (3 5))

Lemma 6. Properties of the function d, (t,z) ‘For all values of t and x
with {z| > 1, we have fork=1,2, 'm

(1) whenever 0 < o < 1,

ldn (¢, 2)] < 77" Pr(Jt]), (313)
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[dP(e,z)| < ertm ™, . .(314)
(2) whenever 1 <2,
ldn(t,2)] < 727" Pa(jt]), ...(3.15)
[aS) (¢, z)| < 77 P, . (316)
~ [d2(t, )| < erri ™™ L (3.17)

Lemma 7. Properties of the function ak‘,,(tn",x). For each fired n and
T, Qg r, (tn~",z) 18 differentieble any number of tymes under the integral sign,
k=0,1,. ,m;3 =1,2, ,m. For all values of t and x unth |zl > 1, we have
Jork=12 .,m;3=12 ,m:
(1) whenever 0 < @ < 1,

lo) (tn ™", 2)] < | or .. (318)
(2) whenever1 < a <2,
i (en™", 2)| < 7Pl .(3.19)
< faf* e Pt ... (3.20)
o) (tn ™", 2)| € erfaftor ! (321)

Also for all £ # 0,0 < a < 2, every large witeger s, there exists a constant
¢ such that

[ ton e =0, 622
f la.r, (¢, 2)[dt < e .. (3.23)
f Bes, (8 2) Pt < c (3 24)

Lemma 8. Properties of the function S,,(t,z). For all t| <€ n",|z| > 1 and
all large n and 7,k = 1,2, ..,m we have

(1) for0<a <,
1Sa(t,5)| < C exp{—cltl®}, . (325)

IS¢, z)| < Clz|'® exp{—c|t|°}, ... (3.26)
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(Y for1 <a<?,

[Sr, (t,z)] < C exp{—cit|*}, (3 27)
1S, 2)] < =7 exp{—clt|"} P (It (328)
1SO(t, )| < |z ezp{—clt|”} Pa((t]). (3 29)

Lemma 9 There exist polynomials Pi(-) and Py( ) such that for all t in the
range |t] <€ 7', |z} 2 1 and large n we have the follownng
(1) for0<a<]l,

Ak (8,2) = Aos (b, 2)] < Pr(lt])ezp{~clt]*} ™" (330)
14D (t,2) — A (t,2)| < |2~ PaJt))ezp{ ~clt|° }oi~" (331)
(2) for 1 <a <2,
14D, (t,2) = AD, (2, 2)] < Pr(|t])ezp{~clt|*}r ™" (332)
3,1

AL, (6 2) ~ A, (1. 2)] < [ P (l)esp{~clef}i " (333)
1=1,2 k=12 ..,m )

Proof. We will prove (3.30) and (3 31) only. (332) - (3.33) can be proved
similarly. In view of equations (3.11) and (3.12), observe that

A (8, z) — Agr (8, 2) = dr (t,2)S, (L, 2) ..(334)
Therefore, (3 30) follows from (3 13) and (3.25). Also
AL (t,2) - A (8, 3) = dD(t, 2) S, (8, 7) + dny (2, 2)SD(E, 2) (3 35)
Using the relations (3.13), (3.14), (3.25) and (3.26), we get (3 31) from (3.35).

Lemma 10 There ezist polynomaals Py{') and Py() such tht for allt in the
range [t| <€ n”,|z| > 1 and large n,

(1) foro <a <1,

1482, (1,2)] < la]'exp{—clt|}, (3.36)
(2) for1 <a <2,
A0 (¢,2)] < Pa(jthezp{—clt|} . (3.37)
< lzl*° A(ithezp{—ct|}, ...(3.38)
1A (t,2)] < |ol-0 Pa(jteap{—clt]°}. (3 39)

We shall now state a lemma which follows from Lemma 2.4 in Smith et al.
(1974).
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Lemma 11. Let €> 0 and nteger ng be fized and let
(#H)={t,nx)| |t| >€, n2no, |2| 21},

Hor = sup[ag,f, (Lix)li : (340)
(#)

fik,r, = sup|og g, (, 7)), . (341)
(#)
Jork=1,2,.,m.
Then at follows that 0 < poy, <1 and 0 < 1,5, < 1. Let = max(ior,; fihr,)

Lemma 12. Let g{t,z) be a complez-valued function, bounded by some pos-
iwe constant for x| > 1 and for allt. Then, fork=1,2, ,m

/(B,m (t,z) — By, (t,x))g(t, x)exp(—itz)dt

= |z o(r, ek, (3.42)

Proof. The boundedness of the fucntion g{¢, £} by some positive constant helps
us to obtain {3.42) above on the lines of equations (3.12) to (3.22) of Basu et af
{(1979) with little modificatioans We, therefore, skip the proof of this lemma

Lerama 13. For all the velues of t and all z unth |z| > 1,
|Be (t,2)] < el . (3.43)
k=0,1,.,m; 3=12, ..,m.

Proof. Using Lemma 1, we get

|Bir(t,z)] < i(g)

h=1

A

R - -
o en ™, 3)| |Bh, (", 2)

> AP 2 fefry )
h=1
clx

A

IA

"—0
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4. PROOFS OF MAIN RESULTS

-

Proof of Theorem 1. We shall prove the theorem for m = 2. In case of m > 2

but fixed, the proof involves similar steps

We shall prove the relation

sup [fa(®) — uo(w)| = O(n!~lekDr)

LT 00

as n — 0o
The inversion formula for continuous density gives that

2} fu(x) — vo(x)] < Iip + Ion + Isn

where
Iy, = / '¢n(t) - wo(t)ldt,
Jti<enr
I?n = [‘i’n(t)ld!’
ltf>en”
= [wy (tn™")|" [waltn™")|™dt
Je|>en”
and

13,1 = / |wo(tn‘”'){"dt,

tf>en’
€> 0 being as 1n Lemma 4.

By Lemma 4 it now follows that

Ly = O(nl'(l"l’”)') asn — oo

. (41)

..(4.2)

(43)

As the d.fs Fy, Fy and F, are absolutely continuous and we have from the canon-

ical representation of a stable law the fact that

wo(t) = {wo(tn™")} " {wo(tn™")}",

and that there exists to any €> 0,e c(€) > 0such that jw,(t)] < exp(—c(€)), [t| >€,
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for 2 = 0,1,2. Therefore,

o< [ ep(—c@m 2@ Pl OFd:
fti~e
< o oni-dOn=2) [ wi(e)Pat )
< af exp{—e(€)(n—2p))
= O(n%(la‘e*l)f)
as n — 00, and
Iy = O(n (1) (45)

as n — 0o. Thus (4.1) follows from the relation (4.2) through (4.5).

Proof of Thoerem 2 We shall prove the theorem for the case 0 < a < 1 and
m = 3. The case 1 < a < 2 can be handled similarly. Also the case m = 2 can be
worked out exactly on the similar lines. In case m > 3 but fixed, the proof will be
exactly similar to the case presented here. Modifications necessary for the general
case are discussed in the remarks
Note that in view of Thoerem 1, it is sufficient for us to prove
sup|z{®] fu(z) — t(z)] = O(n'™") as n > 00, and .. (486)

jxl21

Consider, for |z| > 1,

|=1°] fu(2) — v0(=)]

o0

< el V exp(—ta)[{wn(tn™")}" {wa(tn™" )™ fws(tn ")}

— {wo(tn ")} {wo(tn ™))™ {awo(tn ")} |

IA

2121

suplal” [ j exp(—1tz){w; (tn ")} {wa(tn ™)} {ws (tn ")}
—{we(tn™")}Pdt|
[zl

suplal® | [ exp(—ata) (un(tn ™)) wo(en ™)} Hua(tn "))

—{wo(tn™)}")dt|

+supz]® j exp(—1tz) {wo(tn ")} {wo(tn ™)} [{n (")}
=21 s

—{woltn™")}")dt|
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= Wi+ Wi+ Wny .. (4.7)

In order to prove (4.6) it is sufficient to prove that

W]z = O(?‘ll_r) .. (48)
Wm = O(nl") (4 9)
Wy = O(n'"") . (410)

asn — oo,

We shall prove equation {4.8) only Equations (4.9) and (4.10) can be proved
similarly Observe that using (2.5) and (2.6), we can write

o

/ exp(—utz){w; (tn"")} " {wa(tn™")}" [{ws(tn ")}

-~

—{wo(tn™")}"]dt

oo

= /exp(—itm){Al,n(t,:z:)Az_q(t,:x:)—}-A]‘n(t,m)Bg',,(t,:c)

- 00

+By 5 (t,£)Asry(t, ) + By g (8, 2) By n (t, )} Az (t, ) — Aom(t, x)]dt

oo

+ / exp(—1tz){wy (")} {wg(tn~") )3 By (¢, 7) — Bo(t, 2)ldt

—00

=I{A1As) + 1{A1By) + I(B}Ag) + I(ByB) + I(B), say {4 11)

Estimate of 1{A; A;) . We shall prove that
(A1 A2)| = |z|"*O(n'™") . . .(412)
asn — oo.

First of all we consider the integral

[o ]

[ expl=ita) s (,3) A t,2) Au (e e

—00

Because Ay, (8, z), AS

2} (t,z) and AQ‘ (t, ) are absolutely integrable, simple tech-
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mques involving integration by parts give us

/ exp(—tz) Au r (t, &) Agr, (b ) A ry (£ )t
s oo . (413)

3
= 1z ‘Z /exp(——ztz HAM; ¢ .'L‘)A(}) (¢, x)dt
=1 -0

=l
'k

On evaluating
oo

/ exp(—itz) A, (t, z) Ay, (8, 2) Ag s, (t, z)d2
fade ]
on the hnes of (4.13), we have then

o0

/ exp(—utz) Ay ., (t, x) A (t, z)

-0

il

[1{A; Ag)|

[Asm(t, 2) ~ Ao (t, 2)]dt|

IA

| [+ [ AR el

[t]<ent  ti>enr |

IAS,‘m(ta :L') - AO.T:(‘) x)ldt

T / / Arn (6, 2)] 4. (t,2)]

<€n’ jtjen” |

IAJJB (t! ‘7") - AO,T: (ta :r;)ldt

+

2| / / A1 (6,2)] A2 (t,2)]

iti<ent  ftirent |

|A§ ‘” ) (t,z) — ASD (¢, ) lde

=M(z)+: + Ms(z), say. .(4.14)

Observe that (3.30) and (3 36) together with Lemma 2 imply that, as n — co
IM ()| = |z °0n}), forz=1,3, ENCELY
whereas Lemma 2 and (3.31) umply that, as n — oo,
IMy(2)| = fal O™, . (@18)

Finally, as a consequence of equation (3.18), the assumption (A;) and Lemma 11,
we get for 2 = 2,4,6, as n — 00,

M (z)] = |z| 2O ). . (417)
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Thus from equations {(4.14) to {4 17) 1t follows that, as n — oo,
[1{(A1A2)| = || "*O(n"™") (418)

)
which 1s same as (4.12)

Estunate of 1{A;By) Write [{A;By) as

HAB) = / + / exp(—utz)A; ., (t, ) Bay(t, T)
tj<en®  ji>en"
(4 19)
{Asn( 7)) — Aon(t, 2)}dl
= Il(Ale) + IQ(A]BQ), say
Now,
[ (A1By)| = [z]°0(n'™"), as n — o0, (4 20)

1s evident from Lemmas 2 and 13 and (3.30); whereas, using Lemmas 11 and 13, we
get

(B < da [ Aol
ft|>enr
< ez u"? / |z, (8, z)[Pdt
it>e
< x|y ?
Therefore, 1t follows that, as n — oo
|12(A1.B;))' = lz!'“O(nl' r} (4.21)
Thus,
[1(A1B2)| = |2[°0(n'™"), as n — oo, (4 22)

follows fromn (4 19), {4.20) and (4 21) On similar lines we can prove

[I(B1A2)| = |z| *On'™), asn — oo {4 23}

Observing the fact that |Bi (¢, z)] < max(l,clz|{™®) for £ = 1,2,3 and once

again using the techmques of estimate of I{A; By) we get

[[(B1By)| = |z| *O(n'™"), asn — o0 (4 24)

Estunate of I{B) We have

oo

I(B)= fcxp(-—z!r){wl(tn")}”(wg(tn"’)}"‘

-0
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[Bar(t.1) ~ By r(t, £)dt
Note that
{Al.r‘ ([, a;)A-;‘,,(t, .B) + A 1 (t, .’B) Bg_h (t, .’l:)
+By (8, 2)Ag n(t,x) + By (L 2) Bar (8, 2)}

15 a complex valued function with absolute value of each summand (component} be-
ing less than or equal to max(1, ¢z} ). Each component satisfies all the properties
of the function g(t,r) introduced in Lemma 12. We therefore take each component
g;(t,x), say, 3 = 1,2,3,4 as g(¢, ) of Lemma 12 and apply Lemma 12 Therefore,

o

] / exp(—wr){ Ay, (t,2) A, (t, ) + Ay (8, 2) Bar, (L, z)

H(B)|
—;C};Ln (t, ) Az (t. ) + Bys (8, 2) Bay (t, )}
{Bi‘fa (t: .’1:) - I}‘).Ts(t's 'E)klt{

4
S / exp(—2z) g, (. ) Bons (6 £) — Bory (8. 7)]dt]

=1

(4 25)

iA

< lel“"o(n“")
< {;]_"O(n’“'), asn — oo

using Lemma 12

{4 8) now follows from (4.11), (4.18), (4 22), (4 23), {4.24) and (4 25). In view
of the remarks following equatious (4 10) the proof of Theorem 2 is complete,

5 GENERAL CASE AND CONGLUDING REMARKS

(1) In the case m > 3 (but fixed) 1n place of (4.7) we will have

supjaf® /exp(~zt$) [H[{wk(tn"')}“ — H{wo(tn”')}" dt
jzi>1 o k=1 k=1

< Supiﬁl"[/CXP(“W)H{wk(in”')}”[{wm(m")}r‘ = {wo{tn™")}dt|
oo 3231

fzi>1

1

m~-1 oo mes
+Y suplal°] _/ exp(—ita) [ [ {wrlen ™[] {wo(tn™)}7
"o k=1

szl 7=m—s+2

{wm-s i(tn )}t = {wg(tn™ 7)) ™" dt|
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+I<i1ix2;z|:c|"§:£ exp(—itm)ﬁ{wo(t"_r)}r’

=2

{wi{tn™™)}" — {woltn™")}")dt|

As in Theorem 2 we shall consider 1st term only. Proceeding as before, this can be
expressed as sum of 5 terms say I, Iy, I3, I4 and I, where I) has in the integrand
the product term involving (m ~ 1) A,’s with {A,; — Ap), I 1s the sum of (m — 1)
integrals with each integrand containing the product of one B;,2 £ m — 1 with
(m—12) A's and (Am — Ag), I3 is the sum of 2™ — (m + 1) integrals with each
integrand being the product of m — 1 terms with (A,, — Ag) of which atleast two
are B,’s and atleast one is A, : I; is an integra! whose integrand is the product of
(m —1) B, with {4, — Ag) and Is is an integral whose integrand is the product

m—1

[ {we(tn™")}" (B — Bo)

k=1

Proceeding as in equations (4.12) to (4.25) we get O(n{=").

(if) It is well known that limit distribution of normalized sums of independent
r.v.s. exists irrespective of the sampling scheme under consideration (See : Srechar
(1970)). We are unable to prove the rate in the local theorem of this result i th
case T,/n — oo as n - 0 for some 1, mainly because of the fatlure of some of vut
estiamtes to hold in this case.
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