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MISCELLANEOUS NOTES
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ABSTRACT: Let \Xn } bo a sequence of mutually independent random 
variables (r.v.s.) defined on a probability space (Q, /3, P) with respective distribu
tion functions (d.f.s.) }, all of which belong to the domain of normal attra
ction of a symmetric stable law with characteristic exponent a, 0<a<2. Suppose 
further that at most r of the d.f.s. {F« } are distinct, i.e. F„ e {G,, Ga,...Gr}.

A Central Limit Theorem type result is proved when the number of variables 
among {Jfj., Xs, . , Xnj that follow a G, is a r.v. satisfying certain conditions.
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1. Introduction and statement of the main result

Let be a sequence of mutually independent random variables 
(r.v.s.) defined on a probability space (fl, p, P) with respective distri
bution functions (d.f s.) all of which belong to the domain of 
normal attraction of a symmetric stable law G with characteristic 
exponent a, 0<a<2. Suppose further that at most r of the d.f.s. \Fn\ 
are distinct i.e. Fn t \GX, Ga, .... G,\.

Without loss of generality assume that EXt=0, i-i, 2, ... when
ever it exists.

For each n, let rt(n) be the number of r.v.s. among X{, Xt, ..., Xn 
which have Gj(x) as their d.f.

Suppose that r}(n), for fixed j, is a r.v, possibly depending upon
W-
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Define Sn« 2 Xt.
i-i

If 7- 1, 2, r are constants dependent on «, Sreehari [4] 
and Mason [2] have proved that

F{Sn ^xBn}~* <?(*),

with B„ 2 C°(r,(/j)) 1 . HereC.(n) is proportional to n*1*,
, #"i J

the constant of proportionality changing with j.

In this paper, we take t,(n), j -I, 2, .... /• as r.v.s. satisfying the 
condition: For 7*= 1,2, ,r

r,(n)jn-+Ns in probability, where /’{A', > 0)-l.
We prove the following theorem.

Theorem Pi .S’,, ^ x v(«)} -+ G(x), where v{n) is such that
V(°«)“ i c;(r,(n))

1-1

The proof of this theorem is given in section 3.

2. Preliminary rbsults

This section is devoted to some preliminary results required for 
the proof of the theorem. For A, B e 1S, denote the conditional 
probability of A given B by P(AjB). If P(B) •= 0, then we use the 
convention P(A\B) = P(A).

Definition 1: A sequence {A„\ of events is said to be P-mixing if 
iim [P(An\A) - P(/4„)] - 0 for every A e fi.

fie

Definition 2 : Let £{t) be an independent separable homogeneous 
process with independent increments defined on [0, 1J such that
£(G) = 0and £(0

(1) is stochastically continuous on the right,
(2) has at most a denumerable number of discontinuities, all of 

the first kind, and
(3) is defined by E exp ji u £(l){ -=exp \-t0 [u|“} 0<a<2, 0> 0.

Then the process is called a symmetric stable process with 
exponent a.
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Lemma 1. (Barndorfl-Neilson Lemma)
Let f&„} and with kn<mn be two increasing sequences oj 

positive integers with kn~*« and let {An\ be a sequence of events of 
such that A„ depends only on Xk^, ..., Xa^. Then {/!„} is P-mixing.

Whenever the observations do not come randomly from r popula
tions (1 e. r^n) are not random variables) but positive integer valued

v
function of n such that 2 ts (n)-=n, then rfin) will be, in the remain-

i ”i

ing part of this section, denoted by t,{n), j- 1, 2, r. Let us 
define

2 C*{tt(ri)), 2ti(n)~n.
4-1 4-1

Lemma 2. The sequence \AU\ defined by An-*\Sn*£x</i(n)\ is 
P-mixing.

Proof: Let «>0 be an arbitrary constant and let A be any 
event.

Define En •=* {|Sri08 „] I > « <£(«)!

where [x] is n if «<*<«+ 1, n is an integer.
Denote $„ - P(Eti\A).

Writing
P[5n<at 4>(n)[A]

- Sim »i + Sliog u]^x<p(n)\A]

and intersecting with the event En we get after usual manipulations

P[S„ - S[log „,<(* - *)m\A] - 
>Kn)\A]

<£P[Sn-Sli0ini*H.x + e)M]A] + dn. ... (2.1)

Note that S„ — PiE^A]
-*Pl|5tiog „jl><#(/0/'Kiog n)) >!>{log n)]IP(A)
-»0 because <j>{n)l4>{log n)-»°° as n—>°o.

Similarly, it can be proved that 

P[Sn - Snot ~ M»)3 - K

<P{Sn - Snog »i < (x + e) >Kn)]+K ... (2.2)
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where 8 * = P(En).
Inequalities (1) and (2) imply that 

PISn ~ ■S'tiog „) <(x-e) ifi(n)] | A]

- p[sn - saog< (x+«) m)
<P[^n < * «»)W-P(s, < x <Kn)]
•^P[,S„ — S’,to, nj (x + e)

- P[Sn - Site, <(*-«) *(»)] + s» + s-*- - (2.3)

Note that in view of Lemma 1, the limit of the first term of the 
inequality {3), after adding and subtracting the term P\Sn - S{iog B) < 
(x-e) i/j(«))> will be bounded below by G(x ~ 2()—G(x + 2t), whereas 
the limit of the third term of the inequality (3), after adding and 
subtracting the term P[Sn - <S\ioe Bl < (x+c) <//(«)], will be bounded 
above by <j(x+2«) - G(x - 2e), and hence for n~*», we get
-[Gfx + 2c) - G(x - 2e)] < lim {F[S„<x <Kn)\A}-P[Sn€.x #*)]{

< l<7(x + 2e)- G(x-2«)]

Now, allowing e-»0, we have the result that
P[Sn < x < x ^(fi)]-*0 as »

which proves the lemmat

Lemma 3. Let
H(x)~P{ sup |£(/“)|<x], 

o-j'.tcx
Then

hm P f max (S, |<x fiB] «= H(x)

for an appropriately chosen normalizing sequence of positive constants

Proof: This lemma is due to Sreehari [31, (Theorem : 5. 2) and 
hence the proof is omitted.

3. Proof of the theorem

We shall prove the theorem for r—2; for r>2, the proof is 
analogous.

Let k be a positive integer to be chosen later appropriately.
For convenience we shall denote JVX by Wand N„ by 1 -N.
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Let us denote for a positive integer k,
Bi -Kl/*> < N < (f+1)/*)} 1-0, 1, 2, k-1 

Dn,k-mTt(n)ln)-N\<(llk)} 
va(n)==C?(r1(n)) + C|(ra{«))
/4(»)- P[\Sn < x K«)l n A,.* n Bt]

/= 1,2,.... k—2
vn=Pi\sn < xk»)1 nc^n inr>(*-i)/*n
y„»P[{5„ < * K«)l n A,. * n {AT ^ (1/*)H

n i>’n. »].

where A„', R is the complement of D„, k in 13.
We have

P[S„ < * v(n)]-£,,+y,, + ^+ 2^/4(«). - (3.1)
*-l

For fixed i, define
«„i -[»(*-!)/*], 0n4-[«(/+2)/*]

— a»4 » * ^ni=R~ fini

»l(n,i)^Cl(ani)+CUKi)
v“a(M)~Q(j9n4)+C‘(0„t).

On the event {J?4 l"l A>. *}, K«) e [vj(«, /), va(n, /)]
We first prove the theorem in the case x > 0 : when x < 0 

the steps will be exactly similar.
Let

Cji. 4(M)“P[{^n < * Vl(n, l)\ n A>. * n AJ 
A>. 4(n)“F[{5„ < x v2(n,»)} f|fl,lkn Bt].

Then note that
Cl. ,(«) < < X v(n)} n A..!« n A1 < ca. 4(n). ... (3.2)

Further 
Ci. i(n)

^ x vs(n, /)} f) A». % 0 A]
<3,[{<S'i, *tnl + A. ®«*—fn4i

- *?a* I5*- »*4i < * •'»(«, 01 n Dni!Je n Btj.... (3.3)
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Let
«, t”{ max IA.»- A, B„,l > € y£(n, /)}

*».,-[ max |5„, -A, | > e vs(fl, i)f

Then using elementary results in probability we get from (3.3)
Ca, i(n) < PHA, + »nt £ (* + 2e) »*(/!, i)} f) B,]

+p(vi,n.i n Bi)+PiW9,n,% f) B%)

Now using Lemmas 1, 2 and 3 we get from (3.1) 
limsup P[S„ < x v(n))

<*£®P(B() [limsup P [Si, +Ss, ,nt < (x±2e) vz(n, i)J

+ limsup P(Va, ,) + limsup P{W„_, ,)]
+ P{NK (1 lk)\ + P{N> «k~l)lk)}

- hE P(Bt) [GCx + 2e) + 2| 1 - H((e(k+ 3) /3)»» •) [J 

+ P{1V sg (1 /fc)f + P{iV > (k- l)jk)\
< G(x + 2e) -. (3.4

by letting <» because // is proper d.f.

Now consider,

cx,,(»)- 5T jus. < x »x(». *)1 n a„ * n pj
i-1 <-i

>*i P[[Sx,.
t-i

+ S2ft< *’•‘„.+
°».

max IA.j-S,. <

+ max lA.i ~A,«1 M a l1 < -x Vi(/1, ij| n B,
n % l» &

-P(D\,*)
Jf-2^wnnis,.,

1
.. +^’' 6«ii<(x-2«)v,(n,i)[|.

-Wi, .IA)
-Wx... <IA)- P(D'n, fc)

where PXl max IA. ,~A. > « v,^, /)}
an ^ ^m ft 1

„ , = { max IA-, - A. tni\ > « VJ(fl, JJ}
1 l
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By using Lemmas 1, 2 and 3 we get from (3.1) 
liminf P[Sn < x v(«)]

> *nt + S» <(*-2<) Oil
-limsup P(Ft J-limsup F(1T1 „ ,)-limsup P{D\. k)
- P{N < (l//c)| - P\N > ((fc -1 )/k)\

- *Fp(B.) [G(jc - 2*) - 2U - 3)/3)^“)H
i-i

- P\N < (lim - P\N > ((k-Dlk)}
> G(x-2e) - (3.5)

by letting £-*«>.
The required result now follows from (3.4) and (3.5) on allowing 
€—*0.
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A NON-UNIFORM RATE OF CONVERGENCE IN THE LOCAL 
LIMIT THEOREM FOR INDEPENDENT RANDOM 
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SUMMARY Let {Xn}, « = 1,2,3, be a sequence of independent random variables with cor
responding sequence of distribution functions jGn}, » = 1,2,3, Suppose that, for every n,G„ € 
{A, Pi, , Pn} Let Pi, Pj, ,Pm belong to the domain of normal attraction of a stable law with index 

o,0 < a < 2 Define T„ = Xi + 4 Xn Under fairly mild assumptions, a non-uniform rate of
convergence is obtained for the density version of central limit thoerem for normalized sums Tn

1 Introduction

Let {Xn} be a sequence of mutually independent random variables (r.v.s) with 
corresponding sequence of absolutely continuous distribution functions (d.f.s) {G„}. 
Suppose, for each n, Gn E {Fj, Fi, , Fm};m being a fixed positive integer. For each 
n, let t} — Tj(n) be the number of r.vs among X>, ,Xn which have F} as their

m n
d f., j = 1,2, , m. Note that = n. Set Tn = for n = 1,2,.

j=i .=i

Suppose that each F} belongs to the domain of normal attraction of the stable 
law Fq with characteristic exponent a, 0 < a < 2 By Theorem 3.1 of Sreehari 
(1970), T„, properly normalized, converges in distribution to a stable r.v. with d.f. 
F0. Kruglov (1968) proved that if the df FJt j = 1,2,. .,m are absolutely
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theorem
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continuous with probability density function (p.d.f.) vvj — 1,2, ■ ,m, then 

sup |/„(x) - vo(x)| = 0(1} as n —► oo,
-oo<x<oo

/„(x) being the p.d.f. of T„, properly normalized, and being the p d.f of Fo 
Basu et al. (1979), under certain regularity conditions, obtained anon-uniform rate 
of convergence in a local limit theorem concerning i i.d r.v.s in the domain of normal 
attraction of a stable law. The rate was found to be of the order 0 < a <
2, r = 1/a; [as] denotes the largest integer less than or equal to x. In this study, we 
obtain uniform as well as non-uniform rates of convergence of the density fn to vo 
for the above set up. This improves Kruglov’s result and generalizes work of Basu 
et al. (1979) from i.i.d. set up to independent non-identical r.v.s. set up. We state 
our theorems first:

Theorem 1. Under the assumptions, [Ai] — [As], stated below, 

sup \fn{x) — vo(x)| = O (n1-fl°l+1^r) as n —> oo.
—oo<x<oo

Theorem 2. Under the assumptions, [A\] - [A^], stated below,

sup (1 + |x|Q)|/„(x) — v0(x)| = O (n1-^+1^r) os n —* oo.
-00<X<00

We prove the theorems in section 4. We introduce the notations and assumptions 
in section 2. In section 3, we prove some lemmas which will be helpful in section 4 
Some of these lemmas are also of independent interest.

2. Notations and assumptions

Let Yq denote a stable or a strictly stable r.v. with exponent a, according as 
1 <a<2or0<a<l, having the d.f. F0 with EYo = 0, whenever it exists, 
and let wq denote its characteristic function (c f.). We assume EXn = 0, whenever 
it exits. It is known that Zn = Tn/Bn converges in distribution to r.v. Vo, with

m
B° = d, depends only on d.f. F,. For the sake of simplicity in the proof we

i=i

shall take J3n = nr without any loss of generality.

<f>n{t) = F[exp itZnj = J|{w,(tn r)}Tl, 
1=1

We write
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where to, is the c f. corresponding to the d.f. F, Note that we have from the 
canonical representation of c f u'o(t) that for all t

m
w0(t) = J]{u)0(tn“r)}r*. 

1 = 1

Then as pointed out m section 1,

(2 1)

lim <j>„(t) = w0(t) for all f .. (2 2)

For each positive integer n and real number x, we define for k = 0,1,. ,,ra; and
3 = 1,2,. .,m

a k.T,(.t,x)= / exp(ttu)dFk(u) (2 3)

.(2 4)

Ak.r3{tsx) = {aks}{tn~r ,x)Y> . (2.5)

- {ak'Ti(tn-r,x)}r>
E( 2 ){ak,J(tn-r,x)p-h{i3k,Tj(tn-r,x)}k 

h=l ' '

. .(26)

Note that for
00

/„(«) = (25T)-1 J Ut)e"ludt . (2 7)

the inversion integral on right hand side is absolutely convergent. The absolutely 
convergent integral provides the continuous pdf. that we shall use m our theorems.

In what follows c, Co, cj, , etc. will denote some positive constants, independent 
of n and x and their values are not of much importance and may change from one 
step to another. Also Pj( ),P2(), will denote polynomials in positive variables 
having non-negative coefficient independent of n and x. They may vary from one 
step to another. Finally, for any function g(t) and any positive integer k, let g^k\t) 
denote the kth derivative of g(t) whenever such a derivative exists. We now make 
the following assumptions;

[Ai] All the d.f s FJt j = 1,2, . , m are absolutely continuous.

[A2] If w}(t) represents the c f. corresponding to the d.f. F},3 = 1,2, . ,m
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then for some integer p > 1,
00

j \wj{t)\Tdt < oo
—OO

Ma] / Mla,+1K(u)-t>o(u)|du < oo, j - 1,2,
— OO

[AA lim — = t, > 0, j = 1,2, ,m.
n—* oo fl *

[As] F} belongs to the domain of normal attraction of the stable law Fq. 

Further let

{■Wj(tn~T)}n —* w0(t), the c.f. of Fq, as n —> oo

From the proof it will be clear that it is sufficient if

0 < lim — for all j instead of (A4). 
n

3. Preliminary results

Now we mention some preliminary lemmas required to prove the theorems of 
section 1.

Lemma 1. For k = 0,1, ...,m and a ,r.v. Yk with d.f, Fk as z —► oo we have

(1)
*•*&(*) sz°P(|tt|>*)-4Ct>0; . .(3-1)

(2) whenever 0 < a < 1,

/ M<fFfc(u) = O (z1-Q); ...(3 2)

l«l<*

(3) whenever a — 1,
f \u\ll2dFk(u)=0(z-^) ..(3 3)

Mm

J u2dFk(u) = O (z);Ms*

and
■ .(3.4)
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Proof Using the definition of the equation (3 1) and by adding and
subtracting the terms

) m
jj{w,(tn~r)}T’ {w0(tn'r)}T‘ for j = l,2, ,m-l,

i=i fc=i+i

we get on simplification

m
|<pn(0 -u,o(t)| < £- •MtTrr)P!

< n1~^al+^rP,(|t|) exp{—c|£|Q} using Banys’ Lemma.

Lemma 5. Under the assumption (A^j, there exists a polynomial P\( ) such 
that for large n, the relation

K£’(t7rr’ X) ~ “o‘r7(tn_r.^)l

< T'M*0'+^rF1(|t|) exp{—c[t|°(l - —)}, 1 < j < n, k — 1,2, ,m; .(310)

n
holds for all t m the range |f| <S nr and all x with |x| > 1

Proof The proof is similar to that of Lemma 2.3 of Basu et al. (1980). In fact, 
the adjustments necessary are rather easy m view of the assumption (A3)

Now we define two functions which will be useful m the proofs of the theorems 
and some of the lemmas For j = 1,2 , m let

<U,(M) = Tj{oj,(tn r,x)~ a0,r,{in r,x)} (311)

STi(t,x) = T3 1 ^{aJTj(£Ti Tx)p{ao,T,(£n'r,-c)}7'''
h~o

(3 12)

Lemmas 6-8 give bounds on the funuions a* Ti(t, x), dT/ {t, r), STj{t, x) and their first 
and second derivatives with respect to t The proofs are based on the techniques of 
the proof of Lemma 5 presented abvoc and hence omitted Tjie results of Lemma 8 
follow from Lemmas 2 and 7; whereas equations (3 22), (3 23), (3 24) of Lemma 7 
follow from Basu et al (1980, (3 3) - (3 5))

Lemma 6. Properties of the function dn(t,x) 'For all values of t and x 
with |x| > 1, we have for k = 1,2, ,m

(1) whenever 0 < a < 1,

.(3 13)
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|<4P(M)| < ci 1 Tit1 r, . .(3 14)

(2) whenever 1 < a < 2,

KMI < Tr2rF2(|if), ... (3.15)

. (3 16)

'
|4f(t,x)|<c1r‘-2r. .. (3.17)

Lemma 7. Properties of the function ak'T,(tn~r ,x). For each fixed n and 
x,otTj(tn~r,x) is differentiable any number of times under the integral sign, 
k — 0,1,. ,m\j — 1,2, ,m. For all values oft and x with jxl > 1, we have
fork — 1,2, = 1,2, ,m :
(1) whenever 0 < a < 1,

|a® (tn“r,x)| < |x|J Qr< 1 .. (3 18)

(2) whenever 1 < a < 2,

l4!rJ(Jn~r,a:)| <Tl~lPk(\t\) .. (3.19)

< m2^-1^ dti), ... (3.20)

i4!i(te“r.a:)i <ciia;i2_Qrr1 (3 21)

Also for all x 0,0 < a < 2, every large integer s, there exists a constant 
c such that

J \Qk.r,(t,x)\T>dt=:Q(Tfr),

J \ak,r,{t,x)\lsdt < c,

J \Pk,t,(t,x)\2sdt < c.

Lemma 8. Properties of the function Sn{t,x), For all |£j <€ nr,|a;| > 1 and 
all large n and Tk,k = 1,2, ..,m we have

(1) for 0 < a < 1,
|Sr4(l,x)| < C exp{—c\t\a), .(3 25)

ISW(t, x)| < Cjx|1_a exp{~c\t\a}, ... (3.26)

<3 22)

(3.23)

(3 24)
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(2) for 1 < a < 2,
|6’n(£,x)| < C exp{-c|£|a}, (3 27)

< 1*4° e*p{-c|tr}P,(|t|)1 (3 28)

|4?(L*)I < |x|2-° Cxp{-c|£|°}P2(|t|). (3 29)

Lemma 9 There exist polynomials Pj(-) and P2() such that for all t m the 
range |£| <€ nr, |xj > 1 and large n we have the following
(1) for 0 < a < 1,

\AktTl(t,x) - A0,rt(t,x)| < P](\t\)exp{-c\t\a}Tl~r (3 30)

l41(Lx) ~ 4™ (L*)l < la:r_QP2(N)exp{-c|£|Q}rt1-r (3 31)

(2) for 1 < a < 2,

l41(Lx) - 41 (Lx)I < Pi(|f|)exp{-c|t|°}TjJ~2r (3 32)

l41(L*) - 41 (Lx)| < |x|2-°Pi+i(|£|)exp{~c|t|°}rt1_2r (3.33)

t = 1,2, k = l,2,...,m

Proof. We will prove (3.30) and (3 31) only. (3 32) - (3.33) can be proved 
similarly. In view of equations (3.11) and (3.12), observe that

4*,rt(Ls) ~A.n(t,x) - drt(t,x)Sn(t,x) ..(3 34)

Therefore, (3 30) follows from (3 13) and (3.25). Also

41 (Lx) - 41(L x) = 4P(Lx)Sn(t, X) + dn(t, x)Sll)(t,x) (3 35)

Using the relations (3.13), (3.14), (3.25) and (3.26), we get (3 31) from (3.35).

Lemma 10 There exist polynomials Pi(-) and P2( ) such tht for all t m the 
range |t| <€ nr, |x| > 1 and large n,

(1) for 0 < a < 1,
i41(lx)i < ixp-^-citr}. • (3-36)

(2) for 1 < a < 2,
!41(Lx)| < Pi(|t|)exp{—c|t(a} ...(3.37)

< |*|*-°P,(|i|)ea?){-c|ini ...(3.38)

l4?n(L*)| < |x|2-aP2(|t|)exp{-c|tn. . (3 39)

We shall now state a lemma which follows from Lemma 2.4 in Smith et al. 
(1974).
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Lemma 11. Let £> 0 and integer no be fixed and let

(H) = {(t,n,x)| |t| >€, n > n0, |x| > 1},

Ho.n = J»up|o0,r,(i,a:}|, • (3.40)
{«)

l‘k,n = sup\akiTk(t,x)\, . (3 41)
(«)

for k= 1,2, -,,m.

Then it follows that 0 < po,n < 1 and 0 < ft3tTi < 1. Let ft = max(potrt; pktTi)

Lemma 12. Let g(t,x) be a complex-valued function, bounded by some pos
itive constant for jx| > 1 and for all t. Then, for k = 1,2, ,m

OO

J- B0,Tk(t,x))g(t,x) exp(—itx)dt\

-OO

o(ll-((a|+3)r )• (3.42)

Proof. The boundedness of the fucntion g{t, x) by some positive constant helps 
us to obtain (3.42) above on the lines of equations (3.12) to (3.22) of Basu et al 
(1979) with little modificatioans We, therefore, skip the proof of this lemma

Lemma 13. For all the values of t and all x with |x| > 1,

|£jt,r,(t,x)| < c|x| ° . (3.43)

A: = 0,1, . ,m; j = 1,2, ,.,m.

Proof. Using Lemma 1, we get

|B*.r,(t.*)| < ]l(^) |QI),r~/‘(*n“'>)| |^,r;(tn_r.a:)|

h~ 1

< £ ftwini >
fc= l

< c|x|“°
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4. Proofs of main results

Proof of Theorem 1, We shall prove the theorem for m~ 2. In case of m > 2 
but fixed, the proof involves similar steps

We shall prove the relation

sup |/„(*) - i*,(s)| = 0(n1-«°l+,>r) . (4 1)
-oo<x<oo

as n —> oo

The inversion formula for continuous density gives that

27r|/„(x) - t'o(:n)| < hr, + /2n + hn .. (4.2)

where

and

hn = J \4>n(t) - w0(t)\dt,

\t\<€«
I-In - J \<t>n(t)\dt

jlj>€nr

|l|>enr

hn = j |ui0Ctrt-'r)rdt,
|l|>€n'

€> 0 being as in Lemma 4.

By Lemma 4 it now follows that

hn — as 7i —* oo (4 3)

As the d.Ls Fq, F\ and F2 are absolutely continuous and we have from the canon
ical representation of a stable law the fact that

uioW = {u'o(*n~r)}ri{u/0(tn~r)p,

and that there exists to any €> 0, a c(g) > 0 such that (£)| < exp(—c(G)), |t| >€,
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for i = 0,1,2. Therefore,

hn < «r f exp{-c(£)(n - 2p)}jtut(t)|p 1 (t) jpc£t
|il>e

< nr exp{—c(s)(n — 2p)} j |uii(i)|pdi ^ ^
|tl>€

< cnr exp{— c(€)(n — 2p)}

= 0(n1-<W*1>r)

as n -* oo, and
/Jn=0(n'-(la»+1>) -.(4 5)

as n —► oo. Thus (4.1) follows from the relation (4.2) through (4.5).

Proof of Thoerem 2 We shall prove the theorem for the case 0 < a < 1 and 
m = 3. The case 1 < a < 2 can be handled similarly. Also the case m — 2 can be 
worked out exactly on the similar lines.' In case m > 3 but fixed, the proof will be 
exactly similar to the case presented here. Modifications necessary for the general 
case are discussed in the remarks

Note that in view of Thoerem 1, it is sufficient for us to prove

sup|x|Q|/„(x) — v0(x)| = 0(nl~r) as n —> oo, and .. (4 6)
M>i

Consider, for |x| > 1,

< lx I

OO

J exp(—rtx)[{wi(tn'~r)}T‘{ui2(£n_r)}n{w3(tn r)}75
- {w0{tn r)}T‘{in0(tn r)}Tj{u>o(fR

< sup|x|°
I*I>1

OO

J exp(—itx){wi(tn_r))T‘{tC2(tn_r)}T1Ku;3(tR r)}^
-{Wo(tiOP]dt|

+sup|x|“
lll>l

OO

J exp(—itx){wi(tn~r)}‘i{wo(tn r)}TS({ui2(in r)}^-OO

-{ui0(tn r)}rj]*|

+sup|x]Q
ld>i

OO

J exp(-t£x){wo(tn_r)}T,{ico(£R r)}T3[{wi(tn r)K
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= Wl2 + W-a + Wffl ..(4.7)

In order to prove (4.6) it is sufficient to prove that

Wu = 0(n1_r) . .(4.8)

uio
11P5

2t (4 9)

w„ = 0(n,~r) • (4 10)

as n —< oo .

We shall prove equation (4.8) only Equations (4.9) and (4.10) can be proved 
similarly Observe that using (2.5) and (2.6), we can write

OO

J exp(—itx){iw](tn~0}Mw2(£n“r)},M{it>3(in~r)P—OO

—{wo(tn~r)}T3}dt
OO

= J exp(-itx){A1<n(t,x)A2tTl(t,x)+Ahn(t,x)B^n(t,x)-OO

“("^1,71 (^) ***) (^1 (^1 **')}[j^3,Ts(^) 2*) -^0,T

oo

+ J exp(-tte){uii(trrr)}T'{ui2(tn''r)}r3[B3,TS(t,x) - B0^(t,x)]dt—OO

= I(AiA3) + J(AlB2) + J(BxA2) + /(BiB2) + /(B), say (4 11)

Estimate of I(AiA2) , We shall prove that

|/(yM2)| =* tx|-aO(n!-r) . -.(4 12)

as n —* oo.

First of all we consider the integral

oo

J exp(—»£x)j4iiTi (£, x)^2,T5 (£, x)v43its(t, x)dt—OO

Because Ak,n(t,x), j4^(£,x) and vl^(£, x) are absolutely integrable, simple tech-
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tuques involving integration by parts give us
CO

J" exp( rtx) x) - l7.,-3 (t, xy/l.ir, (t, x)dt

-oo

3 y 3
=ta;-1/ exp(_ifi)

fc=l -"oo00 Jl1*
On evaluating

oo

j exp(-tte)^I<r, (t, x)/l2>Ti(t, x)yl0,T3(i, x)tft
-OO

on the lines of (4.13), we have then
OO

|/(yli^42)| = J exp{-itx)Ahn(t^x)A2,n(t>x)-OO

[4).t,(£,x) -v40iTS(£,x)]<ft|

< x -1 hi
+ X -1

Ml.n^-1)! M2.-r,(t,x)j
|t[<6n'' |t|>6nr_

Ma,^,®) - A0tn(t,x)\dt

J + J |^1.n(i|3;)||^(t1x)|[tl<6n- |t|>enr _

- A0,n(t,x)\dt

+ X 1-1 hi |>W,(£,®)! M2,t>(*,x)|
[t|<6rV |t|>fcnr_

i4!i(f>x) -'O** *)!<**

Mj(x) + • -I- Me(x), say.

(4 13)

(4-14)

Observe that (3.30) and (3 36) together with Lemma 2 imply that, as n —» oo

\M,(x)\ = |*|"°0(n1"r), for i = 1,3, ..(415)

whereas Lemma 2 and (3.31) imply that, as n —* oo,

|M,(x)| = |x|"°0(n1-r). . (4 16)

Finally, as a consequence of equation (3.18), the assumption (j42) and Lemma 11, 
we get for t = 2,4,6, as n —* oo,
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Thus from equations (4.14) to (4 17) it follows that, as n —>• oo,

|/(4M2)|=|xP0(n'-r)
1

winch is same as (4.12)

(4 18)

Estimate of I(AiB2) Write l(A\Bf) as

/ + / exp(-tta)J4!|r, (t, x)B2 n(f, x)

\|t|<£jlr jlj>£nr J
|^(,x) - A0tTi{t,x)}dt 

hi-AiBf) + h{A\S2), say

(4 19)

Now.
(4 20)|/](j4iB2)| = |x| aO(nl r), as n —► oo,

is evident from Lemmas 2 and 13 and (3.30); whereas, using Lemmas 11 and 13, we 

get

\h(A\B2)\ < c|x|-° J (t,x)j<ft

< c|x| anr/in T J |ai,T,(i, x)\rdt
< c\x\-anrft1i~f

Therefore, it follows that, as n —» oo

\h(AiB2)\ = \*\-aO(n'-T)

Thus,
|/(.4iB2)| = |x|~aO(n1_r), as n -» oo, 

follows from (4 19), (4.20) and (4 21) On similar lines we can prove

|/(B].42)| = |x|'o0(n,-r), as n —* oo

(4.21) 

(4 22)

(4 23)

Observing the fact that |Bt,rfc(t,x)| < max(l,c|x| Q) for k — 1,2,3 and once 
again using the techniques of estimate of I(A\B2) we get

|/(B]B2)| = |x| “0(n r), asn —< oo (4 24)

Estimate of 1(B) We have

OO

1(B) = J exp(-itx){uii(tn"r)}ri {u»2(t7i"r)}T
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(W.l.r, (O') - H0,rj(t,x)]rff

Note that
{ ^l.r, (t, x)/t2>rj(£, x) + A !,n (£, x) B2.r, (L *)

+ Si,n(i,a.)/t2,^(^x)+ BUTl(t,x)BXri(t,x)}

is a complex valued function with absolute value of each summand (component) be
ing less than or equal to max(l, cjx|"'a). Each component satisfies all the properties 
of the function g(t,x) introduced in Lemma 12. We therefore take each component 
g}(t,x), say, j = 1,2,3,4 as g(t, c) of Lemma 12 and apply Lemma 12 Therefore,

no

\HB)\ = I J exp(-itx){.4liri(t,x)/l2-rj(£,x) + AUn(t,x)Bi,Tj(t,x)— OO

+Bi,n(t,x) 42,T}(t.x) + Bi,Tl(£,x)B2,n(t,x)}

<

<

<

U3!>t,(£,x) - /io.r3(£,x)]d£|

y;i / €Xp(r-ilx)qJ(t..t)iBjJ.3(t, r) - Ba_rjt,l 

;=! -»
^|xrQ0(n1-)

Mil

2=i
|x|_Q0(n!~r), asn-*oo

using Lemma 12

(4 25)

(4 8) now follows from (4.11), (4.18), (4 22), (4 23), (4.24) and (4 25). In view 
of the remarks following equations (4 10) the proof of Theorem 2 is complete.

5 General case and concluding remarks

(i) In the case m > 3 (but fixed) in place of (4.7) we will have

sup|x
W>i

OO

J exp(—i£x)
dtni<w*(tn-r)P - J]{Wo(tn-r)P

*•=1 k= 1

/111c-xp(—ifx)TT{iz/fc(tn-r)}r‘[{u!m(fn''r)}T‘ - {w»{tnr)Y>\dt\
■ ~ -OO ^

m-1 m-s m
+^sup|xn / exp(-i£x)]~[ {u>*(£n~r)}r‘ jQ {ie0(£n"

S-'2,X,>1 * = ' }=m-*+2

r)}r" *“ - {uio(£n“r)}T"”'*l]d£(

r)}?
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+sup|i|°|
|x|>l

[{u^l(^n_^)}r, - {uio(trrr)}T‘]<fc|

As in Theorem 2 we shall consider 1st term only. Proceeding as before, this can be 
expressed as sum of 5 terms say and h, where I\ has in the integrand
the product term involving (m — 1) A,’s with (Am — Aq), h is the sum of (m — 1) 
integrals with each integrand containing the product of one B„i < m — 1 with 
(m - 2) A,’s and (Am — Ao),h is the sum of 2m_1 - (m + 1) integrals with each 
integrand being the product of m — 1 terms with (Am — A0) of which atleast two 
are B,’s and atleast one is A, : /4 is an integral whose integrand is the product of 
(m — 1) B, with (Am — Aq) and I5 is an integral whose integrand is the product

/ exp(~itx)J^[{wo(tn
L 1=1

r)}T

m—1

Proceeding as in equations (4.12) to (4.25) we get 0(n^rK

(ii) It is well known that limit distribution of normalized sums of independent 
r.v.s. exists irrespective of the sampling scheme under consideration (See : Srcchan 
(1970)). We are unable to prove the rate m the local theorem of this result in 11» 
case r,/n —> 00 as n —* 0 for some 1, mainly because of the failure of some of out 
estiamtes to hold in this case.
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