NOTATIONS

 Φ is the standard normal d.f.

 ϕ is the standard normal p.d.f.

 $s_n = x_1 + \ldots + x_n,$ where $\{x_n\}$ is a sequence of independent r.v.s.

f is the characteristic function of a d.f. F.

By F $\in \mathcal{D}_{NA}(\alpha)$ we mean F is in the domain of normal attraction of a stable law with characteristic exponent α .

By F $\in \mathcal{D}_{NNA}(\alpha)$ we mean F is in the domain of non-normal attraction of a stable law with characteristic exponent α .

 $\mathcal{D}_{A}(\alpha) = \mathcal{D}_{NA}(\alpha) \cup \mathcal{D}_{NNA}(\alpha)$.

For a r.v. X, $R(x) = P\{|X| > x\}$.

 $X \ \sim \ F$ means that the distribution function of r.v. X is F.

Let $\Theta = \{(t,n,x): |t| > \varepsilon > 0, n \ge n_0, |x| \ge 1\}.$

The relation f(x) = O(|g(x)|) as $x \to \infty$ means that |f(x)|/|g(x)| is bounded for sufficiently large x.

The relation f(x) = o(|g(x)|) as $x \to \infty$ means that $|f(x)|/|g(x)| \to 0$ as $x \to \infty$.

The largest integer less than or equal to x will be denoted by [x].

The indicator function of the set A is defined by $I_A(x) = \begin{cases} 1 & \dots & \text{if } x \in A \\ 0 & \dots & \text{otherwise.} \end{cases}$

The signature function, denoted as sgn(.), is defined by sgn(t)=t/|t|.

The function h(x) is said to be **slowly varying** at infinity if $\lim_{x \to \infty} h(xt)/h(x) = 1$ for all t>0.

 $\stackrel{P}{\rightarrow}$ means convergence in probability.

 $\stackrel{d}{\Rightarrow}$ mean convergence in distribution.

DCT means Dominated Convergence Theorem.

If u and v are integers and u<v then $\sum_{k=v}^{u}$ and $\prod_{k=v}^{u}$..=0 and $\prod_{k=v}^{u}$..=1.

Unless otherwise specified the symbols C, C_1 , C_2 , C_3 , ... and c, c_1 , c_2 , c_3 , ... denote positive constants. One and the same letter used in different portions of the text may stand for different values.

P(.) or $P_k(.)$ for k=1, 2, ... denote a polynomial in the variable |t| with non-negative coefficients, completely determined by the values of t; its meaning is not of much of importance and may even change from one step to another.

ii

For any function g(t) and positive integer k, we will write $g^{(k)}(t)$ to denote $(d/dt)^k g(t)$ whenever such a derivative exists.

Halmos square \square indicates the end of a proof.