CHAPTER 2

BASIC PROPERTIES OF STABLE DISTRIBUTIONS

AND THE DISTRIBUTIONS ATTRACTED TO THEM

2.1 INTRODUCTION:

This chapter contains a summary of basic properties
of stable distributions and of the distributions
‘attracted’ to them which are needed in the following
chapters. The proofs of well-known statements are
omitted; they can be found in cited literature.

All the r.v.s are assumed to be defined on a
probability space (Q, F, P).

We shall be discussing definitions and properties of
stable distributions, domains of attractions, in Section
2.2. In Section 2.3, properties of distributions in the
normal attraction of non-normal stable laws are discussed

in detail.

2.2 STABLE DISTRIBUTIONS:
2.2.1 MAIN DEFINITIONS AND BASIC PROPERTIES:

Let (Q, F, P) be a probability space and let Y be a
r.v. defined on it. Let G and g denote the d.f. and the

corresponding c.f. of r.v. Y respectively.

Definition 2.2.1: A 4d.f. G {or a r.v. Y) is said to be

stable if for any positive aj; and ap there exist real
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numbers a> 0 and b such that g(ajt)g(ast) = e'**g (at) .

If b = 0 then the 4d.f. G (or r.v. Y) is called strictly

stable.

Theorem 2.2.1: A r.v. Y is stable iff its c.f. g{(t) can
be represented in the form
g(t) = expliut-clt|*{1-ip sgn(t) w(t,a)}], L. (2.2.1)
where u is a real constant, Cz 0, 0< as 2, -1s = 1 and
_ tan{an/2) coWif o = 1

w(t,a) = {~(2/n)log}tl Jifa -1,
Remark 2.2.1: For the proof, see Obragimov and Linnik
(1971, Canonical Representation of Stable Laws, Theorem
2.2.2, p.43). Also see P.Hall (1981) for his remark on

this representation.

Remark 2.2.2: The sub-class with 8 = 0 = u comprises of
the symmetric stable distributions if a= 2. The parameter
o is called characteristic exponent or index or simply

exponent.

It should be noted that a strictly stable distribution

with o« = 1 is symmetric stable.

Theorem 2.2.2: All1 proper stable distributions are

absolutely continuous.
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Remark 2.2.3: For the proof, see Gnedenko and Kolmogorov

(1954, p.183).

Let pg,p(x) denote the p.d.f. of the stable d.f.
Gg,g(x) with parameters («,8). It is well known that the
explicit expressions for stable densities in terms of
elementary functions are known only in few cases viz.
normal distribution {(a = 2), the Cauchy distribution (a =
1, B = 0) and the Levy distribution (a = 1/2, B = *1).

Finally, if G is a stable d.f. with index a< 2,

absolute moment of order B exists iff B< a.

2.2.2 DOMAINS OF ATTRACTIONS OF THE STABLE LAWS:

Let X, X3, ..., X be a sequence of independent
r.v.s having the common d.f. F. Further, let {A,} and
{Bn} be sequences of constants such that Bp> 0, and the

d.f.s of the normalized sums
Zn = (Sn"An)/Bn ...(2.2.2)

converge weakly to some d.f.G. Then we say that 4.f£. F is
attracted to d.f. G or d.f. F is in the domain of
attraction of d.f. G.

It is well-known that the class of stable
distributions coincides with the set of distributions

that are limits of distributions of Zp at (2.2.2).
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Definition 2.2.2: The set of all d.f.s attracted to the

stable law Gy,g is called the domain of attraction of

Ga,B.

Theorem 2.2.1 shows that these stable distributions
form a four parameter family G(ea, B, i, C). In view of
the discussions in Section 2.3 (p. 47-48) of Ilbragimov
and Linnik (1971), we may restrict ourselves either to Bz

0 or alternatively to xz 0.

Theorem 2.2,3: A d.f. F belongs to the domain of

attraction

(i) of the standard normal law ®(x) iff

R(x) = F(-x) + (1-F(x))

= 0(x? JuPdF(u)) as x - w, ... {2.2.3)
Jul<x

(ii) of a non-normal stable d.f. Gy, g(x) iff

F(x) = (d1+0(1))lxrah(lx!) as x » -o and

1-F(x) = (C1+O(l))xfah(x) as x - «, oo (2.2.4)

where h(x) is a slowly varying function, and d; and Cq
are constants depending upon the parameters o, B and C,

with the condition that d,+Cy> O.

Further, if F belongs to the domain of attraction of
a stable law then By = n"*h(n), where h(n) is a slowly

varying function. More precisely, Bp can be taken to be
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the largest solution of the equation

n J u’dF(u) = By, O< as 2. ...(2.2.5)
lul=Bp

Bn, can be replaced by other sequences Bp* with lim, ., o

Bn*/Bp = 1.

Definition 2.2.3: A d.f. F {(or r.v. X) belongs to the
domain of normal attraction of a stable law Gy g if the
d.f. of sum Zp in (2.2.2) weakly converges to Gy,g with
Bpn = Cn}/a.

Remark 2.2.4: When a d.f. F belongs to the domain of
normal attraction of a stable law G with index o, we

denote this by F e Dyp(a).

Definition 2.2.4: A d.f. F (or r.v. X) belonging to the
domain of attraction of the stable law Gyg,g but not
belonging to the domain of normal attraction of the
stable law Gy, is said to belong to the domain of non-

normal attraction of the stable law Gy g-

Remark 2.2.5: When a d.f. F belongs to the domain of non-
normal attraction of a stable law G with index o, we

denote this by F e Dyyp (o).

Remark 2.2.6: The domain of attraction of a stable law

with index o, denoted as Dp(a), is defined by Dp(a)
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Dyp () U Dynp (@) .

Theorem 2.2.4: A d.f. F (or r.v. X) belongs to domain of
normal attraction
(i) of the standard normal law &(x) iff EX°< o, and

{ii) of a stable law Ga,ﬁ(x3 with a< 2 iff

F(x) = (d7+81(x)) 1x1™® as x » -

1-F(x) = (d+S5(x))x¥ as x » «, ... (2.2.8)

where di, do are constants depending on the parameters of
the stable distribution in such a way that dj+dpz 0 and

Si(x) » 0, 1 =1, 2.

Following is a consequence of the above Theorem.

Theorem 2.2.5: If a r.v. X belongs to the domain of

attraction of Gy,g then ElX|%< o & 0s 8< as 2.

Remark 2.2.7: For the proof, see Gnedenko and Kolmogorov

(1954, p.179).

If a d.f. F belongs to the domain of attraction of a
stable law G, then the structure of the c.f. f
corresponding to d.f. F can be characterized in the

neighbourhood of origin as follows:
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Theorem 2.2.6: In order that the d.f. F with c.f. £f(t)
belongs to the domain of attraction of the stable law G
with c.f. g(t) at (2.2.1), it is necessary and sufficient

that, in the neighbourhood of the origin,

logf (t) = iut-CltI®h(t) (1-iB sgn(t) wit,a)), .. (2.2.7)

where | is a constant, and h(t) is slowly varying as t -

0.

Remark 2.2.8: For the proof of this Theorem, see

Ibragimov and Linnik (p.85, 1971).

2,3 D.F.S5 IN THE DOMAIN OF NORMAL ATTRACTION OF A NON-
NORMAL STABLE LAW (FURTHER PROPERTIES):

Throughout this section we suppose that a d4.f. Fq of
r.v. X7 belongs to the domain of normal attraction of a
stable law Fy of r.v. Xg with index «, 0< a< 2. Here we
study the behaviour of tail function, tail sum function
and that of the truncated moments of the d.f.s Fyx, k = 0,
1. Throughout the thesis we shall let ¥ = 1/«.

Further, we assume, without any loss of generality,
that _mfmudFk(u) = 0, k = 0, 1, whenever such an integral
exists. Also, vi(.) and wig({.) will denote the p.d.f. and
c.f. corresponding to the d.f. Fx, k = 0, 1, in this

section.
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Lemma 2.3.1: For k = 0, 1, and a r.v. Xx with d.f. Fy, as

z » o, we have

{i) zaRk(z) = zaP(§Xk1> z) o ck>0; o (2.3.01)

(ii) whenever 0< a< 1,

§luldFy (w) = o0(z!"%); .. (2.3.2)
lul=z

(iii) whenever o = 1,

S luII/ZdFk(u) = 0(z'? .(2.3.3)
lul>z
and

J u?dFk(u) = 0(z); .. (2.3.4)
lul=z
(iv) whenever 1< w< 2,

Foluldr, (u) = 0(z'™) ...(2.3.5)
lulsz
and

5 uzdFk(u) = 0(z7%Y. ... (2.3.6)
lul=z
Proof: Since Fig, k = 0, 1, belongs to the domain of
normal attraction of F,, Ryg{z) = O(z—a) as z - w. Simple

calculations involving integration by parts and the

relation Rk(z) = 0(z% then lead to the results given

above.n

For each positive integer n and real number x, we
define, for k = 0, 1,

T itu

ag nlt,x) = et Uary (u), co.(2.3.7)
ful=lx|n?
Bx,n(t.,x) = wi(t)-ax, nlt,x), ...(2.3.8)
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Ag nlt,x) = {ak'n(tn—w,x)}“, ... (2.3.9)

Bk nlt,x) = {we(tn %) }“~{ak'n(tn’7,x) 3"

= T [’I}] {og, n(tn™7,%) )" {Bg n(tn 7, %)} ...(2.3.10)
r=1

The following result is given in Basu and Maejima (1980).
This result being crucial for our further study we

present it for completeness.

Lemma 2.3.2: Suppose that an absolutely continuous 4d.f Fj
is in the domain of normal attraction of a stable law Fg
with index o, a< 2 (and in addition strictly stable for
0< a =1). There exist positive constants £, c¢ and Cq such
that for k = 0, 1,

-clt|&

18, _(t,%) s Cre .. (2.3.11)

v

for all t with |t[= en’, all x with [x|z 1 and all large

n.
Proof: We first observe that by the lemma in Gnedenko and
Kolmogorov (1968, p.238), there exist positive constants

€ and ¢ such that, for |tl= ¢,

- o
lwy (£ 15 e TEIS, .. (2.3.12)
Therefore, for sufficiently large n,
- - o
lw, (tn ) 1Ps ecltl .(2.3.13)

for all |ti=< en? for k = 0, 1.

Therefore, for all t with |ti= eny, all x with x|z 1 and
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sufficiently large n,

IAg nlt,x)|= I{wk(tnww)}-{Bk,n(tn-v,x)}t"

A
[ e -

{2} lwie (en” ) 1T IRk pltn ¥, x) 1
o]

r

1A
[ag 1]

- g r .
{?}e clel®a NP (Xl n?) )T, using (2.3.13)

r=0

IA

2 r it % cer ~-r .
¥ (n/rl)e e Cqin , using (2.3.1)

r=0

-C|t{a n
e

¥ (ne®®(cin™)) " /xt
r=0

éwitia_n

IA

IA

Cq

In addition to the assumptions made at the beginning of
this section, we make some or all of the following

assumptions in the following lemmas.

(1)
[Al] Fx, k = 0, 1, are absolutely continuous and Fp (u)

»*

= Vi (u).
(2] 5l vy () v (u) lduc o,

[A3] The d.f. F, € Dypla) and Fy is stable with index a<

2. In case 0< a= 1, F, is strictly stable.

[A4] Z = {(t, n, x): ltis= eny, nz ng, Ixlz 1} where € is

as determined in Lemma 2.3.2 and ny is large.
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[A5] @ = {(t, n, x): itl> &, nz ng, x|z 1} where € is as

determined in Lemma 2.3.2 and ny is large.

The following result is stated in Basu, Maejima and Patra

(1979) without proof. We prove the result.

Lemma 2.3.3: Under the assumptions [Al], [A2], [A3] and

[A4]}, for all (t, n, x) € Z, we have,
Hog,n(en 7, %) )" = {ag, n (07, %)}

1-([01+1} Y -Cltla
= n P(ithe ... {2.3.14)
for r = 0, 1, 2, ..., n.

Proof: Write {og pn(tn™?,x)}" " -{ag pnltn ¥, x) )"

1

= oz, n(tn™, %) }-{ag,n(tn"?,x)}]

n-r -
k§1{°‘1,n(tn 7 %)

}n—r-k{ao’ a (tn"'a’lx) }k'-l

= {n[{al’n(tn"w,x)}-{agln(tn_w,x)}}}

10T

(577 fog, m(en ™7, 20 )7

g, nltn"?,x) }*}

= I1I5, say. ... {2.3.15)

Estimation of Ijy:
Congsider the case 0O< a< 1.
Note that, in view of (2.3.7}),

I = itun™?
1 = nl‘<||nwe d(Fq (u) -Fg (u))
Uj={x
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(e 1)d(Fy (u) -Fg (u))

B 11|U(£|x|n7
-n [ d(Fq{u)-Fglu)).
lul>1xln? 0

Therefore,
IT11
=n L lwltun"’l]v;(u) v (u) 1du
. J lvi(u)—va(u)ldu

lul)lxln'a’

1~ * -
=n “ltl [ fullvq {u) ~vg (u) [du

ful=]x|n?¥

S A PR lul Ivy (1) -vg (u) Idu
ful> [x|n?

1A

n" el SPlullvy (w) -vg (w) 1du
~ 00

n'?

I2lul vy (u) -vg (u) [du

nTp(1el),

A

by the hypothesis of the lemma.
Now, consider the case a = 1.

ttun”!
d(Fq (u) -Fg (u})

lul=|x|n

n f cos (tun™) d(Fq (u) -Fg (1))

il

n [J (cos (tunq)~1)d(F1(u)~Fo(u))

lul=]x|n

n
ful>fxin

23
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Hence,

IT90s 0§ ((tun™)?/2) Ivq (u) -vp (u) Idu

ful={x|n

Lor d®lvi (W) -vg (u) 1du

..2 -
+i{x] "n
lul>ixln

1A

nt(£3/2) 2 a®) vy () -vg (u) ldu

™ ["WP V] () -vg (u) [du
-0

1A

ntep(itl), ...(2.3.16b)

by the hypothesis of the lemma.

Finally, consider the case 1< o< 2.
Again note that in view of (2.3.7)

ftun™

Y
I+ = n e d(Fq (u)-Fp(u))
LT el Exn? 1 0

ftun”

=n S (e 7*l—itunf7)d(F1(u)~F0(u))

+n J _d(Fp(u)-Fg(w)+itn'™? 5 ud(Fq (u)-Fg(u)).
ul=[x|n?¥ lul=|x{n?¥
Therefore, in view of the assumption of finiteness of

fmiui[“]+1lvz(u)*vg(u)ldu, we have

-0

Tl=n L ,’((tun'v)z/Z)Iv;(u)—-v;(u)idu
* k3

+nhdflﬂnvlv1(u}—vo(u)ldu

feln™ W/l v () -vs (u) 1du,

iu[)lxlnw

because EX, = EX5 = 0.
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< n'"?¥ (t%/2) J‘muzlv;(u)—v;(u) fdu

-2 _1-2
~

+1x| U vy () -vg (u) [du

Ax17 e P03 v () -vg () 1du
-0

= 0" p(1t)). ...{(2.3.16¢)

Thus, in general, we get from (2.3.16a), (2.3.16b) and
(2.3.16cC),

nl—({ali-l)'lp (

[I11= ltl), for all t. ...(2.3.16)

Estimation of I3: Note that, in view of Lemma 2.3.2, we

have

IT51= 10 % {ag nlen %) )" *{ag, (a7, x)
k=1

1A

- n-r - o _ _ o _
n! k);l {Cqe clt] }(1 (r+k)/n){cle cltl }((k 1)/n)

-1

- G nor | _(retd/m_ClE]%((re1)s
n Clecstl (r41d/n CIE Y Ur+1)/m)

Cy

]

~clt | ni" c*ecetm)

A

-1
n Cqe
1 k=1

¥

- o
e CIEI® eor jti= en?. L (2.3.17)

=C1

Combining the estimates of (2.3.16) and (2.3.17), we get

1—([a1+1)7P( —Cltla

1T1,I51s n ltl)e a

Next we define two functions.

it

dp(t,x) = nl{ay nitn™ ¥, x)}-{ag n(tn %, %)} .. (2.3.18)

-1
n
k

Splt,x)

[(Re |-

{3 nlen 7,50 )" {ag nen™7,x0) }7.
1

oo (2.3.19)

25



In what follows, Lemmas 2.3.4 - 2.3.6 give bounds on the

functions ap(t,x), dplt,x), Splt,x) and their first and

second derivatives with respect to t.

Properties of the function dp(t,x)
Lemma 2.3.4: ‘Under the assumption [Al], [A2] and [A3],

for all values of t, x with |x]z 1 and large n, we have

(1) whenever 0< a< 1,

ldp (t,x) |= nl‘?Pl(itl), ... (2.3.20)
it (e,x) i= c,n'?; .. (2.3.21)

(ii) whenever 1s a< 2,

ldn (£, %) 1= 07p, (1t1), ... (2.3.22)
ey (t, %) 1= n1‘2’P3(|ta), ... (2.3.23)
a8 (t,x) Is con'™??, ... (2.3.24)
Remark 2.3.1: Although in the assumptions a = 1 is

clubbed with interval (0, 1), while discussing most
properties, we notice that the case of a = 1 can be
clubbed with interval (1, 2). Further we need second

derivatives of certain functions in the case of o = 1 as

well.

Proof: Note that Iy of Lemma 2.3.3 at (2.3.15) is
dp(t,x). Therefore, from (2.3.16), we have ldp(t,x)! =
nx-(m}n)w

[Iq1l= P(it]), O< wa< 2 and (2.3.20) and

(2.3.22) are proved. Now it remains to prove (2.3.21),
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(2.3.23) and (2.3.24).

Consider the case 0< o< 1. Here

{1

ftun~ ¥

dn (t,x) = (d/dt){niﬂi‘ﬂnwe d(Fq(u) -Fg(u))}

) 1_%tu[ﬁlxlnafuem“_ar‘i‘(Fl(u)-Fo<u>): using DCT.
Hence,

lagt (e, x) 1 = | (d/dt){n{u!:‘l;lx‘nye“qu('ﬁ'l (u) -Fg (u)) }H
=07 5 Jullvi () -vg(uw) ldu

1A

i

lul =[x |n?
1-7 © » .
n tullvy (u) ~vg(u) idu

Clnbw, using the hypothesis of the lemma.

This proves (2.3.21).

Now consider the case a = 1.

ayt (e, %)

It

fl

(a/dt){n  § = cos (tun )d(Fq (u)-Fs(u))}

fuls|x|n

J u sin (tun')d(Fq(u) -Fg(u)), using DCT.

fulsix(n

Hence,

1ag® (£, %) |

IA

1A

i

W ,‘ulttuaniVE(u)-v;(u)Idu, since |sin(x)/x|< 1.

ltin™  fPu®ivy (u) -vg (u) Idu

n"'P(lt]), using the hypothesis of the lemma.

Thus, (2.3.23) is proved for a = 1.
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(2)

ldn™ (t,x) |

l(d/dt){—l |£ u sin(tun™)d(Fq (u) -Fg (u)) }i

In

1A

| J  u.un‘cos(tun ' )d(Fq(u)-Fg(u))|, using DCT.

lul=lx|n

n fPu?lvy (u) -vg (u) 1du

A

using the hypothesis of the lemma, which proves (2.3.24)
for ¢ = 1.

Finally we consider the case 1< a< 2.

Observe that

(1)

dpn (t,x)

-(@/aern £ are“““'“’duvl(u)-Fom);

- ~¥
=n'?  r _ue'™™'4a(Fq (u)-Fo(u)), using DCT.
lul={x|a?¥
Therefore,
lag" (&, x) |
- an=¥
= n'? u(e™™ L1y d(Fq (0) -Fg (w)) |

' p _ud(Fy(u)-Fg(u)) |, because EX; = EXg = 0.
bal> Ix]n?

1A

n'# e [fu?ivy (W) -vg (u) ldu
-~

1-—27Ix|-—1

+

©w 2 * *
n Ju%lvy () ~vg (u) Idu

nbeVP(Itl), which establishes (2.3.23).

1A

The inequality at (2.3.24) can be proved similarly.o
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Properties of the function op(t,x)

Lemma 2.3.5: Under the assumptions [Al] and [A3], for

each fixed n and x, otn('c:n“"7

,x} is differentiable any
number of times under the integral sign. For all values
of £t and x with Ixiz 1, we have, for k = 0, 1,

(i) whenever 0O< a< 1,

(1)

1-X_¥-1
lag, n n?

(tn” ¥, x) 1= Cq x| ; ...(2.3.25)

(ii) whenever 1= ac< 2,

I“k,x(ml)(tnq,x) |= n“Pl(!tl) ...(2.3.26)
= ¢X32—an7“1P1(ltl), .. (2.3.27)
l“k,x(12) (en™ ¥, %) 1= cp1x1* %™ .(2.3.28)

(iii) If, in addition to assumptions [Al1] and [A3],
Jmlwl(t)ﬁdt< w, for an integer pz 1, then, for all x =

-0

0, O0< a< 2 and every sufficiently large but fixed integer

s, there exists a constant C such that for k = 0, 1,

Sl p (e, x) 1 de = o@™) ... (2.3.29)
STl (e, x) 1*¥des © ... {(2.3.30)
3 1Bk, n (£, x) 1*Fat= c. ... {2.3.31)

Proof: Consider the case 0< o< 1.
Note that iaéfﬁ(tnﬁy,x)l

=ita/ae) [ e'aFcil, o 7|

lul=1x|n? tn

-
=lll£|| ?uei“m dFi (u) |, using DCT
uj=|xXin
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I | luldFy (u)

=lu|5!x n?

=0(1x|7%n"™)

< Cllxll—aan’
using (2.3.2) of Lemma 2.3.1, which proves (2.3.25).
The proof in case of a« = 1 is as follows.
Note that qu(cfr)l(tn'l,x)l
=} (d/dt) " £ i} ncos(tu)dFk(u) R 3N
=|- §  usin(tun”')dFy (u) |
lul=]x}|n
= T [lullsin(tun™) / (tun-?) | {tun ' |dFy (u)
ful=lx|n
=nllel . |[u’dFk(u), since |sin(x)/xIs 1
ful=lxln
= n 't} O(ixin), using (2.3.4)
= ix|Pp (Ith).
For the case of 1< a< 2, we split the term
{5 _ue'™ aFy (u) | as follows:
Jul={x[n?
-7
boog ue™ Tdrg (u) |
lal=xln? k
-7
= uEe™™ Ny arcw e+ f 0 _udFi ()|
lul=[x[n? ST S
-y 2 xtun_w ’
= |tin J u"dFk (u) + J fulte -11dFy (u)
{ul$n7 n7<iu!5{xfn"r
+ [uldFy {(u)
ful> [x]n? k
s ltin™? 5 vPaFcu) + 3§ luldFy (u) ,
[ul=n? lul>lx|n?
ttun~ ¥
as le
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Now using (2.3.5) and (2.3.6) we obtain the desired
results. (2.3.27) follows from (2.3.26) since |x|z 1. The
proof of (2.3.28) is also similar and needs no
modifications.The proofs of (2.3.29), (2.3.30) and
(2.3.31) are on the 1lines of S$mith and Basu (1974,

p.370) .o

Remark 2.3.2: Although (2.3.26) is sharper than (2.3.27)

we mention it because of its utility later.

Properties of the function Sp(t,x)

Lemma 2.3.6: Under the assumptions [Al], [A3] and [A4],
for all (t, n, x) € E, we have

(1) whenever 0< a< 1

o
-Clt

ISplt,.x)I=s Cq , ... {2.3.32)

(1)

o
1550 (£, %) I= cplx|t %eClt;

i ... {2.3.33)

(il) whenever 1= a< 2,

o
IS, (t,x) = ce it ... (2.3.34)
(1 2-0 —clt!a
ISp " (£, x) = Ix]" e Py (1tl), ...{2.3.35)
o R
1342 (£, %) 1= 1x17 %1 by (el ...(2.3.36)

Proof: Observe that for r = 0, the quantity I; of Lemma
2.3.3 is same as Sp(t,x). And, therefore, using (2.3.17},
we obtain (2.3.32) and (2.3.34). Next, in order to obtain

(1) (13

an upper bound on Sy (t,x)|, we find S (t,x).
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= 07§ {ag nlen™?,x) 1" (k-1) {ag, n (tn 77, x) }FP

{aélﬂ(tn 7, x)n?

+nngi(n—k){al,n(tn'?,x)}"th{ai Jen™?,x))

{ao,n(tn*v,x)}bdn"v

(1)

1
= 85 (1)

(t,x,1) + 8Sp (t,x,2), say. . (2.3.37)

Observe that, in view of the techniques used at (2.3.17)

and (2.3.37), we have

Isgt (t,x,1) 1
-1 R - - - -

=0 ¥ oy, n(en™ ¥, x) 1" (k-1) lag, pn (En” 7, x) 147

k=2

lag n(tn™ ¥, x) In™?

¥ D -y n{l-k/n} -7 n{{k~2)/n)
= rlag nlen %, x)] fag, nltn °,x) |

k=2

lag i (en™, x) |

- - o - -
1 wcle(ﬂtl ngxlxanwl

=n , using {(2.3.11) and (2.3.25).

—cq x| (2.3.38)
Similarly it can be shown that

1587 (£, x,2) = Cplxi eIt . (2.3.39)

Now, (2.3.33) follows from (2.3.37), (2.3.38) and
(2.3.39). Inequalities (2.3.35) and (2.3.36) in case of

1= a< 2 can similarly be proved.o
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Properties of the function Ak'n(t,x)

Lemma 2.3.7: Under the assumptions [Al], [A2], [A3] and
[A4], for all (t, n, x) e E, there exist polynomials
Py (.) and P5{.) in [tlsuch that, we have the following:
(i) whenever o< a< 1,

|A1p (£, %) -Agp (£, ) |= n*’e*”"apl(stl), .. (2.3.40)

1a15) (£, %) -ASh (£, %) |

= lxll_anlﬂwe—chsak"z(!tl); ... {2.3.41)

(ii) whenever 1= o< 2,

1-2y _-clt|&
LI it]

IA1n(t,x)-Aopn(t,x)Is n P, (el ... {2.3.42)
a5 (0, x)-a8y (£,%) 1
s xRt ey, . (2.3.43)

Proof: In view of (2.3.18) and (2.3.19), we observe that
Aln(t,x)“Aon(t,x) = dn(t,x)Sn(t,x)‘ ...(2.3.44)

On differentiating the above identity on both the sides
with respect to t once or twice according as 0< a< 1 or
1= < 2, and then using the estimates of dp(t,x), Sp{t,x)
and their first and second order derivatives from lemmas

2.3.4 and 2.3.6, we obtain the desired results.o
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Lemma 2.3.8: Under the assumptions [Al], [A3] and [A4],
there exist polynomials Pq(.) and P3(.) such that, for
all (t, n, x}) € E and k¥ = 0, 1, we have

{1) whenever 0< a< 1,

- - o
AR A (E, %) 1= Cplxl'™%e clel®, ...(2.3.45)
(ii) whenever 1= a< 2,
- o
g h (e 1s e % (e ... (2.3.46)
- - o
< x> % clt] P, (ltl), ... (2.3.47)
(23 2-00_-cle|%

A n(t,x) 1= 1x]" Te Pz(!tl). ... {(2.3.48)
Proof: Note that IARA(t,x)| = |(d/dt){ak, n(tn™?, x) "

[nl'v{otk rl(t‘.rf")(,x) }"”1{a}({1;1(tn'7,x) b

1A

1-7 -¥ n{1-({1/n)) (1 -7
n' ey (en x| 1aklgtn %) 1

1A

- - o, (1. - -
ol V{Ce cltl }(1 (1/“))C1|x|1 anq 1

using (2.3.12) and (2.3.25)

~c|t] “C-1/nn1-—'a‘ec lt 1 %m 1-0

7

Ce Cq Ix|

1-0f -cftl(x
e

A

Cqixl , which proves (2.3.45).
Results for the case 1= a< 2 can be proved exactly on the
same lines.o

The following result is due to Smith and Basu (Lemma

2.4, p.370, 1974).
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Lemma 2.3.9: Under the assumptions [Al1], [A3] and [AS5],
let e> 0, and let ng, be a fixed integer. Let ugx =

suplax n(t,x)|. Then 0= pyp< 1.
C)

Proof: First of all note that py can not be greater than
unity. If possible let pux = 1. Then, there must be

sequences of reals {tp} such that tp> to, and {ypn} such

that yp - «, with the property that J‘y"e“““v;(u)du N
Yn

1 as n - o; here v}’; is the p.d.f. corresponding to

d.f.Fx, k = 0, 1. But, since v;;(u)du - 0, this
ful>y,
implies ¢x(tp) -» 1, k = 0, 1, as n -» w»; here pi(u)

represents the c.f. corresponding to 4.£.Fk, k = 0, 1. By
the Riemann-Lebesgue Lemma it follows that {tp} is a
bounded sequence for otherwise ¢r(ty) -» 0 as tp - «. Thus
{tn} must have a finite 1limit point t*, say, and
continuity of ¢r(t) then requires gok(t*) = 1. But we have

t*> ¢ and are forced to the contradiction that Fi(x) is

lattice.no

Properties of the function B n(t,x)

Lemma 2.3.10: Assume that [Al]}, [A2] and [A3] hold. Let
g{t,x) be a complex-valued continuous function such that
lg(t,x) 1= max(1l, clxI * for all x with Ixta‘l and for
all t. If we have _wfm!wl(t)lpdk » for an integer p=z 1;

then
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| mJm{Bltn(t,x) - Boln(t,x)}g(t,x)exp(~itx)dt!

=1x| %0 (ni-ta1+1)7) ... (2.3.49)

Proof:; We shall prove the result for the case 0< a< 1.
The other case 1= a< 2 follows analogously. In view of

(2.3.11), we have

-wfm{Bl,n(t:x) - Bo,n(t,x)}g(t,x)exp(-itx)dt

; {gl}_wf”{al,nctn-m 1™ By, p (en¥, ) )

J=1

n{ao,n(tn—w'X)}nﬂ{Bo,n(tn-V:X)}jg(t,x)exp{~itx}dt.

...{(2.3.50)
Split the summation in (2.3.50) into three parts as Zl +
22 + 23 where Zl is over the range 1= j= [n/2], 22 is
over the range [n/2]+1ls j= n-2s and 23 is over the range
n-2s+l= j= n; s being some fixed positive integer with n

> 6s for n large. Then denoting

{al,n(tn—'x,x)}W‘j{Bl,n(tn“‘r,x)}J

~{ag,n(tn" 7, x) }*{Bo, n(tn" ¥, x) }

= W(t,x,n), we have the right hand side of (2.3.50) given
by

-0

Fﬂ SPWit,x,n)g(t,x)exp(-itx)dt|

= lzl(‘7‘]_mJ“""W(t,x,n)g(t,x)exp(-itx)dt

J
}wmfww(t,x,n)g(t,x)exp(-itx)dt
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= IJl(x)+J2(x)+J3(x)l, say. ...{2.3.51)
Write

Jl(x)

=1L {Ijl]-wfm{"‘l,n(tnﬁ'” 3o
{{Bl,n(tn“?rx)}j“{Bo,n(tn_y,x)}j]g(t,x)exp(—itx)dt
+21Eﬂ”dfﬂﬁo,n(tn”7,x)w

[{og, n(tn,x) 1" - {ag n(tn™7,%) )" lg(t,x) exp(-itx)dt

= J11 (xX)+J19(x), say. ...{(2.3.52)

Let us first consider Jq71(x). In view of assumption [A2],
we notice that, for 1= j= [n/2] and [xiz 1,

1{B1,n(tn"?,x) })-{Bs,n(tn 7, x) }|

1B1,n(tn" 7, %) -Bo,n(tn 7, x) |

3 _ -1 _ i-1
' T {B1,n(tn 71X)} {Bo,n(tn x|
i=1
itun~ ¥
= | J e d(Fq (u) -Fg(u)) |
¥
fulz{x]n
) ¥ ¥
T {Ry (xin’) P H{Rg (IxIn") }

1=1

- v
{x1™n " J _1ul1vy (W) Vo (w) ldu]
lulzfx|n

1A

[j(Czlxﬂ“anfl)yd], using (2.3.1)

A

c, 1x17n75 (cp/m) ™ ...(2.3.53)

Using Lemma 2.3.6 and inequality at (2.3.53) and the fact

that ig(t,x) = max(1, clxl—a), we have for large n,
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IJll(x)l

1A

I {ﬂ %1073 (ca/m) 7 _fPleg pled™?, %) 1M ae

(1+Clx!™®)

(n) -
Sleixi™n 5 (cp/m) T STl (en”7, %) 1M de

1A

C1 2%,

\
~

1A

c1 I, |2 feixi™n 3 (ca/n)a?_ fMlag, q(e,x) 1Mde

\
r

A

JJ

n'l

]

J

1 I, ;‘ clxl™n?j (cp/n) 0¥ _flay gt 27x) 1M,
2

. J

using (2.3.7)

1A

I (?Jclxl'ln"?’j (Cp/m)’™

o1 1-¥
cixl™n °, ...(2.3.54)

1A

the last but one inequality follows as a consequence of
(2.3.29).
Now let us consider Jjg(x)

le(x)

= Zl [?]_mfm{go’n(tn"’,x) }j
({ag, n(tn™ 7, x) 1" - {a, n (tn 7, x) }" g (t, x) exp (-itx) dt

= Zl[?] J {Bo,n(tn-'xvx)}j
ltlsen7

[{al,n(tnww,x)}”1—{ao,n(tn—7,x)}”1]g(t,x)exp(-itx)dt
+El{§} 5 {Bo,n(tn—wtx”j
s

fti»en

[{alln(tnuv,x)}”q—{ao,n(tn_x,x)}md]g(t,x)exp(~itx)dt.

...{2.3.55)
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By Lemma 2.3.3,

- o~ - n-}
I [{ag,nltn ¥ ox) 3t {ag,nltn 7,x)} “1g(t,x)
it]sen?

exp{-itx}dt

= o(n'®) ...(2.3.56)

because 1= j= [n/2]. Now we shall prove that the second
integral in (2.3.55) is of the order om'?y.

Note that for each j, 1= j= [n/2], o< m=< n-j-1

) i

lag n(tn™?,x Mog pitn ,x) 1"

= log,n(tn”?,x) 1™ ... (2.3.57)
where q = 0 ... if [n/4]+1= m=s n-j-1
=1 ... if 0s m= [n/4].

And from the integrability of lwqﬁﬂ]p, pz 1, g = 0, 1
and (2.3.31), it follows that for all large n and some

fixed h> 0, the right hand side of (2.3.57) is integrable
¥

in the range lt|> en”’ and

Sl ag,nttn™?, %) 1™ aes cu™ o7 (2.3.58)
lt.|>£2n"y
where u = nmx{uo,ul}; and {s and p; being defined as in

Lemma 2.3.9.

In view of Lemma 2.3.9, then (2.3.57) and (2.3.58) imply

that

I 5 o, ntn 7, %)} - {ag,n(tn" 7, x) "]

Iti>en7

g(t,x)exp{-itx}dt|

n- -1 - n-j~m-1 -¥ m
=2} J lag,nltn °,x)| lag, nltn °,x)"dt

=0
™20 I>en?
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n-j-1
=2¢Y [ ,’Iaq,n(tn'?',x)l
m=0[t|>en

[n/4]dt

= o(n'?). ...(2.3.59)

Therefore, using (2.3.56) and (2.3.59) and Lemma 2.3.1,

we now have for all ixlz 1,

< A Tn (Do 3 ¥

lle(x)l- Cn Zl[j]Ro {(IxIn®)

< Clx|™*n'? ... (2.3.60)
for all large n.

Using (2.3.52), {(2.3.54) and (2.3.60) one gets

IJl(x) = clx]™®*n*?, for all large n. ... {2.3.61)

Again because of (2.3.30) and Lemma 2.3.1, we have

13, (x) 1= £, [‘3‘} Ry Uxin®) P 1®leg, p(en™, %) ("t

+ {R UxIn") ) Plag, o (en™,x) 1™ ae}]

1A

I [;1] [{Rq( IxIn?) }J_mj‘mlal,n(tnq,x) 1*dt

+

(R, Uxin") ) 1®lag, o (en™, %) 1*ae}1n?

1A

cz, E’} [{R1 UxIn®) } + {R_(Ixin?)}1n”

cixl™@ o (n'?y, ...{(2.3.62)

A

for all x with |x|z 1.

Finally, we consider the estimate for J3(x). Observe that

for n> 6s and all x with x|z 1, we have
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105 (x) 1= I, m [{Ry (IxIn") } 7% 51g1, p(en™,x) 1®at

+ {Ro(lxlnw) }"Zs_mfmlﬁo,n(tn'w,x) 1%%dt]

A

I, E‘] [{rRy (Ixin®) 17 + (R (IxIn?)} 7107,

using (2.3.31)

-G 65-n-1
Clx] " n™®™

A

-0

A

Ix1 % (n*7) . ... {2.3.63)

The lemma now follows immediately from (2.3.61), (2.3.62)

and (2.3.63).o

Lemma 2.3.11: Under the assumptions [Al] and [A3], we
have, for all the values of t, all x with Ixlz 1, and n
large,

{Bk,n(t,x) = CIxI™¥, for k = 0, 1. ...(2.3.64)

Proof: Using Lemma 2.3.1, we get

B, n(t,x) s 3 Hlak,n(tn“’,x)s“‘“:ﬁk,n<tn‘7,x>s“
h=1|h

¥ nP{1-F (IxIn?) +F (- 1xIn?) }*/ht
h=1

iA

clx|™.a

1A

Lemma 2.3.12: Let €> 0 and ¢> 0 be as same as in Lemma
2.3.2. Under the assumptions of Lemma 2.3.3, we have

"““MWP(! —Clt!a

{wy (en™?) }"-w_(t) I= n tle ...{2.3.65)

for all (t, n, x) ¢ E.
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Proof: We prove the result for the case 0< a< 1; the case
1= a< 2 can be similarly proved.

In view of equations (2.3.10) and (2.3.40), we have

[{wy (en™") ) -w_(€) |

=1 {wy (en™?) }"- {w_ (en™) }")

1A

[A1n(t,x) ~-Agn (t,X) |+IByp(t,x) -Bop (t, X) |

o
n'7py (1t eIt 4By (t, %) ~Bop (E, %) 1. ...(2.3.66)

1A

Hence, in order to establish (2.3.65), it is enough to

prove that

1-7 -dtla
IBip(t,x) - Bpplt,x)I=n" ‘e Po(ltl). ... {2.3.67)
We, therefore, consider

n

<L [ ]Ial n(tn™ %, %) 1"™181 n(tn™ 7, x) 1™ {Bo, n (tn™ 7, x) }"I
=1

) Umo alen™ ¥, %) |

{ag,n(tn™ 7, %) }" ™ {ag, n(tn" 7, x) )™

=T1pn (x)+Top (x), say. ...{2.3.68)

We first estimate T3, Consider the quantity

I{Bl,n(tn_w,x)}m - {Boln(tn_w,x)}ml

ttun~¥

=1 5 "™ Ta(E () -Fo (W) |
Jul> |x|n
m—-1
| T {81 n(tn ¥, x)}" ™ By ntn™?, %)}
h=0
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T 7(e“"“"~1>d(F1<u)-Fomna
lul>x|n

T A(Fp () -Fglu)) | {micix!™ ™)™y,

ful>xIn
using (2.3.1)
s {leln”? f lullvy (u) -vg (u) 1du
Jul>|xin
+ J 'JIV; (u) -vg (u) [du} {m(cix|™n™) ™}
Jul>ixin
=4t [ul vy (u) -vg (u) Idu
*ul)fx!n
Ax1™0 p 0 julivy (@) -vg () ldu} {miclxi ™ ™
luf>!xln
= Py (1tn™? {m(cixI™ ™)™}, ... (2.3.69)

Last inequality follows from the assumption [A2].

Therefore, using (2.3.11) we get form (2.3.69),

m=

Ty = % ﬁj {Ceqﬁtt“}uﬂvm P(!tnrf7{m(chd'and)“4}
1

s Ce'c!tlan(ltl)n“w § (n"/m!)

m=1

—mm_Cmllt | m-1, -0 1-
ne m l I n cm |Xl n m

C m
it - -
< ce B % (e § (0™ ((m-1) 1)
m=1
< 1% (1ennt . ... (2.3.70)

Now direct use of (2.3.14) of Lemma 2.3.3 and the fact
that IBon(tn'V,x)!S {1 - Follxin®) + Fo(ixin?)}, give us

Tons e 8%, (1o n" 7. o (2.3.71)
Combining results (2.3.68), (2.3.70) and (2.3.71), we

obtain (2.3.67).no
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CONCLUDING REMARKS:

In this chapter we have discussed several results
under the assumption that the limit law is non-normal
stable (and strictly stable in case of 0< a< 1). These
will be used with slight modifications in Chapters 5 and
6. It was assumed that the d.f. Fi of the summands X4 is
in the domain of normal attraction of stable law here. We
shall be relaxing the condition of normal attraction in
Chapter 4 (but consider some special cases). In Chapter

3, we sgshall discuss the case where the 1limit law is

normal.
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