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4.1 Introduction

The problem of controllability of nonlinear systems described by ordinary differential 
equation in finite and infinite dimensional spaces has been studied by several authors. 
Naito and Seidman [106] studied the invarience of approximately reachable set under 
nonlinear perturbation whereas Yamamoto and Park [136] discussed the controlla
bility of parabolic systems with uniformly bounded nonlinear terms. Recently, Bal- 
achandran and Sakthivel ([26],[25]) studied the controllability of integro-differential 
systems, also with delay term. Here our aim is to study the controllability of the non
linear integro-differential third-order dispersion system by using Schaefer fixed point 
theorem (refer [123]). The semilinear partial integro-differential system considered 
here in the abstract formulation arises in some of the applicable fields of engineering. 
This work extends the work done in Chapter 3.
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4.2 Hypothesis and Formulation of problem

Consider the nonlinear third-order dispersion equation

- = {Gu){x,t) + f(t,w(x,t), g(t,s,w(x,s))ds) (4.2,1)

On the domain t >0, t 6 [0,6] = J, 0 < as < 2tt, with periodic boundary 
conditions.

0*^(0, t) _ 9fc^(27r,t) A; = 0 x 2
9a:-fc

and initial condition 

where

dxk 

w(x, 0) = 0

(4.2.2)

(4.2.3)

{Gu) (x, t) = gi (*) |u(x, t) - J gi (s)u(s, tfds |
to .................. J

where gi{s) is a piece-wise continuous non-negative function on [0,2?r] such that
r2n

(4.2.4)

l9i}= l 9\{x)dx = 1 
Jo

and
f: JxRxR—*R is a continuous nonlinear function. Here the state ) takes 
vahies in a Banach space X with the norm ||.|] and the control function u(.) is given 
in L2(J, U), a Banach space of admissible control functions, with U = L2{0,27r) as a 
Banach space, g : A x X —> X, f : J x X x X —> X are nonlinear functions, where 
A = |(6, s); 0 < s < t < 6j and t € J = [0, 6].

Define an operator A with domain D(A) given by

D<A) = f. 6^(0.*) = ^-^*-0,1,2.}

such that

Aw
dzw
dx3

(4.2.5)

It follows from Lemma 8.5.2 and Korteweg-de Vries equation of Pazy[114] that A is 
the infinitesimal generator of a Co-group of isometry on U. Let {<&(£)},£ > 0, be the 
Co-group generated by A. Obviously, one can show for all w £ D(A),

(Aw,tc)L2(Qfln) = 0

Also, there exists a constant M > 0 such that

Sup{||$(i)[| :t € [0,6]} <M

(4.2.6)

(4.2.7)
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We know that system (4.2.1) is controllable on the interval J = [0,6] if for every 
W\ G X = L2(0, 27t) there exists a control u e L2(0,6; L2(0,27r)) = L2( J, U) such that 
the corresponding solution w(.,t) of (4.2.1) satisfies w(.,b) = W\.

We use the fixed-point theorem due to Schaefer [123] to obtain our main result.
We assume, the following hypotheses.

1. A is the infinitesimal generator of a Co-group of bounded linear operators 
<h(t),t > 0 in X. So there exist constants M\ > 1 and a e R+ such that 
||$(i)|| < M1 eat-,t>0,

2. The linear operator W : L?(J, U) —» X, defined by

Wu = [ $(6 — s)(Gu)(x, s)ds 
Jo

has an inverse operator W~l which takes the values in L2(J, C/)/ker W and 
there exists positive constants M2, Ms such that ||G|| < M2 and |[W-1|j < M3.

3. g satisfies earatheodory condition.
i.e. for each (t, s) € A, g(t, s,.) : X —> X is continuous and for each x € 
X, {?(., .,.r) : A —> X is strongly measurable.

4. / satisfies earatheodory condition.
i.e. for each t e J, f(t,.,.) : R x R —> R is continuous and 
for each x,y € X, f(.,x,y) : J —► X is strongly measurable.

5. For every positive integer k, there exists /?* € Ll(X, J) such that for a.e. t £ J

5UPM<*||/(*>tu(a:i*)> / 5(M>w(3:>’s))ds)I < hk{t)
J 0

6. There exists a continuous function q: J —> R such that

I / s))ds|| < ?(t)0(||te(a:,t)||); t 6 J,w e X
II Jo 11

where Q : [0,00) —> (0, 00) is a continuous nondecreasing function.

7. There exists a continuous function p : J —► R such that

i|/(f,,w>)ll < P(*)^(IH».*)||) + ||«||» * € J, w,v € X

8. $(t),t > 0 is compact.
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The system (4.2.1) has a mild solution of the following form

jf <$>{t-s)(Gu)(,,s)ds + £ $(t - 8)f(s,w(.,8), jo g(s,Tiw(.,T))Sjdrds 
'° ° (4.2.8)

In order to study the controllability of system (4.2.1), we introduce a parameter 
A € (0,1) and consider the following system:

= \{Gv){x, t) + A/(t, ty(a:, t.), jf g(tt s, w(x, s)j)ds (4.2.9) 

w(t., 0) = 0; A e (0,1), t <E J

For the system (4.2.9), there exists a mild solution of the following form:

w(x, t) = A J §(t ~ s)[(Gu)(s) + f(stw{x,s), g( s,T,w(xiT))drsj^ds

4.3 Controllability Result

THEOREM 4.3.1 If Hypotheses 1-8 are satisfied and also

C_, . , ds
/ m(s)ds < /  -------- ——J o Jo 1 -4- s -4- O(s)

where
fh.(t) — m,ax{a, M\N, Mi\p(t) + q(t)]|

and

N — MoM-t |wi|| + Mi f ea(6 s)[p(s) + q(s)]Q(s)ds
J 0

then the system. (4.2.1) is controllable on J.

Proof: Consider the space C — C(J,X), the Banach space of all continuous functions 
from J into X with sup norm.
Using the hypothesis (2) for an arbitrary function w(.,t), define the control 

u(x, t) = W-1 Wi
I ®(b- s)f(s,w(x,s),jQ g(s,T,w{x,T))dr)ds it)

We shall now show that when using this control, operator F : C —> C defined by

(Fw){x,t) = $(t-s)
Jo

(Gu){xts) + f(stw{xts)t J g(s,T,w(x,T))dr) ds
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has a fixed point. This fixed point is then a solution of equation (4.2.8). Clearly 
(Fw)(x, b) = Wi , which means that the control u steers the integro-differential system 
from the initial state to final state w\ in time 6, provided we can obtain a fixed point 
of the nonlinear operator F.

We shall prove that the operator F : C —* C defined by

{Fw)(x,t) - f m~i])Q{r})dr/,
Jo

where

Q(p) = GW-i w i
f $(b-s)f(s,v)(x,s),J g(s,T,w(x,T))dr)ds (rj) 

+f(v, w(x, rj), jT gfa r, w(x, r))dr

is completely continuous operator. 
Obviously,

\\Qm < m2m3 ||wi|| + Mi / e“(b S^hk(s)ds 
Jo

+ hk(?i)

Step-1 F maps Bk into equicontinuous family.

Let Bk — ju> £ C : \\iu(x, £)|| < for some k > 1.

We first show that F maps Bk into an equicontinuous family. Let w(.,t) € Bk and 
e J with e > 0. Then if, 0 < e < ti < 1.% < b,

||(Fw)(x,h) - (Fw)(.t,,£2)|| < / 1 ||$(<i ~V)~ Hh - *?)II||Q(??)II*?
“0

+ / WHh - v) - Hh - ??)IIIIQ(»?)P??
Jtl—€

+ f2 \mt2-r))\\\\Q{7})\\dri
Jtl

The right hand side is independent of ui(.,t) and tends to zero as (£2 — h) —* 0 for 
sufficiently small e, since the compactness of 4>(t), £ > 0, implies the equi-continuity 
in the uniform operator topology. Thus F maps Bk in to an equicontinuous family of 
functions. It is easy to see that the family FBk is uniformly bounded.



Chapter 4 46

Step-2 FBk is compact.

Since we have shown FBk is an equicontinuous collection, it suffices by the Arzela- 
Ascoii theorem to show that F maps Bk into a precompact set in X.

Let 0 < t < b be fixed and e be a real number satisfying 0 < e < t. For w(., t) E Bk, 
we define

(Ffw)(x,t) = [ - Tj)Q(r))dq
Jo

= $(«) [ e)Q(r})dr}
Jo

Since $(t) is a compact operator, the set Ye(t) = {(Few)(x, t) : w(.,t) E B^ is 

precompact in X for every e, 0 < e < t. Moreover, for every w(., t) E Bk we have

||(Fw)(x,t) - (Feu>)(a:)<)|| < jf^ ||$(i — »?)||^AfaAifs[||*iIt

+Mi ea(b~~s)hk(s)d$^ + hk(rj)^drj

Therefore there are precompact sets arbitrary close to the set {(Fw)(x,t) : E
Bfcj. Hence, the set j(Fu>)(.i:, t) : w(.,t) E Bfcj is precompact in X.

Step-3 F : C —* C is continuous.

Let {w7i}^L0 C C with wn —+ w in C. Then, 3 an integer r such that 
||tyn(.r, t)|| < r for all n and t E J, so wn E Br and w € Br.
For each t E J and by using assumptions (4) and (5),

\\f(t,wn(x,t), s,wn(x,s))dsj - f(t,w(x,t),J^ g(t,s,w(x,s))ds}\\ < 2hr(t) 

This implies that

/ (t, iun(x, t), j g{t. s, wn(x, s))ds) -*■ /(*, w(x, t), J g{x, s, w(x, s))ds) , 

Therefore, we have by dominated convergence theorem,

\\Fwn-Fw\\ < f\m-ri)\\M2M,

Mi ^ eWl(b s)\\fls,Wn(x,s),J^ g(s,r,wn(x,r))d
T
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drjf\8,w{xt8),JQ g{stT,w(x,T))dT^

J0 - s)\\\\f(s,wn{x,s), g{s,T,wn(x,T))dT)
f(^s,w(x,s),J g{s,r, u»(a:,r))tir)||ds —► 0 as n —* oo

Thus F is continuous.

3tep-4 Bound for the solution w{x,t).

Finally we obtain a priori bound for the solution
w(x,t) = A f <$>{t-r))GW~l 

Jo

Wi - I $(b - s)f(s,w(zt8), J g{s,T,w(x,r))dT)ds 

+A J $(t- s)f(s,w(x,s), I g(s,r,w(x,r})dr)ds.

{rj)dg

We have,
\\w(xM < A/j|$(t-7?)||||G||||W“1||[|K|| + /j|$(6-s)||

\\f(s,io(x,s), jf p(s,r,ti;(xlr))dr)|jrfs dr) + A ^ |[$(i-s)||

||f(s,w(x,s), I g(s,T,w{x,T))dr)\\ds

< Mi J* e“^M2M3 IK|| + Mi jf* e“(6~s)[p(s) + 9(s)] 

Q(||w(.t,s)||) ds + Mi f e“(i_s)[p(s) + q(s)\ 0(||tfj(x,s)|j)ds
J 0

< M\Neat [ e~asds + MxeQ* f e~asMs) + q{s)} f2(j|iu(a:,s)||)dsJo Jo
Thus we have

e“Qf|ky(.i:,t)|| < Mi IV f e~asds + Mi / e-“sfp(s) + q(s)\ 0(||w(x,s)||)ds Jo Jo
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Denoting the right hand side of above inequality by v(t), we have

u(0) = 0 and||w(x,i)|| < eatv(t)

v'(t) < M\Ne~at + Mie~at\p(i) + g(t)]0(j|u;(3;, t)||)

=> eatv'(t) < M\N 4- Mi\p(t) 4- g(t)]0(||tu(a:,t)||)
=£■ eatv'(i) < MtN + M1\p(t) + qit^Qie^vit))

Also,

v(t) — MiN J e asds + Mi j e QS[p(s) 4- q{s)] J2(||w(®,s)||)cis 

=>■ eaiv(£) = M\Neat f e~asds + Mieat f e_Qrs[p(s) + q(s)} fi(|ju>(:r,s)l|)dsJO jo

and

(e^mr < e “Sds| + Mi [ae“4 f e as[p(s) 4- q{s)]
JO

^(||to(a:,s)||)ds]M1[p(t) + r/(t)] fi(||io(.'r,i)||)

MiN J* e~asds 4- Mi J* e~a3\p(s) + q(s)]M\N 4" cue

*)!!)<&
+ Mi{p{t) + q(t)} ft(||«;(a:,t)||)

< MiN + aeatv(t) + Mi\p(t) + q(t)\ fi(|jte(3:,t)||)

< m(t) + m(t)eatv(i) 4- m(t)Q,(\\v)(x,i)||); 

where m(t) = max{M\N,a, M\\p{t) 4- g(£)]}

= m(t) [l 4- eatv(i) 4- Q(||w(a:, t)||)]

< m(i) |1 4- eatv(t) + fi(eatu(t))j

This implies that

rb ds 
14-s

fb ds rb ^ . . , r°° ds
/ t----------r~rT ^ / m(s)ds < / ------------r-r-r; t G J

Jo 1 4" s 4" Q(s) Jo Jo 1 4" s 4" f2(s)
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This inequality implies that eatv(t) < oo. So there exists a constant K such that 
v(t) < K and hence ||iy(x,t)|| < K,t G J, where K depends only on b and on the 
functions m and Q.

This completes the proof that F is completely continuous.

Finally, the set £(F) = G C : w(x,.) = XFw(.,t),X € (0,l)j is bounded, as
proved above. Therefore by applying Schaefer’s theorem, the operator F has a fixed 
point in C. This means that any fixed point of F is a mild solution of the system 
(4.2.1) on J satisfying (Fw)(x,t) = w(x,t). Thus, the system (4.2.1) is controllable 
on J. This completes the proof. ■


