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6.1 Introduction

Let X and V be Hilbert spaces and I = [0, T], where 0 < T < oo. Let Y — L2(0, T; X) 
be the solution space and U = L2(0, T; V) be the control function space. We consider 
the following nonlinear control problem:

t t
x(t) = I h(t,s)u(s)ds + I k(t,s,x) f(s,x(s))ds; 0 < t < T < oo. (6.1.1) 

o b

Here, the state of the system x(t) € X and u(t.) € V is the control at time t. 
The nonlinear function / : I x X X and for each t, s € I, x £ Y, the kernel 
k(t, s, x) : X H-+ X and h(t, s) ; V X are bounded linear operators.

61
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REMARK 6.1.1 Note that in equation (6.1.1), the kernel k depends on the whole 
function x, but not depends on pointwise. That is, the system, has to be treated sepa­
rately if we consider the kernel k.(t, s, x(s)).

REMARK 6.1.2 The equation (6.1.1) satisfies the initial condition x(0) = 0 € X, 
but one can incorporate any initial state x(0) = xq which will not alter the results.

We know that the system (6.1.1)is exactly controllable over the interval (0,T], if for 
any given x.i € X, there exists a control u eU such that the corresponding solution 
x of (6.1.1) satisfies x(T) = aq.

A large amount of literature is available regarding the existence and uniqueness of 
the above type of equation as well as related equations. See, Petry [115], Stuart [130], 
Leggett [94], Backwinkel-Schilling [8], Srikanth-Joshi [128] to name a few and the 
references therein.

The corresponding linear control system

is quite standard and one can give various conditions to ensure the exact controllabil­
ity of the linear system (6.1.2). Throughout the chapter, we assume that the linear 
system is exactly controllable.

The exact controllability of related nonlinear systems are also available. See, for ex­
ample, [9], [25], [26] and for approximate controllability of non-autonomous semilinear 
system [60]. In [79], Joshi- George established the exact controllability for nonlin­
ear systems in finite dimensional settings, using the monotone operator theory and 
fixed point theorems. Our aim in this chapter is to generalize these results to infinite 
dimensional systems. Here, we will present some abstract results along with some 
useful corollaries. Numbers of well-known models of dynamical control systems can 
be represented in a above frame work. The application of abstract results to specific 
examples both from ordinary and partial differential equations are discussed.

The layout of the chapter is as follows. In Section 6.2, we give main assumptions 
on system components and some preliminary estimates of system operators. We 
transform the controllability problem to that of a solvability problem. An operator W 
corresponding to the linear system will be introduced and controllability depends on 
the compactness of this operator. We prove the compactness under various sufficient 
conditions in Section 6.3. In Section 6.4, we establish the exact controllability result. 
Finally in Section 6.5, we demonstrate some applications to illustrate our theory.

(6.1.2)
0
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6.2 Assumptions and Estimates

Here we provide some sets of sufficient conditions which give guarantee the existence 
of the solution operator W, and study its behaviour under various assumptions.

Define the following operators

(2.1) for x G Y, K{x) : Y Y by

(K(x)y)(t) = J k{t,s,x)y(s)ds, o

(2.2) H-.U^Y by {Hv)(t) = j h(t,s)u{s)ds,
o

(2.3) N : Y ^ Y by (Nx){t) = and

(2.4) W : U i-> y by Wu = /(.,.'n(.)), where x(.) is the solution of (6.1.1) corre­
sponding to ueU.

First, we reduce the controllability problem to a solvability problem. The results 
on solvability crucially depend on the compactness of W. We make the following 
assumptions.

Assumptions [A]

IM {/o'Jo &}* = kiX) < h < OO.

[M {foT Jo ||M*> S)||2 dsdtji = ho < 00.

[A3] The function / satisfies caratheodory conditions, i.e., t —* f(t,.) is measurable 
and x —> /(.,:/:) is continuous.

[At] The function / satisfies the following growth condition:

||/(MOII <00 INI+ &(*)»
where a0 > 0 is a constant and b0(t) > 0 and b0 G L2(J).
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LEMMA 6.2.1 [Estimates:] The operators K,H and N satisfy the following esti­
mates.

K{x)y\\Y < ^Hly V®, y € Y. (6.2.1)

PMIy < ^ IMIy uEU. (6.2.2)

ll^lly < \/2 (oq INIIy + bo) V® £ y, (6.2.3)

where bQ = |NL2(/) *

Proof: The estimate. (6.2.1) follows from Cauchy-Schwartz inequality as:

\\K(x)y\\2Y =/||((if*)(y)(*))||idt
o

< /(/II *(*»«. ®)|| lb(s)IUds)2^
0 0

< /(/ ||fc(t, 5, v)t ds)(f ||y(s)||2 ds)dt 
0 0 0

<*o2IMIy-

The inequality (6.2.2) follows in a similar fashion. Now

Nxfy = f ||iV.7;(t)]|2x dt = f ||/(f, «(i))|ft dt 
o o

— 2 J[o.g ||.T(f.)||2 4- b0(t)2]dt 

< 2 [o§ + &o] <2 [o0 ||x||y + 60]2-

Hence (6.2.3). *

Operator form of the equation: With the notations as earlier, we may write the 
equation (6.1.1) as

x(t) = (Hu)(t) 4- (K(x)(Nx)){t) (6.2.4)

or, equivalently
x = Hu+K(x)(Nx). (6.2.5)

The following theorem gives the existence of solution x of (6.2.5) for a given u which 
can be proved along the. lines as in [79].

THEOREM 6.2.2 [Existence and Uniqueness:] Assume the following:
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[AK1] There exists a constant p, > 0 such that

2

dt Vx € Y. (6.2.6)

[AFl] The function f is monotone in the sense that

< f&x) - f(t,y),x -y>< 0 Vs.y € X,t € I. (6.2.7)

i.e. f is monotone.

Then, given u € U, there exists a unique solution x G Y of (6.2.5) and x satisfies a 
growth, condition

My< j + (^+ l)M«llr (6-2.8)

■

LEMMA 6.2.3 Under the assumptions [AKlJ, [AFl] and the assumptions [A], the 
Nemytskii operator W is well-defined and continuous. Moreover it satisfies the fol­
lowing growth condition:

\\Wu\\Y <V2 + 1^ a0h0 ||u||tf + s/2 + lj b0. (6.2.9)

The proof follows from the assumptions and estimate (6.2.8). ■

6.3 Compactness of the operator W

We make the following further assumptions in this section to guarantee the compact­
ness of W .

Assumptions [B]

[Bi] There exists k > 0 such that

t
, r, x)x(r)dT < k(t. - s) ply, 0 <s<t<T.

x
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[B2) There exists h > 0 such that

tI h(t, r)ti(r)dr < h(t — s) Utijlj;, 0 < s < t <T.
S X

[£3] The operators fc and h satisfy the uniform continuity in the following sense: 
Given e > 0 there exists h > 0 small such that

\\k(r + hts,x)-k(r,8,x)\\BL{X) <£
and

\\h(r + h, s) - h{r, s) ||BLpQ < e, 0 <r<r + h<T.

[B4] There exists a space X such that X i—► X is a compact embedding.

[£5] Assume that / can be extended to I x X X such that / is caratheodory and 
x i-> f(.,x(.)) is continuous from L2(I]X) L2(I\X).

THEOREM 6.3.1 Under the Assumptions [B], the operator W is compact.

Proof: Let {un} be a bounded sequence in U. We have to show that {Wun} = 
{/(.,a:n(.))} has a convergent subsequence. First of all {f(.,xn(.))} is bounded in Y 
by Lemma 6.2.3. Therefore there exists a constant M > 0 such that

T
/ ll/(t, *»(«)) WldtKM2,

0
where, xn is the corresponding solution of un. We show that the family {a:n(.)} is 
equieontinuous in C(I;X).

»n(t) = [ k(t,T,xn)f(T,xn(T))d{r)+ [ h(t,T)un(T)d(r) 
J 0 J 0

Let t = r + hQ. We have

M<) ~ ^>(r)ll < S {k(t.,T,xn) - k(r,T,xn)} /(r,.Tn(r))dr

+

+

I k(t, r, xn) f((T,xn(r))dT

J {h(t,r) — h(7',r)}un(r)dr 
0

+ Jh.(t,T)un(T)dT

Ii T I2 + ^3 ■+■ Ia-
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Now by (Bf) and (Bi) respectively, we get

h < £ / \\f (t,xn(r))\\xdr < er*M< eMT\ 
o

and

h <kho||/(.,i„(.))||y.

Similarly, J3 and I4 can be estimated as 

I3 < e Ti ||nn||y and J4 < h h,0 ll^nlly .

The above estimates shows that {£„(.)} is equicontinuous in C(T,X) as ||un|| is 
bounded. Further, {.xn(.)j is also uniformly bounded in C(T,X). Now, using the 
compact inclusion X X and applying general form of Arzela-Ascoli theorem [1], 
we deduce that {.xn(.)} is relatively compact in C(I;X), Thus along a subsequence 

converges in C(I;X) and so converges in L2(0,T;X).

Then from the assumption (B5), it follows that /(.,*«*(•)) converges in Y = L2{0, T; X). 
Thus the operator is compact and the proof is complete. ■

REMARK 6.3.2 If h(t,s) is a compact operator, then it is easy to show that W 
■is compact. In such situations, the exact controllability in the whole space m.ay be 
impossible ( [135], [124]) for different conditions to ensure the compactness of W 
with non-compact. h.(t, s).

Also, it is possible to give various more specific conditions under which the operator 
W is compact.

When W is assumed to be compact, the assumption [AK1] can be weakened by 
imposing strong monotonicity on /.i.e. by making [AK1] stronger which is shown in 
the following lemma.

LEMMA 6.3.3 Assume that

[AK2] f0T ( Jt k:(t, s, x)x(s)ds, x(t))xdt >0 V.x e Y

[AF2] There exists a constant (3 > 0, such that

{/(MO - /(*,»)> * - y) > /% - yf
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[AF3] Assumptions of [B] are satisfied.

Then the operator W is well defined and continuous. Further it satisfies the growth 
condition

\\Wu\\ <C0 + C\\u\\u,

where, Co = bo + aornbTema°T and C — a^hoT ema°r, with m, is a positive constant 
satisfying

\\k(t,s,x)\\ <m(x) < m Vt,s€/

Proof : By hypotheses, the operator K(x) and N satisfies the following:

{I<(x)x, x)Y > 0, (Nx - Ny, x — y}> fi\\x — y\\2 Va:, y G Y

Also [AF3] implies that K (xn)Nxn has a convergent subsequence for every bounded 
sequence un, where xn is the corresponding solution of un. Now the proof follows 
from and Grownwall’s inequality and Lemma 2.2 of ([60]) and then use the similar 
argument given in the Theorem (6.2.2)' and Lemma (6.2.3). ■

When / is Lipschitz continuous, we have the following lemma giving different condi­
tions to guarantee that W is well defined and Lipschitz continuous. The proof of it 
follows from [60] and [79].

Let us make, the following assumptions on /.

[AF4] 3 a > 0 such that

||/(*)^) — f(t,y)\\ <a||»-y|| Vs, y, € X, t € I 

[AF5] 3 0 > 0 such that

■ (/(*,»)-/(*.y),*-y) <-/3|[*-y||2 Vx,yzx,t€i

LEMMA 6.3.4 In each, of the following cases, the solution operator W is well defined 
and Lipschitz continuous.

[Case(i)]: Assumption [AFA] holds' with koa < 1 

[Case(ii)]: Assumption [AF4\ and [AF5] hold with (3 > kQa2
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[Case(hi)]: Assumption [AF4] hold with

||k(t, s, a:)|j < m(x) < m Vf, s G I, m > 0

/Case(iv)]: Assumption [AF4] holds.

Further the Lipschitz constants for W in above cases are, respectively

being an arbitrary sm.all constant.

REMARK 6.3.5 Here [AF4] is sufficient to prove the existence ofW and Lipschitz 
continuity ofW. The additional assumptions only give better estimation on the Lip­
schitz constant of the solution operator W.

When / is locally Lipschitz continuous, then also we can show that W is well-defined, 
shown in the following lemma. The proof follows along the same line as in the proof 
of the Lemma 2.4 of [GO].

LEMMA 6.3.6 Under the following assumptions, the operator W is well-defined and 
continuous.

(i)There exists a constant a(r) such that

|| f(t,x) - f(t.,y)|| < a(r)||a: - y\\ Va;,y € X such that ||x|| < r, ||y|| < r

(it) There exists m > 0 such that l|fc(/,, s, ;r)|| < m Vt,s G /

(Hi) f satisfies the growth condition [At].

Moreover, W satisfies a growth condition [A±j

||Ww||y < (60 + a0mbTemao7') + o0hoTemaoT||'u||y.
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Proof : Since, by the local Lipsehitz condition, 3 a unique solution to the equation 
(6.1.1) in a maximal interval [0, tmax],tmax < t. If tmax < t then limfr_tmM ||x(t, s)||x = 
oo(refer [131]). In other words, if limtl_tmai \\x(t, s)||x = oo, then 3 a unique solu­
tion in the interval [0,t]. We have already shown in the proof of Lemma 6.3.3 that 
\\x(t, s)|]x < oo for each u. Thus W is well-defined and the growth condition follows 
from the proof of Lemma 6.3.3. ■

We now move on to the exact controllability under the assumption that the operator 
W is compact.

6.4 Exact Controllability

We first reduce the controllability problem to a solvability problem which in turn 
imply the conditions for controllability of system (6.1.1). Define the control operator 
C:U^X by

T

Cu = j h(T,s) u(s) ds. (6.4.1)
o

The operator C is bounded linear and in fact, is a control operator for the linear 
system

t

x(t) = J h(t, s) u(s) ds, x(0) = 0 . (6.4.2)o
Let N(C) = {ueU : Cu = 0} be the mill space and Z = [JV(C)]X = {u € U : 
(u,v) = Q VveN(C)}.

A bounded linear operator S : X Z is a Steering Operator if S steers the linear 
system (6.4.2) from 0 to .7q. In other words, if u = Sxi, (xi € X), then

T
x(T) = I h(T,s)(Sxi)(s)ds = x,i 

o

Clearly CS = I, identity operator on X. Thus, if there exists a steering operator 
S, then u = Sx.\ acts as a control and the linear system (6.4.2) is controllable. 
Conversely, if the linear system is controllable, then for any ,Ti G X there exists 
u G U such that Cu = nq, i.e., C is onto. Thus, we can define a generalized inverse 
C* = [C\z)~l : X i—> Z and S - C* will be a steering operator. Thus, one gets the 
following result.
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THEOREM 6.4.1 The linear system (6.4-2) is exactly controllable if and only if 
there exists a steering operator.

Here we note that C*Cu = v for Vu E z and C*Cu = v for u E U , where v is the 
projection of u on z.

We now assume the controllability of the linear system and proceed to prove the exact 
controllability of the nonlinear system. Define an operator F : Z H-+ X by

T

Fu= J k(T,s,x)(Wu)(s)ds, o
where x is the solution of the system (6.1.1) corresponding to the control u. Let S be 
the steering operator of the linear system. Let x\ E X and uq = Sxx be the control 
which steers the linear system from 0 to xx. The exact controllability of (6.1.1) is 
equivalent to the existence of u E Z (let x be the corresponding solution (6.1.1)) such 
that

1 1 

x(T) = J k(T,x)(Wu){s)ds + j h{Tt s)u{s)ds.
That, is

= Fu + Cu.

Applying S on both sides, we get

uq = SFu + u

in z, where uq is the control, steering the linear system from 0 to Xi.

Thus, the problem of controllability reduces to solvability problem of the operator 
equation :

Solve u E Z 
(J + SF)u = u0.

(6.4.3)

We now state our controllability result. For the sake of generality, we state the 
theorem by imposing indirect conditions on W and F. The explicit conditions on 
k, h, f can be given to verify the conditions on W and F. The corollaries follow are 
direct verfication of the conditions of the main theorem.
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THEOREM 6.4.2 Assume the linear system. (6.4-2) is exactly controllable with the 
steering operator S. Further assume that the operator W is well defined and compact 
and satisfies

||SjFii|| < a0 ||u|| + bo, with a0 < 1, 60 > 0 

Then the system. (6.4-3) is solvable in Z.

Proof: We look for the solvability of the operator R-. Z U, where

Ru=[I + SF]u.

Then

which implies

(Ru, u) = {u, u) + (SFu, u)

> ||u||2 - a0 ||u|| - b0 INI > 

lim (Ru, u) _
INI °° INI ~ °°‘

Thus, R is coercive operator. Again compactness of W implies that SF is compact.

Now, R is compact perturbation of the identity operator and hence R is of type (M). 
See [78] for a definition of type(M). Since any coercive operator of type(M) is onto 
[78], the proof of the theorem is complete. ■.

COROLLARY 6.4.3 Assume the linear system, is exactly controllable with a steering 
operator S. Assum.e the conditions [AK1] and [AFl] and the assumptions {B}. Then 
the nonlinear system (6.1.1) is controllable if

\\S\\ h(bo + F)aoh0 < p.

m

THEOREM 6.4.4 Suppose that the system. (6.1.1) satisfies followings:

(1) The linear part, is exactly controllable, 

(it) W is well defined and compact.
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(in) SF is uniformly bounded i.e.\SFu\ < C, for some C > 0. Then the system 

(6.1.1) is exactly controllable.

Proof: Let, R be the operator as defined in the proof of the Theorem (6.4.2). We 
have

(Ru,u) > ||u||2 — C||u||

=» ii'/n,||,i||^0o(i?'U, u) — co

By following the same argument in the proof of Theorem (6.4.2), we have that R is 
a coercive operator of type (M) and hence it is onto.
This completes the proof. ■

In the above result we do not require the Lipschitz continuity of W but we need F 
to be uniformly bounded. If / is uniformly bounded then it is not hard to show that 
SF is also uniformly bounded. When / is uniformly bounded, we have the following 
result which follows as particular case of Theorem (6.4.4).

COROLLARY 6.4.5 Suppose that the linear system (6.4-2) is exactly controllable 
(i.e linear part of (6.1.1) is exactly controllable) and the nonlinear term, f is uniformly 
bounded. Further suppose that the assumptions in Theorem (6.2.2), Lemma (6.2.3) 
and assumption [B] hold true. Then the system (6.1.1) is exactly controllable.

When / is Lipschitz continuous, we have the following result.

THEOREM 6.4.6 Suppose that the system (6.1.1) satisfies the following: 

(i) The linear part is exactly controllable.

(ii) There exists a £ (0,1) such that ||SFu — SFv|| < a\\u — v|| Vu, v £ Z.

Then the system (6.1.1) is exactly controllable. Further, if uq is the steering control 
for the linear system. (6.4-2), to steer the system from 0 to xi; then the control u,
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approximated from, the following iterative scheme, steers the state of the nonlinear 
system. (6.1.1) from, 0 to xi in the same time interval [0,T]

u(n+1) = «0 - SFu(n)

Proof : Since SF is the contraction, the solvability of (6.4.3) and the approximating 
scheme follow from Banach Contraction Principle (refer [78]). ■

The following corollary follows from Theorem 6.4.6 using Lemma 6.3.4.

COROLLARY 6.4.7 Suppose that the linear system, (6.4-2) is exactly controllable 
with steering operator S, Then under each of the following cases the nonlinear system, 
(6.1.1) is exactly controllable.

[Case (i)J: Assumption [AF4] holds with k(x)a < 1 and

aA:0/;,0/;:o|l*S,|| < (1 - ha)

[Casefii)]: Assumption [AF4] and [AF5] holds with f3 > koa2 and

||S||.A;ofeohoa3 < Pifi ~ ho?)

[Case (Hi)]: Assumption [AF4\ hold with |jfc(f,,s,x)|| < rn. Vt,s6 J,m>0 and

\\S\\hkoh0aemaoT < 1

[Case (iv)]: Assumption [AF4\ folds with, ||5||.A:ofco/).oQ: < (1 — e) where e > 0 being 
an arbitrary small constant.

Proof: The proof of all the cases follow by using proof of respective cases of the 
Lemma 6.3.3 and by using [60]. ■

6.5 Applications

One can put nonlinear evolution systems with internal control in above frame work 
to study the exact controllability. It is also possible to use the above results to study
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the exact controllability problems associated with the partial differential equations 
with boundary controls.

(a) Nonlinear evolution system with internal control

~ — A(i)x 4- B(t)u + f(t,x);0 < t, < T < oo (6.5.1)

®(0) = 0

where, A(t) is a linear operator for each t € [0, T], but not necessarily bounded, B(t) 
is a bounded linear operator and / is a nonlinear operator in a suitable Hilbert space. 
Let X and U be the state space and space of control functions, respectively. Assume 
that, for each t € [0, T),A(t) generates a strongly continuous evolution system <j)(t, s) 
on X. By using the variation of constant formula, a mild solution of (6.5.1) can be 
written as (refer [114], ppl06)

x(t) = f <j>(t,s)f(s,x($))ds + [ <j>{t,s)B(s)u(s)ds (6.5.2)
Jo J 0

This equation is in the form of (6.1.1) and can be written in the form

u + K{x)Nx = 0, (6.5.3)

with k(t, s, x) = s) and h(t, s) = 0(t, s)b(s). We apply our main result to deduce
controllability.

In this case it is easy to show that the linear part of (6.5.1) is exactly controllable if 
and only if there exists A > 0 such that

(J* 4>{T, S)B{s)B\s)4>'{Tt S)vds, v) > A|M|2 VF € X 

where (j>*(t,s),B*(s)-are. the adjoint operators of <p(t,s) and B(s), respectively.

LEMMA 6.5.1 Under the condition (—A(t)x, x)x > mIMI2 Vx € D(A(t)), the 
reduced form of the assumption [AK1], that is

[A/v3] : f {[ k(t,s)x(s)ds,x(t))xdt > p. f j| f k(t,s)x(s)ds\\2dt,
Jo Jo Jo Jo

holds good for (6.5.5)

Vx€ Y
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Proof: Let
/(*)=/ xeY (6.5.4)

J o

=> f(t) — x(t) + A(t) j s)x(s)ds.
Therefore,

/ (/ (j>{t,s)x(s)ds,x{t))xdt= j (/(*), f{t) -A{t) [ <j}{t,s)x(s)ds)dt Jo Jo Jo Jo
= / {/{t),f{t)}dt + f (f{t),-A(t)f(t))dt (6.5.5) 

Jo Jo
But,

fQ </(*)»/'(*))<* = </(*)»/(0>lo — ^ (/'(*)>/(*))*
=* jQ = ^||/(t)||2 > 0

Therefore, R.H.S. of (6.5.5)

> rm-A(w))dtJo

> h f0 ll/Wil2 (by hypothesis)

s)x(s)ds, J s)x{s)ds)dt

Hence,

/ (/ <j>(t., s)x(s)ds,x(t))dt > p f II [ <j>(t,s)x(s)ds\\2dt\ Vx G Y 
Jo Jo Jo Jo

This completes the proof. ■

Similarly, one can impose other conditions on A(t), B(t)andf(t,x) to verify that the 
assumptions made on system (6.5.1) are not redundant. Thus by using the main 
theorem, one can obtain different sets of verifiable conditions for exact controllability 
of the nonlinear system (6.5.1).

(b) The autonomous parabolic system with boundary , control

dv
- = Ax + /(£, x) on [0, T] x 0 (6.5.6)

lil'
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@x = u 
x(0) = 0

where, A is an elliptic differential operator (eg. second order or fourth order), / is a 
nonlinear operator and (3 is a boundary operator(eg. Dirichlet or Neumann) in some 
appropriate space. Here u is the boundary control. H is a bounded open domain in Rn 
with boundary <5ft. Assume that D(A) includes homogeneous boundary conditions 
(3x — 0. Let L2(0) be the state space X and L2(r) be the control space V for some 
choice of F C dQ. Assume that 0 is not an eigen value of A

Define a Green’s operator D : V t-* X with Ax = Q,/?x = u. Now the standard 
trace and regularity theory for these elliptic operators implies that A°D : V i—> X is 
bounded for 6 < 3/4. Using the variation of .parameter formula, solution of (6.5.6) 
can be written as

t ft
<j>(t — s)f(s, x(s))ds + — s)ADu(s)ds

i Jo

where 4>{t — s) is the strongly continuous semigroup generated by the elliptic operator 
A. Thus the system (6.5.6) can be represented in the form (6.5.1) with k(t,s,x) = 
(p(t — s) and h(t, s) = cf>(t — s)AD. Hence we can make the use of the main results of 
Section 6.4 to obtain controllability criterion for (6.5.6).

(c) Nonlinear Euler-Bernoulli equation with boundary control
«■

Q2jpW{t,y) = A2w{t,y)+g{t,w{t,y),wt(t,y)) in[0,T]xa (6.5.7)

u>t(G,i/)=G inQ 
ui in]T = [0,T]xr

U2 inS

where 0 is an open and bounded domain of Rn with sufficiently smooth boundary F. 
Here and are the. boundary controls.

Let A : L2(Q) t-* L2(Q) be the positive self-adjoint operator defined by 

Ah = A2/?., with D(A) = {he H4(Q) : h\v = Afi|r = 0}

w(0,y) =

Au)|s =

So that A1/,2fi = —Ah and Ah = A2/?..
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Let X — D(A) x L2(Q), where D(A) = i72(Q) D Hq(Q,). Define Green’s operators G\ 
and G2 as follows: G\ : HS(T) 1—* iJs+1/2(Q) is continuous such that

G\Ui = h
A2h = 0 in fl

h = on T 
Ah = 0 on T.

G2 : Hs{F) ff3+5/2(Q) js continuous such that

G2u2 = y
A2y — 0 in 0, 

y = 0 in T

Ay = U2 in F.

Define on operator B as follows:

Ui 0
U2 A(Giui + G2u2)

A generates a strongly continuous cosine operator C(t) on L2(0) with S(t) = /q C(r)dr. 
Define on operator A as follows:

A-\ 0 !}
A LA 0

where D(A) = D(A) x D(A1/2).

A generates a unitary strongly continuous semigroup eAt given by

e
Ai _ C(t) S(t) 

-AS{t) C(t)

Using variation of constant formula, the solution of (6.5.7), can be written in the form 
(6.5.1), where

*(*) = W(V
iot(t)

u(t) =
Ui(t)
u2(t)
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h(t, s)u = eA^ s^Bu = Sft — s)A((?i«i -t- G2U2) 
C(t s)^4(Gx«i + G2U2) /(*»*(*)) 0

g(t,w,wt)

It is well-known that the linear part is exactly controllable (refer ([91])). Thus by 
using the main results of Section 6.4, one can obtain verifiable assumptions on g to 
achieve exact controllability for (6.5 7).

REMARK 6.5.2 As a particular case of the above example, one can also consider the 
following nonlinear Euler-Bemoulli equations with boundary control only in Aisj

—w(t,y) = A2w{t,y)+g(t,w(t,y),wt(t,y)) in (0,T) x 0, (6.5.8)

w(0,y) = wt(Q,y) = Q mfi

w\y = 0 *n(o,r)xr = J3
Aisl = u in Y'

where Q, is an open bounded domain in Rn with sufficiently smooth boundary dQ, — F. 
Here u is the only boundary control. As in the case of above example, controllability 
of the linear part is established in Lasiecka and Triggiani [92].

By using the main result in Section 6.4, we can get the verifiable assumptions on g 
to achieve exact controllability for the system■ (6.5.8).

REMARK 6.5.3 We consider the system governed by parabolic initial boundary 
value problem.

~y(t, x) + Ay(t, a:) = u{t, x) + g(t, y(t, x), yt(t, x)) in Q = (0, t) x 0, (6.5.9)

y(.,x) = 0 <mj>( Q,T)xdQ
y(0) = Vo on Q,

where Q be a bounded domain in Rn with smooth boundary dil, yo € and
u € L2(Q). Lei A be the second order elliptic differential operator given by

Ay = + c{x)y
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with the assumptions that c > 0 on Q and the matrix (ay(a:)) is symmetric and 
positive definite.

As an exact, controllability problem of linear part of system (6.5.9), Cao and Gun- 
zburger [141j proved that for given function y0, V 6 L2(fi), a function y = y(t,x) and 
a control u(t,x) both defined for (t,x) G Q such that y,u satisfy (6.5.9) together with 
y(T, x) = y(x) for x G fi.

For the nonlinear portion, we can follow the method given in example (c).

(d) Consider the partial functional integro-differential system of the form

xt{y, t.) = xvy{y, t) + e(t_s)u(y, t) + J (t - s){e~ Jo lll(“)1!du}p(s, x(y, s))ds; (6.5.10)

0<s/< l,f G J = [0,1]
.r(0,t) = x(l,t) = 0,t > 0

where, u G L2(I,V) and X = .^[(O,1); JfE],

Let f{t,io(t))(y) = p(t,w(t1y))\ 0 < y < 1 and Let A : X -* X be defined by 
Aw = vj” with domain D(A) defined as
D(A) = {w E X\ w, w' are absolutely continuous, w” E X,w(0) = ia(l) = 0}.
Then

Aw = S^=1 — n?[w,wn)wn w G D(A).

where wn(s) = \/2 sinns,n = 1,2,3,••• is the orthogonal sets of eigen vectors of 
A. (w, wn) is the Fourier expansion of w”. Here A is an infinitesimal generator of an 
analytic semigroup T(t);t > 0 in X and is given by

T(t)w = T,^L1exp(~n2t)(w, wn)wn; w G X

where T(t) satisfies |T(t)j < M\ewt\ t > 0 for some Mi > l,u> E R. Here h(t, s) —
and k(t, s,x) = (t — s){e~ -lo Further function p : J x R R is continuous,
bounded and strongly measurable such that

||p(f.u>(t,y))|| < a(t)||u/(i,i/)|| + b(t)\ a > 0,&(-) = P(-)1U2(/)-

Thus all the conditions of oxir main theorem are satisfied. Hence system (6.5.10) is 
exactly controllable on I.


