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8.1 Introduction

Let X be a Banach space with norm |.| and U be another Banach space taking 
the control values. In this chapter, we would like to consider the controlled neutral 
functional second order inclusion system with nonlocal conditions

- f(t,xt)} e Ax{t) + Bu(t) + F(t,xt,x'(t)), t e J 

x0 = <j>, a:'(0) = y0.
(8.1.1)
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Here the state x(t) takes values in X and the control u € L2(J, U), the space of 
admissible controls, where J = (0, oo). Further, we assume A is the infinite generator 
of strongly continuous Cosine family {C(t) : t € R} defined on X and B : U —> X is a 
bounded linear operator. The map F : JxCrxX —» 2* is a bounded, closed, convex 
multi-valued map. Let r > 0 be the delay time and Cr = C([—r, 0], X) be the Banach 
space of all continuous functions with the norm ||<^|| = sup{\<p(9)\ : —r<9< 0}. 
Let Jo = [—r, 0] and non-local condition <j> € Cr and y0 € X be the given initial 
values. Also for any continuous function x defined on the interval J\ = [—r, oo) with 
values in X and for any t e J, we denote by xt an element of C(J0, X) defined by 
xt(6)--=x{t + e),de J0.

Our aim is to study the exact controllability of the above abstract system which will 
have applications to many interesting systems including PDE systems. We reduce the 
controllability problem (8.1.1) to the search for fixed points of a suitable multi-valued 
map on a subspace of the Frechet space C(J,X). In order to prove the existence 
of fixed points, we shall rely on a theorem due to Ma [98], which is an extension 
of Schaefer’s theorem [123] to multi-valued maps between locally convex topological 
spaces.

Much attention has been received in recent years regarding the existence of mild, 
strong and classical solutions for differential and integro-differential equations in ab
stract spaces with nonlocal conditions. We refer to the paper of Byszewski [41] who 
studied the existence and uniqueness of solution of semi-linear evolution nonlocal 
Cauchy problem. Ntouyas and Tsamatos [110] discussed global existence for semi- 
linear evolution equations with nonlocal conditions.

The. controllability of second-order system with local and nonlocal conditions are also 
very interesting and researchers are engaged in it. Many times, it is advantageous to 
treat the second-order abstract differential equations directly rather than to convert 
them to first-order system. For example, refer Fitzgibbon [59] and Ball [27]. In [59], 
Fitzgibbon used the second-order abstract system for establishing the boundedness 
of solutions of the equation governing the transverse motion of an extensible beam. 
A useful tool in the study of abstract second-order equations is the theory of strongly 
continuous cosine families ([132]- [133]). Balachandran and Marshal Anthoni ([20]- 
[23]) discussed the controllability of second-order ordinary and delay, differential and 
integro-differential systems with the proper illustrations, without converting them to 
first-order by using the cosine operators and Leray Schauder alternative. Quinn and 
Carmichael [117] have first shown that the controllability problem in Banach spaces 
can be converted in to a fixed point problem for a single valued map. Benchohra and 
Ntouyas [30] proved the existence and controllability results'for nonlinear differential 
inclusions with nonlocal conditions. Also they considered controllability of functional
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differential and integro-differential inclusions in Banach spaces [32]. In both the pa
pers they used a fixed point theorem for the condensing maps due to Martelli. Then 
they demonstrated the controllability results for multi-valued semi-linear neutral func
tional equation [33], Benchohra, Gorniewicz and Ntouyas [29] paid there attention to 
show the controllability on infinite time horizon for first and second-order functional 
differential inclusions in Banach spaces. The existence of the system considered in 
[29] was also proved by them. They used here the fixed point theorem due to Ma [98]. 
Our intention in this chapter is to study the controllability on infinite time horizon 
for second-order semi-linear neutral functional differential inclusion in Banach spaces. 
We consider the multi-valued map which is function of both the delay term as well 
the derivative of the unknown function. We will take the help of fixed point theorem 
due to Ma, which is an extension of Schaefer’s theorem to locally convex topological 
spaces, semigroup method [114] and set-valued analysis [53], [74].

The layout of the chapter is as follows. In the following section, we give the necessary 
preliminaries so that the system can be put in the integral form which gives the 
existence of a mild solution. In Section 8.3, we represent the state of the system in 
terms of the Cosine and Sine family and reduce the controllability to that of finding 
a fixed point of a multi-valued map. We, then establish the existence of a fixed point 
by applying a fixed point theorem due to Ma [98]. Finally, in Section 8.4, we present 
an example to illustrate our theory.

8.2 Definitions and Hypotheses

In this section, we introduce notations and preliminary facts from multi-valued anal
ysis which are used throughout this chapter. Let Jm = [0,m], m E N. The space 
C(J, X) is the Frechet space of continuous functions from J into X with the metric

Let B(X) be the Banach space of bounded linear operators from X to X with the 
standard norm. A measurable function x : J —► X is Bochner integrable if and only if 
|a:| is Lebesgue integrable. For properties of the Bochner integral', we refer to [38]. Let 
Ll(J,X) denotes the Banach space of Bochner integrable functions and Up denotes

(see [56])
00 2-TOllr — zlld(x,z) — Y] -—^for each x,z E C(J,X) 

m=o 1 + IF ~

where
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a neighbourhood of 0 in C(J, X) defined by

Up:= {® G C(J,X) : ||®||m <p}

The convergence in C( J, X) is the uniform convergence in the compact intervals, i.e. 
Xj —* x in C(J, X) if and only if 11% — a:||m —» 0 in C(Jm, X) as j —» oo for each 
me N. A set M C C(J,X) is a bounded set if and only if there exists a positive 
function £ € C( J, f?.+) such that

\x(t)\ < £(t) for all t € J and x 6 M.

The Arzela-Ascoli theorem says that a set M C C(J, X) is compact if and only if for 
each m e N, M is a compact set in the Banach space (C(Jm, X), ||.||m).

For the definition and some useful lemmas of strongly continuous cosine operators 
and for some of the terminology of set valued analysis, we refer Chapter 2.

We assume the following hypotheses:

Let (Hl)holds, (refer Chapter 2).

(H2) C(t), t > 0 is compact.

(H3) Bu(t.) is continuous in t, and Mz be constant such that |£| < M2.

(H4) Let m € N be fixed. Let W : L2(J, U) —> X be the linear operator defined by

rmWu = / S(m — s)Bu(s)ds 
Jo

Then W : L2(J, U)/KerW —> X induces a bounded invertible operator W~l and 
there exists positive constant M3 such that and \W~l\ < M3. For construction of 
W~l, refer [11].

(H5) The function / : J x Cr —> X is completely continuous and for any bounded 
set B C C(Ji,X), the family {t f(t,xt): x e B} is equi-continuous in C(J,X).
Further assume, there exist constants 0 < Ci < 1 and C2 > 0 such that for all £ e J, 
<b 6 Cr, we have

\f{t,<j>)\ <Ci||^[| + C2.

(H6) The multi-valued map (t,ijj,x) F(t,ip,x) is measurable with respect to i for 
each -ip G Cr and x G X and F is u.s.e. with respect to second and third variable for 
each t G J. Moreover for each fixed z G C(Ji,X) and x G C(J, A), the set

6V.z.x = (t> € L\J,X) : v{t) G F{t,zux(t)) for a.e. t G J}
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is nonempty.

(H7) We assume F satisfies the following estimate. Given ip £ Cr and x £ X, there 
exist p £ Ll(J, R+)

\\F{t,ip,x)\\ := sup{|u| : v £ F(t,ip,x)} < p(t)^(||^|| + |a|),

where ^ : R+ —> (0, oo) is continuous and increasing and there is a c > 0 such that 
the integral /c°° is sufficiently large (an explicit lower bound and expression for 
c can be given). For example one can take such that

f°° ds _
Jc S + tt(s) ~ °°'

(H8) For z £ C(Ji,X) and x £ C(J, X) varies in a neighborhood of 0 and t £ J, the 
set

0) + S(t){y0 - /(0, <j>)} jf C{t - s)f(s, xs)ds

+ J S(t — s)Bu(s)ds -F j S(t — s)v(s)ds; v £ 

is relatively compact.

Then the integral equation formulation of the system (8.1.1) can be written as [110]

x(t) = <p{t.), t. £ J0

x(t) = C(t)m + S(t)[y0 - /(0, <p)} + /q C(t - s)/(s, xs)ds 

+ Jq S(t. — s)Bu(s)ds + /o S(t — s)v(s)ds, t£j,

(8.2.1)

where v £ Sf,x,x' = (n £ Ll{J,X) : v(t) £ F(t,xt,x'(t)) for a.e. t £ J} is called the 
mild solution on J of the inclusion (8.1.1).

REMARK 8.2.1 If dim. X < oo and J is a compact real interval, then SptX)X> ^ <p 
(see [93]).

We note that the system (8.1.1) is said to be controllable on J if for every (p £ Cr with 
<P(0) £ D(A), yo £ Xu 3-i € X and for each m, there exists a control u £ L2(Jm, U) 
such that the solution x(.) of (8.1.1) satisfies x(m) = aq. 
where,
D(A) = {x £ X : C(t)x is twice continuously differentiable in t}.
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i.e.
D(A) = {a; e X : C{.)x e C2(R,X)} 

and Xi = {.r € X : C(t)x is once continuously differentiable in t}.

The following lemmas are crucial in the proof of our main theorem.

LEMMA 8.2.2 ([93]) Let I = Jm be the compact real interval and X be a Banach 
space. Let F be a multi-valued map satisfying (H6) and let T be a linear continuous 
mapping from. Ll{I, X) to C(I,X), then the operator

ToSf : C{I,X) -> BCC{C{I,X)) defined byx-+ (ToSf)(x) := T(SF>Xt,x') 

is a closed graph operator.

8.3 Controllability Result

We now state and prove the main controllability result.

THEOREM 8.3.1 Assume that the hypotheses (H1) — (H8) are satisfied and system 
(8.1.1) is controllable for allyo andx\ satisfying (H1)—(H8). Then the system. (8.1.1) 
is controllable on J.

Proof: Fix m € N. Consider the space

Z = {x€ C([-r,m],X): s|(0lf»] €

with the norm

I MU = max{j|a:||c(|-rljn]Ix)> Ik'llcMM.x)}.
Using the. hypothesis (H4) for x 6 Z, we define the control formally as

u(t.) = W a:x - C(m)<f>(0) - S{m)[y(0) - /(0, <)>)} - /0m C(m - s)f{s, xs)ds

J'q S{r,i - s)v(s)ds (t)

(8.3.1)

Using the above control, define a multi-valued map N\ : Z —> 2Z by
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and for m > t > 0

(Nix)(t) = <f>(t) for — r < t < 0

N\x := {h G C(J,X): h satisfies (8.3.2)},

where h is given by

ft,(t) = C(t)«KO) + S(t)[y„-/(0,^)] + /0,C(i-S)/(S,x,)<fa '

+ Jo S(i - s)v(s)ds + io S(t - ri)Bu{i])d.T}.

Here u is defined as in (8.3.1) and v G Sf,xux>- Our aim is to prove the existence 
of a fixed point for N\. This fixed point will then be a solution of equation (8.2.1). 
Clearly (N\x)(m) = x\ which means that the control u steers the system from initial 
state x0 to x.i in time m, provided we obtain a fixed point of the nonlinear operator 
Nt.

In order to obtain the fixed point of Ni, we need to verify the various conditions in 
Lemma 2.2.12.

Step 1: The set Q := {a; GZ; Ax G Ni(x),X > 1} is bounded. To see this, let 
x G Q. Then x has the representation for t > 0

x{t) - A_1/j,(i) = A_1C(^^(0) + A_15(t)[y0 - /(0,4>)] + A-1 Jq C(t - s)f{s,xs)ds 
+A_1 Jo S(t — s)v(s)ds + A"1 Jq S(t — rj)Bu(r))dr7,

(8.3.3)
where u is defined as in (8.3.1). It is, then easy to observe that a; is a mild solution 
of the system

^[a:'(t) - AG A_1Aa:(t) + A-1£w(t) + A_1ir(t,.7;t,3:,(t)), t G J. (8.3.4)

Thus we have to obtain bounds on x and x' independent of A > 1 which will prove 
the boundedness of 0.

Using the assumptions, it is easy to obtain positive constants C’i,C2,C3 depends on 
the initial values, m, and bounds on the Cosine and Sine operators such that

\x(t)| < Ci + C2 / \\xa\\ds + C3 f p(s)t(||.Ts|| + |a:'(s)|)ds, for all - r < t < m.
Jq J 0

Denoting by v(t), the right-hand side of the above inequality, we get

M‘) < »(«)■
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Here the function /«is defined by

//(£) = sup{|.r(s)| ■ —r < s <t} : ~r <t <m. 

Further t?(0) = C\ and

«'(*) < C2p(t) 4- Cap(t)il>(ji{t) + x'{t))

< C2v(t) 4- Ca,p(t)^f(v(t) + |a/(t)J), t e J.

Now

At) = X^ASm + ^emvo-f(Q, <!>)} +

+A_1 £ AS(t ~ s)f{s, x3)ds + A'1 jf* C{t - p)BW~l

[.r, - C(m)<l>(0) - S{m)[yQ - /(0, <p)] - jf C(6 - s)/(s, :ra)ds

— ^ 5(rn. — s)'y(s)ds] (77)^77 4- A-1 j C(t — s)v(s)ds, t, 6 J.

We can estimate .7:' in a similar fashion, There exist positive constants C4, C5, C%, C7 
such that

|7:;(£)| < C4 + C'sll^tH + Ce/o IKps 4- C7 JoP(s)^(||®«|| + |s/(s)|)cis 
< C4. 4- C5m(0 + Ce fo M<is 4- C7 fj p(a)^(||a:,|| 4- |s'(3)|)da 

<C4 + C5v(t) 4- Cq /o \\xs\\ds 4- C7 fo p(s)^(||3;a|| 4- |.T/(s)|)(is.

Denoting by r(t) the right-hand side of the above inequality , we have

W{t) I <r(i),t€J

r{ 0) = C4 + C5Ci

and

r'it) < C5v'{t) 4- + Crp(t)V(ji(t)) 4- \x'(t)\)

< Cr0v'(t) + C6v{t) + C7p{t)^(v{t) + r{t))

< {C2Cs 4- Co)v(t) 4- (C3C5 4- C7)p(t)ty (v(t) 4- fit)), 

where the last inequality is obtained from the estimate of v'{t). Let

w(t) = v(t) + r(t), t € J.
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Then

and

c :— u>(0) = i/(0) -f- T’(O) = Ci + C4 + C\C§

w'(t) ~ v'(t.) + r'(t.)

5: (C2 + C2C5 + Ce)v(t) + (C3 + C3C5 + C7)p(t)^(v(t) + r(t))

= (C2 + C2C5 + C6)w(t) + (C3 + C3C5 + C7)p(t)%(w(t))

< m.(t)[w(t)+ 'Sj(w(t))],

where m(t) max{C2 4- C2C5 + Cq, C3 + C3C5 4- C7)}. This implies that

M*) ds [*>(*) ds ^ rm . . , r00 ds
s + vp(s) “ Jw(o) s 4- $(s) ~ Jo m S S < Jc s + #(s)’

where the last inequality follows from assumption (H7), This implies that there exists 
a constant L such that

w(t) = v(t) + r(t) <L,t£ Jm.

Thus

||a(i)|| < v(t) < L, t £ Jm 

ll*'(*)ll < r(t) <L,teJm

and hence 0 is bounded.

Step 2: Nxx is convex for each x £ Z.

Indeed, if h\,h% £ N\X then there exist iq,v2 £ SpltXttX> such that for i = 1,2, we 
have

/.,{() = C(t)«l(0) + S(i)[» - /(0,<t>)} + Cit - s)f(s, x,)ds 

+ Si S(t. - s)Vi(s)ds + Si Sit - ii)Bu(rj)dr),
were u is defined as in (8.3.1) with v replaced by //,. Then it is an easy matter to see 
that, for 0 < k < 1,

(khi + (1 - k)h2)(t) = C(t)m 4- S(t)[y0 - /(O,0)l 4- Jo4 C(t - s)f(s,xa)ds 

+ Jo S(t - s)(kvi + (1 - k)v2)(s)ds + fo S(t- r})Bu{r})dr},

where u is defined as in (8.3.1) with v = k.vi + (1 — k)v2.
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Since S/?.T,v is convex as F is convex, we have v — kvj + (1 — k)v2 E SF,xt,x' and 
hence khi + (1 — k)h,2 € Nix.

Step 3: N\(Uq) is bounded in Z for each q € N, where Uq is a neighborhood of 0 in

We have to show that there exists a positive constant l such that for any x E Uq and 
h G Nix such that \\h\\z < l. In other words, we have to bound the sup-norm of both 
h and h!. We can write

h(t) = C(t)(j){0) + S{t)[yQ - /(0, $)} + Jq C{t - s)f(s, xs)ds 
+ Jo S(t - s)v(s)ds + Jo S{t - r})Bu(-q)dr),

and therefore

ti(t) = AS{t)(j)(0) + C(t)[yQ - /(0, <i>)] + f(t,xt) + f AS(t — s)f{s, x8)dsJO

+ C(t - ri)BW-1 [Xl - C(rn)m - S(ro)|jfo - /(0,0]

- J C{b — s)/(s, xs)ds — j S(m — s)u(s)dsj (r})drj

+ f C(t — s)v(s)ds,
Jo

where u is defined as in (8.3.1) and v G Sf^x1-

The assumptions will give uniform estimates for v and x which in turn can be used 
to obtain the required bounds for h and h! for every x G Uq and h E N\x.

Step 4: N\{Uq) is equi-continuous, for each q G N. That is the family {h, G N\X : 
x G Uq} is equi-continuous.

Let U0 = [x G Z, 11 a: j | < q} for some q> 1. Let x E Uq, h E Ntx and t1? € Jm such
that 0 < fi < t2 < ra. Then

IM*i) - M*2)l
< |[C(t0 - C(t2)]^(0)| + |[5(t0 - S(h)][yo - /(0, m

+| /<l[C'(ti - s) - C(t2 - «)]/(si*,)| + | / 2 C(t2 - s)f(s,x8)ds\
Jo

+1 £ [S(ti -v)- S(t2 - T})]BW-1 [Xl - C(rn)m - S(m)[y0 - /(0, </>))



Chapter 8 106

- f0 C(m. - s)f(s, i,) + jf Sim - s)»(s)] (ij)<4)|

+| S(tj - ^JSTV-1 [.*, - C(m)0(O)] - S(m)[yo - /(0,«]

/•TO fb ,
- C(m-s)f(s,xs) + S(m - s)v(s)^(r))dT}\

JO JO

+| [ [S{ti - s) - S{t.2 - s)Ms)l + I f S{h - s)v(s)ds\JO Jt\

Now using the bounds on x, v and the given assumptions, by a routine calculation, 
we obtain a positive constant L > 0 such that

- Hh)l < £{!<?((,) - c(h)| + |s(t,) - s(ta)|}
\C(ti — s) — C(t2~ s)\ds + Jt \C{t2 -s)|ds| 

+L -8)- S(t2 - s)\ds + f* \S(t2 - s)\ds^

In an analogous way, one can also obtain a similar estimate for |h'(ti) — /I'fo)!

Note that C(t) and S(t) are uniformly continuous in the uniform operator topology. 
Thus the above estimates implies the required equi-continuity. This also proves the 
relative compactness of Ni(Uq). Now it remains to prove the u.s.c of JVi. By our 
discussion in Section 8.1, it is enough to prove that Nx has a closed graph. We do 
this in the next step using Lemma 8.2.2.

Step 5: Let h„ £ Nix„ and hn —> h*, xn —> x*. We must show that h* £ Nix*. 
By definition, there exists vn £ SptXnt,x'n such that

A„(t) =C{i)«O) + S(i)[x„-/(0,ffl + /o,C(i-S)/(s,;rnI)ciS

+ /o S(t- sjvn(Sjd.s + Jj S(t - r/)Bun0f}dr/I

where un is defined as in (8.3.1), where x is replaced by xn. The difficulty is that we 
do not have the convergence of vn and hence that of un. In fact, we cannot expect the 
convergence of vn and the existence of v* (to be defined later) has to be achieved by 
a suitable selection. First, we separate the part of vn from un. Write un = un + um 
where
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and
rm
/ S(m - s)vn(s)ds 

Jo
(t).MV = “W-1

Thus, we get from (8.3.5) that

K(t) : = hn(t) - C(t)cf>(0) - S(t)[y0 - /(0, <£)] - / C(t - s)f(s,xna)ds
Jo

- f S(t- rj)Bun(ifj\dr}
Jo

= f S(t- r])Bun(r})dq + f S(t.- s)vn(s)ds. (8.3.6)
Jo Jo

Note that the LHS of the above equation do not contain vn. In order to apply Lemma 
8.2.2, define T : Ll{Jm,X) C(Jm,X) by

ft rm rt
T(v)(t):=— S(t. — s)BW~1 / S(m — ri)v(r])drf(s)ds+ S{t — s)v(s)ds.

Jo Jo Jo

Then hn(t) € r(5f’,xnt,<) and since hn and xn converges, we deduce that hn also 
converges to h* and is given by

h*(t) := h*(t) - C(t)m - ${t)[yo - /(o, *)] - JS C(t - s)f(s, x*)ds

~ Jo S(t- rj)B*(rj)]dnt

where u has the same definition as un with xn replaced by x*. Finally from Lemma 
8.2.2, there exists v* € r(S/?x»iX.«) such that

h*(t) = C(t)m + S(t)\yo - /(0, *)] + Jq* C(t - s)f(s,x*)ds 

+ Jo ~ s)v*(s)ds + Jo S(t - r])Bu*(ri)dr],

where u* is defined as in (8.3.1), where x is replaced by x*. Observe that we do not 
claim the convergence of un to u* and vn to v*.

This shows that Ni has a closed graph. As a consequence of Lemma 2.2.12, we 
deduce that N\ has a fixed point in Z. Thus, system (8.1.1) is controllable on J and 
this completes the proof of the main theorem. ■
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8.4 Example

Consider the following second-order partial differential inclusion:

I (ft (*>l) - /(*> Vtj) G y**(®, t) + *) + F(t, Vu ^*))

y(o.O =y(’r.t) = o for *>°
(8.4.1)

y(x, t) = <f>(x, t), for —r<t< 0

fSfOc, 0) = a:o(y), i £ J = [0, oo) for 0 < y < -nr

Here one can take arbitrary non linear functions / and F satisfying the assumptions 
(H5)-(H7). Let X — L2[0,7r] and Cr = C([—r, 0], X) be as in Section 8.1. We use the 
same notations. Then, for example, one can take / ; J x Cr —> X defined by

f(t, <j>){x) = r)(t, (j){x, -r)), <f) £ Cr, x£ (0,7r)

and F : J x Cr x X —> 2X be defined by

F(t,<f>,w)(x) = a(t, <p(x, -r),w(x)), 0 € CT, w € X, x £ (0,7r)

with appropriate conditions on p and a.

Now u : (0, tt) x J —> R is continuous in t which is the control function. Define 
A : X —-> X by

Aw - w", w £ D(A)
where
D(A) — |£ X : w, w' are absolutely continuous, w" £ X, w(Q) = w(ir) = oj Then 

A has the spectral representation
OO

Aw = -«2(^,Wn)wn, w £ D(A),
n=l

where, wn(s) = sinns,n = 1,2,3,...... is the orthogonal set of eigen functions
of A. Further, it can be shown that A is the infinitesimal generator of a strongly 
continuous Cosine family C(t), t £ R, defined on X which is given by

OO

C(t)w = y cos nt(w,wn)wmw £ X.
1

The associated Sine family is given by

°° 1S(t)w = Y — sin nt(w,wn)wn, w £ X. 
nn=l
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The control operator B : L2(J,X) —► X is defined by

(Bv,){t)(x) = u(x,t), x G

which satisfies the condition (HA). Now the PDE (8.4.1) can be represented in form 
(8.1.1). Hence, by Section 8.3, the system (8.4.1) is controllable.


