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Chapter 2

PRELIMINARIES

2.1 Basic Concepts of Control Theory

In this chapter we provide some basics of control theory and necessary tools of func­
tional analysis which will be used in the sequel for the controllability analysis of 
nonlinear systems,

Kalman [80] introduced the concept of controllability for the linear system (2.1.1) 
and was subsequently extended to nonlinear systems dominated by controllable linear 
parts by Davison and Kunze [52], Mirza and Womack [102], Quinn and Carmichael 
[117]ete., by using the techniques of fixed point theory. In our investigation, con­
trollability properties of the nonlinear system depend more on the properties of the 
linear part. So we consider first a finite dimensional linear system represented by the 
differential equation

x'(t) — A(t)x(t) + B(t)u(t), 0 <t,Q <t <t\ <oo 
x{k) - x0

where, for each f. € [to, ti], .r(t) <E Rn is called the state of the system, u(t) € Rm is 
called the control vector and u e Z2([t0, h], Rm)\A(t), B(t) are matrices of dimen­
sions n x n and n x m, respectively. Assume that the elements atk(t) of A(t)(?', k = 
1,2,are absolutely integrable functions of t € [to. *i] and elements bu(t) of 
B(i.)(i = 1,2,?7,; l — 1,2, .,..,m) are piecewise continuous functions of t € [to, R}. 
Throughout this thesis J denotes the time interval either [to,ti] or [0,T] or [0,6],

(2.1.1)
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depending upon the context. Here we take J = [t0)ti].

DEFINITION 2.1.1 An nxn matrix Junction $(f, to) is said to be transition matrix 
of homogeneous linear part of (2.1.1) if it satisfies the following:

d_
dt

$(t,t0) = A(t)$(t,t0), #(to,to) = I. (2.1.2)

Example: The matrix function given by

Ht,tQ) = cos(t —10) —sin(t — t0) 
sin(t — t0) cos(t — to)

is a transition matrix for the system

d
dt

x(t.) = Ax(t)

where,

A 0 -1
1 0

which is called the generator of the transition matrix $(t, tQ). The transition matrix 
has the following properties:

1. $(t, t) — I identity matrix of order n, for all f 6 J

2. $(t, t0) = $(t, t)$(t, i0), t < r < t0

3. §-t($(*» t)z0) = A{t)($(t,T)x0), a:0 G Rn.

4. $(t, s) is strongly continuous in t, s for t0 < s < t < tj.

If (t), d>2(t), $3(t),........ , <hn(t) are linearly independent solution of the homo­
geneous system (2.1.1) and $(t) is the matrix whose columns are #i(t), ^(t),
4>3(t)........., 4>n(t), then it can be shown easily that the transition matrix #.(t, r)
satisfies

5. $(t,r) = $(t)[$(r)]_1

Using the variation of constant formula and Theorem 1 of Brockett [39], we have the 
following theorem concerning the solution of system (2.1.1).
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THEOREM 2.1.2 The sequence of matrices M* defined recursively by

M0 = I, Mk = I+ j* A{r )Mfc_i (r )dr (2.1.3)
JtQ

converges uniformly on J. Moreover, if the limit function is denoted by <5>(i, to) then 

~-$(Mo) = A{i)$(t,ta) and $(t0,t0) = I (2.1.4)

and the solution of (2.1.1) which passes through xq at t = to is given by

x(t) - $(t,t0)x0+ f $(t,T)B(r)«(r)dr (2.1.5)
JtQ

From Theorem 2.1.2, it follows that the explicit expression for $(Mo) is given by the 
Peano-Baker series (refer Brocket! [39])

$(t,t0) = I + f A(ri)dTi+ f A(ti) ( A(r2)dT2 dn +.... (2.1.6)
Jto JtQ Jto

If A is a real constant n x n matrix, then the Peano-Baker series (2.1.6) becomes

$(t, to) = I + A(t - to) + +.....= eA^~to^ (2.1.7)

Though a variety of definitions are available for controllability in the literature, our 
definition is as follows (refer Russell [120]).

DEFINITION 2.1.3 The system. (2.1.1) is said to be controllable over [t0,ti] if for 
each pair of vectors x0,Xi G Rn there exists a control u G L2([to, tj.], Rm) such that 
the solution of (2.1.1) with x(to) = x.q also satisfies x(t{) = x\.
That is,

= $(ii,fo)®o + / 1 $(h,T)B{r)u(T)dT
JtQ

The following definitions are useful in Chapter 5.

Let T be the set of n-vector valued functions z defined on J = [to,T) such that 
2(t0) = xq, z(T) = xi and 2 is differentiable almost everywhere.

DEFINITION 2.1.4 The system (2.1.1) is said to be T-controllable if for any 
z£T, there exists a control u G L2{J, Rrn) such that the corresponding solution x(-) 
of (2.1.1) satisfies x(t) — z(t).
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DEFINITION 2.1.5 The system. (2.1.1) is totally controllable on J = [to,T] if 
for all sub intervals [Ufi./} of [to, T] the system. (2.1.1) is completely controllable.

Clearly, T- controllability => Total controllability ==> Complete controllability.

REMARK 2.1.6 The control u which steers x$ to xx need not be unique and in gen­
eral it depends on x0 and xx. The controllability defined above is known in literature, 
as global controllability. If xo and xx are required only to belong to a subset D CR", 
then the resulting controllability is said to be local controllability.

Let C = L2(J, Rra) —> Rn be an operator defined by

Cu= f $(ti,T)B(T)u(r)dr. (2.1.8)
Jto

It is clear that the system (2.1.1) is controllable if and only if the control operator C 
is onto. If C* denotes the adjoint of C then C is onto ( if and only if C* is one-one) 
if and only if CC* is positive definite. The operator CC* is known as controllability 
Grammian and is denoted by W(t.Q, ti) :

W(tQ,tx) = r Q(tltT)B(r)B*{T)&(tUT)dT (2.1.9)
Jto

By Definition 2.1.3, the system (2.1.1) is globally controllable if (xx — $(ti,t0).To) 
lies in the Range of C for for all xq,xx G Rn. But (xx — $(ti,to)®o) € Range (C) iff 
(.T! - $(ti,tG)xQ) G Range (CC*).

When W(tQ,ti) is invertible, the control function defined by

u(t) = -B*(i)$*(t1,t)W"1(to,ti)[®i “ $(ti,<o)«o] (2-1.10)

steers the system (2.1.1) from x(to) = t,q to x(tx) = xx.

So, we have the following characterization for controllability.

THEOREM 2.1.T The linear system (2.1.1) is (globally) controllable if and only if 
the controllability Grammian W(ti,to) defined in (2.1.9) is nonsingular. That is, 
there exists a constant c > 0 such that

det W(tQ,tx) > c
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DEFINITION 2.1.8 A bounded linear operator S : Rn -> L2( J,Rm) is called a 
steering operator for (2.1.1) if for any a € Rn,u — Sa steers 0 to a.

Anmxfi matrix function S(t) is called a steering function, if the operator S defined 
by (Sa)(t) = S(t)a is a steering operator.

We observe that

1. A bounded linear operator S : Rn —► L2(J,Rm) is a steering operator if and 
only if CS = I and

2, an m x n matrix function S(t) is a steering function if and only if

ri$(t1,r)B(r)5(r)dr = I (2.1.11)
Jto

We have the following characterization regarding controllability of (2.1.1) in terms of 
steering operator and steering function.

THEOREM 2.1.9 The following are equivalent:

1. The system. (2.1.1) is controllable.

2. There exists a steering function for (2.1.1).

3. There exists a steering operator for (2.1.1).

REMARK 2.1.10 IfCC* is invertible (that is, the controllability Grammian is non­
singular) then

S = C^CC*)-1 (2.1.12)

(the More-Penrose inverse of C) is a steering operator.
In this case

So(t) = (2.1.13)

is a steering function. Further, So(t) is an optimal steering function, (refer Russell
[120]).
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Consider the finite dimensional nonlinear time varying system, with control, repre­
sented by the equation

where A(t) and B(i) are as in (2.1.1) and F : J x Rn —» Rn is a nonlinear function 
satisfying caratheodory conditions (Joshi and Bose [78]). All quantities in (2.1.14) 
are assumed to be real.

A solution of (2.1.14) is an absolutely continuous function in L2([t0, ti], Rn) which 
satisfies (2.1.14) almost everywhere. A solution x(t) exists for (2.1.14) if and only if 
x(t) satisfies the integral equation

where <&(i, r) is the transition matrix of the homogeneous linear part. We shall be 
interested in the global controllability of (2.1.14).
There exists a control u which steers the initial xq at time t = to to the given final 
state xi at time t = f i if and only if there exists a solution x of (2.1.14) satisfying

Suppose that the linear part of (2.1.14) is controllable. Thus by Theorem 2.1.9, there 
exists a steering function S(t) for the linear part of the system (2.1.14) . If there 
exists x satisfying (2.1.16) then the steering control for (2.1.14) is given by (using 
Definition 2.1.8).

ctx■ = A(t)x + B(t)u + F(t,x), 0<t0<t<ti<oo (2.1.14)

X(t0) - Xq

(2.1.17)

Thus, the state of the system (2.1.14) is given by

(2.1.18)
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Conversely, suppose that (2.1.18) is solvable then x(to) = .To and x(ti) = x1. This 
implies that the system (2.1.14) is controllable with the control defined by (2.1.17).

Hence, the controllability of the nonlinear system (2.1.14) is equivalent to the solv­
ability of the coupled equations.

x(t) = $(f, f0)x0+ f <h(t,T)B(T)u(T)dr + f $(t,T)F(r,.r(r))dr (2.1.19)
Jto Jto

u{t) = S(*)[®i -$(*i,to)*o- ^ $(ti,T)F(r,T(T))dr] (2.1.20)

Let Xi = L2( J\ Rm), X2 = L2(J, Rn). Define operators K, N : X2 -» X2, H : Xx -> X2 
and L : X2 —> Xi as follows

(Kx){t) = jf0$(t,T)x(T)dT-t (Nx){t) =F(t,s(t));

(Hu){t) = //0 $(t, r)B(r)«(T)dr; (Ia:)(*) = 5(t) Jj1 $(«i, r)x(r)dr.

Clearly K, H and L are continuous linear operators and N is a nonlinear operator, 
called Nemytskii operator, refer Joshi and Bose [78]. Using these definitions, the 
coupled equations can be written as a coupled operator equations

x = Hu 4- KNx + W\.

u = u\ — LNx,
where, ioi = 4>(f., t0)x0 and ux - S(t)[xx - $(ti,*o)®o]

Now we consider the linear infinite dimensional system in Banach space described by 
the. equation

x'(t) = Ax(t) + B(t)u(t), 0 <to <t <t\ <oo 
t(0) = T0 (2.1.21)

where the state x(t) takes values in a Banach space X with the norm |].[| for each 
t e J = [0,T], control function u(.) is given in L2(J, U), a Banach space of admissible 
control functions, with U as a Banach space. Here A is the infinitesimal generator of 
a strongly continuous semigroup > 0 in a Banach space X.

If A is a matrix then T(t.) = reduces to the transition matrix.

DEFINITION 2.1.11 A strongly continuous family {T(t)}t>o of bounded operators 
in a Banach space X is called a semigroup generated by A if



Chapter 2 14

(t) T(t + s)x = T(t)T(s)x, x e X and t,s> 0,

(n) T(0)x = x, x G X,

(iii) 11-» T(t)x is continuous for t > 0, x G X,

(tv) Ax = limf_*0+ T^~x\ x G D{A).

REMARK 2.1.12 In Definition (2.1.11), the condition (iv) gives the generator of 
the semigroup in terms of an operator A [137],

EXAMPLE 2.1.13 Consider the one-dimensional heat equation on Cl = (0,1)

dy d2y
dt dx2 in fix (0 ,T)
y{x, 0) = y0(x) in Q

2/(0, t) = 0 = y(l,t) in (0,T). ,

The above system can be associated with the evolution equation ^ = Ay on L2{0,1) 
where A : L2(0.1) —> L2(0,1) by Ay = y", where V(A) = {y G H:w,w' are absolutely 
continuous, y(0) = (/(l) = 0} It is easy to show that A generates semigroup S(t), t > 0 
in L2(0,1) given by

fl

S(t)y = 52 2 exp(—n?ir2t,)simmx / smmry(r)dT, y G L2(0,1).
»=1 Jo

In recent years, more general family of operators have, been introduced.

DEFINITION 2.1.14 A continuous semigroup operator T(t) : R+ —► Rnxn is called 
n-times integrated semigroups, generated by A if

rocR{ A; A) = A” / e"At5„(t)di; for som.e A G R, neN (2.1.22)
Jo

where, R(A, A) = (A — A)-1 is called the resolvent set of the generator A. It has been 
noticed that resolvent R(A, A) is given by the Laplace Transform, of the semigroup 
T{t) (Heiber [73]),

rocR(X\ A) = / e~XlT(t)dt 
Jo
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We denote n-times integrated semigroups by Sn(t)
In 1991, M Heiber ([71]-[73]) replaced the integer n by any real number a.

/■OO
R{X\A) = AQ / e~xtSa(t)dt] a G H+ (2.1.23)

Jo
(2.1.23) is the generalization of (2.1.22).
We denote a -times integrated semigroups by Sa(t).
If A generates a semigroup T(x), then the a-times integral (or a -fractional order 
integral) of semigroup T(t) is defined as,

Sa(t) = ^ jf(t - s)“-1T(s)da (2.1.24)

where, T is the Gamma function.

Then the system (2,1,21) has mild solution of the form (Ntouyas and Tsamatos [110])

x(t) — T(i)xo + / T(t — s)Bu(s)ds 
Jo

In many cases, it is advantageous to treat the second order abstract differential sys­
tems rather than to convert them to first order systems. A useful tools for the study 
of abstract second order equations is the theory of strongly continuous cosine families. 
We will make the use of the basic ideas from cosine family theory, ([132], [133]).

We consider the semi linear second order control system

x"(*) = Ax(t) + Bu(t^ t€J- [0,T] (2.1.25)

*o = 4>, ®'(0) = Vo
where the state x(t) takes the values in the. reflexive Banach space X, A is the in­
finitesimal generator of the strongly continuous cosine family C(t),t € R of bounded 
linear operator from U to X, and the control function u is given in L2(J, U), a Banach 
space of all admissible control function, with U as a Banach space and yo G X.

DEFINITION 2.1.15 A strongly continuous operator C(t) : R —> Rnxn is called a 
cosine function if

1.

2.

C(0) = /, I is the identity matrix on R; (2.1.26)

C(t + s) + C(t -s) = 2C(t)C{s) for all s,t G R; (2.1.27)
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S. The map t> C(t)x is strongly continuous in t on R for each fixed x € R.

The strongly continuous sine family {S(i) : t e R}, associated to the strongly contin­
uous cosine family {C(t) : t e R} is defined by

S(t)x= [ C(s)x ds, x € R,t G R.
Jo

Note that the identity (2.1.27) is same as

S{t + s) = C(t)S(s) + S(t)C{8)\ t,seR (2.1.28)

(Refer Yang [137])
Example: The matrix function given by

C{t) cost
0

0
cost

is a cosine function.

DEFINITION 2.1.16 The generator of the cosine function is a rrmtrix A defined by

r C(t)x — .r-i
Ax - 2 lim 

t-*o t2
x 6 Rn (2.1.29)

In the above example, A = — I is the generator.
We now give the following equivalent definition of cosine function in terms of the 
resolvent set of the generator A, given by p(A).
If R(X2\A) = (A2 — ^4)-1 is the resolvent of A, then we define cosine function C(t) 
generated by .4 as follows.

DEFINITION 2.1.17 A strongly continuous function C(t) : R —► Rnxn is called the 
cosine function if

1 r°°i?(A2; A) = 4 / e~~XiC(t)dt\ A 6 p{A) (2.1.30)
A Jo

and
||C(/.)|'| < Mew(;A> w (2.1.31)

where M and to are constants.

Now we generalize the definition of cosine function as follows:



Chapter 2 17

DEFINITION 2.1.18 A strongly continuous operator C(t) : R —> Rnxn is called an 
a— times integrated cosine function if

pOO
R(A2; A) = A*"1 / e~xtC(t)dt; a > 0, A > u (2.1.32)

Jo

when q= 0, (2.1.32) reduces to (2.1.30).

THEOREM 2.1.19 (Yang [137]) An n x n matrix A generates an a— times inte­
grated cosine function if and only if there exist constant M, u> E R+ such that

dA i?(A2; A) 
d\n A1_a

^ Mn!
“ (A - 0;)"+!

The condition in the Theorem 2.1.19 follows directly from, equation (2.1.30).

The following terminology of cosine operator can be used to deal with the second 
order systems.

Let B(X) denote the Banach space of bounded linear operators on Banach space X

into X. We say that one-parameter family ^C(t) : t € 72 j of bounded linear operators
in B(X) is a strongly continuous cosine family if and only if Definition (2.1.15) holds. 
Assume the following condition on A.

(Hi) A is the infinitesimal generator of a strongly continuous cosine family C(t),t € R 
of bounded linear operators mapping X into itself and the adjoint operator A* is 
densely defined i.e. D(A*) = X* ( [38]).

The infinitesimal generator of a strongly continuous cosine family C(t),t G R is the 
operator A : X —> X defined by

Ax = ~C(t)*|t=o, x G D(A)

where, D(A) = {.r G X : C(t.)x is twice continuously differentiable in t}.

i.e.
D(A) = {x G X : C(.)x G C2(i?, X)}

Define X\ = {.r G X : C(t)x is once continuously differentiable in t}.

LEMMA 2.1.20 ([132]) Let (HI) hold. Then
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1. there exist, constants Mi > 1 and w > 0 such that

2. S{t)x C AT and S(t)X C D(A), for t. E R\

3. jtC(t.)x — AS(t)x, for x E X\ and t E R;

f. %fsC(t)x = AC(t):x, for x E D(A) and t E R.

LEMMA 2.1.21 ([132]) Let (Hi) hold and v : R —» X such that v is continuously 
differentiable and q(t) = [$ S(t — s)v(s)ds then,

q E C2(R,X) for t E R,q(t) E D{A),

For more details on strongly continuous cosine and sine family, refer Goldstein [68] 
and Travis and Webb ([132], [133]).

The integral representation of the system (2.1.25) can be written as (Ntouyas and 
Tsamatos [110])

where, //.: (0, rr) x J —► (0, n) is continuous in t,X = L2 [0, n]
Let A : X —> X be defined by Aio — w", w E D(A) 
where,
D(A) — {w E X : iu,w' are absolutely continuous, w" E X, w(0) = w(x) = 0}

q'(t) — [ C(t — s)v(s)ds and q"(t) — Aq{t) 4- v(t).
Jo

Example:

= zvy(yff) +hivff) 

z(0,t) — z(lT,tJ) — 0
Qz
— (y,0) = zo(y)t t E J = [0,T]; forO <y< it

Then.

OO

Aw = 52 —n?(w,wn)wn, w E D(A)
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where,
wn(s) = sinns,n = 1,2,3,.... ; is the orthogonal set of eigen functions of A.
Here, A is the infinitesimal generator of a strongly continuous cosine family C(t).t e R 
in X and is given by [132]

OO

C(t)w = ]T) cosnt(w, wn)wn, w 6 X
n=l

The associated sine family is given by

OO J

S(t)iu — —sirmt(w,wn)wn,w e X
n=l n

The controllability of this system was studied by Balachandran and Marshal Anthoni 
(refer [20]).

The last chapter of the thesis is related to second-order differential neutral inclusion 
system. The difference between an ordinary differential equation and a differential 
inclusion is that the right hand side of the differential inclusion is a set instead of 
a single-valued function in the differential equation. The solution of the differential 
inclusion is also a set and not a single system trajectory. Any function that satisfies 
differential inclusion system is a trajectory of the differential inclusion, but not a 
solution of the differential inclusion.

In the decade 1930-40 such problems as the existence and the properties of the solu­
tions to the differential inclusions have been resolved in the finite dimensional spaces 
and subsequently it has been generalized to an infinite dimensional spaces.

The study of IVP with nonlocal conditions is of significance since they have applica­
tions in problems in physics and other area of mathematics. Some authors have paid 
attention to the. IVP with nonlocal conditions, in the few past years. We refer to 
Balachandran and Chandrasekaran ([12]), Byszewski ([40], [41]), Ntouyas and Tsam- 
atos ([110]) and Benchohra and Ntouyas ([30]). The work on evolution nonlocal IVP 
was initiated by Byszewski [40] by using Co semigroup and the Banach fixed point 
theorem. The existence and uniqueness of mild, strong and classical solutions of the 
first order evolution nonlocal IVP was provided by him. The IVP for second order 
semilinear equations with nonlocal conditions was studied by Ntouyas and Tsamatos 
([110]).

The following inclusion result is useful in Chapter 8.

Benchohra and Ntouyas [33]discussed the controllability results for multi valued semi-
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linear neutral functional differential inclusion in compact interval

“ /(*>**)] € Ax(t) + Bu(t) + F(t,xt), f€ J=[ 0,6] (2.1.33)

x0 = <j>,x'(0) = Xi , (2.1.34)

where the state x(t) takes values in the reflexive Banach space X with the norm 
j.j, £0 € X, A is an infinitesimal generator of a strongly continuous cosine family 
(C(f.) : t G R} of bounded linear operator in a Banach space X, F : J x C —» 2X is 
a bounded, closed, convex multi valued map, f ■. J x C X is a given function, B 
is a bounded linear operator from U to X and the control u(.) is given in L2(J, U), 
a Banach space of admissible control function with U as a Banach space and <f> G C. 
Here C — C([—r, Q],X) is the Banach space of all continuous functions <j> : J0 = 
[—r, 0] —> X endowed with the sup norm

||$|| = $up{\(f>(6)\ : —r <6 < 0}

J = [0, b] is real interval. Also for any continuous function x defined on the interval 
J\ = [—r, b] and any f 6 J, we denote by xu the element of C(Jq,X) defined by 
Xt(0) = x(t, + 8), 9 £ Jq.
Here, xt(.) represents the history of the state from time t — r, up to the present time 
t.

2.2 Some Basic Results of Nonlinear Functional 
Analysis

Ler. X be a real Banach space and X* be the dual of X. The strong convergence of a 
sequence {xn} to .r0 in X is denoted by xn —> a:0 and weak convergence by xn A x0. 
For each x G X and x* G X*, let (x*, x) denote the evaluation of x* at x and when 
X is a Hilbert space {.,.) denotes its inner product.
Let T : D(T) C X —> X* be any operator. Then

1. T is said to be monotone if < Tx — Ty, x — y >> 0 V.t, y G D(T),

2. T is called strictly monotone if the above inequality is strict for x^y.

3. T is called strongly monotone if there exists a constant /x > 0 such that < 
Tx - Ty, x - y >> p\\x - yf Vrr, y G D(T).
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4. T is said to be of type (M) if for any sequence xn £ X converging to xq £ 
X with Txn converging weakly to y £ X* and Ziran,_c>0 < Txn,xn — .-r0 >< 
0, we have y = Txq.

5. T is said to be coercive, if \ —> oo-^p- = oo.

Observe that T is monotone, (strongly monotone) if and only if p.(T) > 0 (//(T) > 0).

Let Y be another real Banach space and {a:„} is a sequence in X then the operator 
T: X -+Y is called

1. continuous at xq if
Xn -> XQ =$• Txn Tx.q

2. weakly continuous at x0 if
IV m W m

Xn —* Xq =4> i Xn —* 1 Xq

3. completely continuous at xq if

Xn Xq =4> Txn -+ Tx,q

T is called bounded if it maps every bounded sequence {xn} in X into bounded 
sequence {Txn} in Y and T is called compact if for any bounded sequence {xn} in 
X, the sequence {Txn} has a converging subsequence in Y.

Let Lip be the set of all operators T : X —» X such that there exists a constant a > 0 
satisfying \\Tx — Ty|| < a||x — y|| Vx, y £ X. For T € Lip , we define

llTir = sud UTa: — Ty\\
||i || Snpx y€X-,x^y jj^, _ ^||

V T £ Lip with ||T||* = a, we say that T is Lipschitz continuous with constant a. 
We note that

1. T, 5 e Lip =► ||TS||* < ||r||*||5||*

2. T £ £(X) => ||T||* = ||T||

For more details refer Dolezal [55].

The following theorem is employed to prove some lemmas in Chapter 6.
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THEOREM 2.2.1 [55]. Let K E M be continuous and N E Lip, p,{N) > 0. If 
(fi(K) + //.(iV)||jV||*-2) > 0, then [J + KN] is invertible with [/ + KN}-1 E Lip and

111 J 11 - p(N){p,{K) + p(N)\\N\\*~2)

THEOREM 2.2.2 [78] Let X be a real Banach space and T : X —> X*, a 
mapping of type (M). If T is coercive then the range of T is all of X*.

THEOREM 2.2.3 [78J Let N be a continuous monotone mopping of a real reflexive 
Banach space X into X* and let the monotone linear operator K : X* —» X satisfy 
the following condition:
3 a constant d > 0 such that (x, Kx) < d\\Kx\\2 \fx E X*.
Then the equation x + KNx = / admits a unique solution x for each f in X.

The following definition of Integral contractor will be used in Chapter 3 which will 
work as a weaker notion of Lipschitz continuity.

Let C = C([0, T]; L2(0, 2tt)) denote the Banach space of continuous functions on 
J — [0,T] with values in (L2) with the standard norm ||te||c = sup0<t<T ||^(t)||L2(0)2n.),

DEFINITION 2.2.4 Suppose F : J x L2(0, 2tt) —► BL(C) is a bounded continuous 
operator and there exists a positive number 7 such that for any w,y E C, we have

sup ||/(t, w(x, t) + y{x, t) + / - s)(r(s, w{x, s))y)(x, s)ds) - f(t, w(x, t))

-{T{t,w(x,t))y){x,t)\\LH0i2n) <7lll/(M)|]c (2-2.1)

Then we say that f(t, w(x, t)) has a bounded integral contractor {/ + <DF} with respect 
to — s).

For simplicity, we may refer F, the integral contractor instead of {I + j $F}.

REMARK 2.2.5 It is remarkable that if T = 0 then condition (2.2.1) reduces 
to Lipschitz condition i.e.

II/(•, w(x,.) + y(x,.)) - f(.,w(x, .))||o < 7(|y(x, t)c||

We need the following fixed-point theorem due to Schaefer [123] in Chapter 4.
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THEOREM 2.2.6 (Schaefer Fixed Point Theorem (see [123])): Let X be a 
norm.ed linear space. Let F : X —> X be a completely continuous operator, that is, 
F is continuous and im.age of any bounded set is contained in a compact set, and let

4(F) = jro G X,w = AFw for som.e 0 < A < 1

Then, either 4(F) is unbounded or F has a fixed point.

The following generalized contraction principle will be used in Chapter 5, Chapter 6 
and Chapter 7.

THEOREM 2.2.7 [78]. Let T be a continuous mapping of a Banach space X into 
itself such that there exists a positive integer n > 1 such that \\Tnx — Tny\\ < fc||:r — 
y\\ V x, y G X and for some positive constant k < 1. Then T has a unique fixed point.

REMARK 2.2.8 ([42],[63]) When n = 1, the above theorem is known as Banach 
contraction principle. For any arbitrary x.q, the sequence defined by

xn+i = Txn + y

converges to the unique solution of x = Tx + y.
Moreover, T~l G Lip with j|T~1||* =

The following is known as Grownwall’s inequality and it will be frequently used in 
the thesis.

THEOREM 2.2.9 [48] Let a G Ll(J),a(t),b(t) > 0,6 be an absolutely continuous 
function on J. If x G F°°(J) satisfies

then

x(t) < b(t) + f a(T)x(T)dTJtQ

x(t) < b(t,0)exp(^lt a(r)dr^ + b'(r)exp Qf a(or)efo^ dr

The following tools are useful in Chapter 8.
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DEFINITION 2.2.10 A function f : X —* R is said to be convex if its domain 
V{f) is a convex set and for every u,v £ T>(/)

where, 0 < A < 1.

DEFINITION 2.2.11 A function F is called upper (lower) semi continuous if 
for any closed (open) subset C of X, F_1(C) is closed (open), 
i.e. F is upper semicontinuous at x0 £ X if xn —> x0 =» F(x.q) > lim., .„F(x„). and 
F is lower semicontinuous at .To € X if xn —> t0 =» F(x0) < liny..^.F(x„).
F is called continuous if F is both upper and lower semicontinuous and is called 
the coercive if F(x) —> oo as ||t|| — > oo.

Examples: The set-valued map Fi : R i-» R defined by

is upper semicontinuous at, zero but not lower semicontinuous at zero. Refer, Aubin 
and Frankowska [7].

The following terminology of set-valued analysis will be used in Chapter 8.

Let (X, |j,||) be a Banach space. A multi valued map G\ : X —* 2X is convex 
(closed) valued if Gi(t) is convex (closed) for all x £ X. G\ is bounded on 
bounded sets if Gx(B) = Ux&bGi(t) is bounded in X for any bounded set B of 
X (i.e.supa.€B{sup{||.r|| : x £ Gx(t)}} < oo).

The multi map G\ is called upper semi continuous (u.s.c.)on X if for each xQ £ X 
the set Gi(t0) is a nonempty, closed subset of X, and if for each open set B of X 
containing Gi(tq), there, exists an open neighborhood A of t0 such that Gi(A) C B.

f(Xu + (1 - \)v) < \f(u) + (1 - A))/(?;)

is lower semicontinuous at zero but not upper semicontinuous at zero. 

The set valued map F^ : R*—> R defined by

The multi map Gi is said to be completely continuous if Gi(B) is relatively com­
pact for every bounded subset B C X.
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If the multi valued map G\ is completely continuous with nonempty compact val­
ues, then G\ is u.s.c. if and only if G\ has a closed graph. ( i.e..Tn —> x0, yn —> 
ifo.lfo € Gi(xn) imply y0 e C?i(x0)).

G\ has a fixed point if there is x € X such that x 6 G\X.
In the following, BCC(X) denotes the set of all nonempty bounded, closed and convex 
subsets of X.

A multi valued map G\ : J -+ BCC(X) is said to be measurable, if for each x € X, 
the distance between x and G’i (.?;) is a measurable function on J. i.e. for each x € X, 
the function Y : J —» R defined by

Y{t) = d(x, G1{t)) = inf{||s ~z\\:z£ Gi(t)} € Ll{J, R).

For more details on mtilti valued map, see ([53],[74]).

LEMMA 2.2.12 (Ma Fixed Point Theorem, (see [98])): Let X be a locally 
convex space and Ni : X —» X he a compact convex valued, u.s.c. multi valued m,ap 
such that there exists a closed neighbourhood Up of 0 for which Ni(Up) is a relatively 
compact set for each p € N. If the set

Q := € X : Ax € Ni(x) for som,e A > lj

is bounded , then Ni has a fixed point


