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EXACT CONTROLLABILITY OF 
NONLINEAR THIRD-ORDER 
DISPERSION EQUATION

3.1 Introduction

The controllability problem of famous Korteweg-De Vries (KDV) equation has been 
studied extensively by the researchers as far as the linear system is concerned, Russell 
and Zhang [121] discussed the controllability and stabilizability of the third order 
linear dispersion system on a periodic domain. They discussed the exponential decay 
rates with distributed controls of restricted form and for the equation with boundary 
dissipation. Later on, Zhang [143] studied the exact boundary controllability of the 
KDV equation of distributed parameter system in which the smoothing properties 
of the KDV equation is used. Recently, Rosier [119] focused on the exact boundary 
controllability for the linear KDV equation on the half-line, i.e. in the domain fl = 
(0, +oo). Rosier discussed the exact boundary controllability holds true in L2(0, Too) 
provided that the. solutions are not required to be in L°°(0, T; L2(0, +oo)). Rosier used 
the tool of Carleman’s estimates and an approximation theorem. The purpose of this 
chapter is to study the exact controllability of the following nonlinear third-order
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dispersion equation:

dt ^ + dx3 ^ = ^Gu^x> + w(x' *)) (3.1.1)

in the domain t > 0,0 < x < 2ir, with periodic boundary conditions

fc=0’1’2- (3.1.2)

and initial condition
w(x, 0) = 0. (3.1.3)

Here u is the control function and the operator G is defined by 

(Gu)(x, t) = g(x){u(x,t) - jf g(s)u(s, t)ds}. (3.1.4)

Then G is a bounded linear operator and g(x) is a piece-wise continuous non-negative 
function on [0, 27t] such that

W = / g(*)ds = 1 (3-1.5)
»/o

and / : [0,00] x R —> R is a continuous nonlinear function.

DEFINITION 3.1.1 The system. (3.1.1)-(3. US) is said to be exactly controllable 
over a t.im.e interval [0,T], if for any given Wt € L2(0, 2n), there exists a control u € 
X := Ls((0,T) x (0,27r)) = L2(0,T;L2(0, 2tt)) such that the corresponding solution 
w of (3.1.1)-(3.1.3) satisfies w{.,T) = wT-

Russell and Zhang [121] studied the exact controllability of a corresponding linear 
system (i.e., with / = 0 in (3.1.1)-(3.1.3). In their analysis, they considered controls 
which conserve the quantity [«>(., t)], which corresponds to the “volume” (refer Russell 
and Zhang [121]). The following is their controllability result for the linear system.

THEOREM 3.1.2 (Russell-Zhang) Let T > 0 be given and let g € C°[G, 2v\ asso­
ciated with G in (3.1.4)- Given any final stole iv? €.L2(0,2vr) with [wt] = 0, there 
exists a control u e L2(0,T; L2(0,2?r)) such that the solution w of

^(x, t) + |jr(*, t) = (Gu)(x, t) (3.1.6)

together with the initial and boundary conditions (3.1.2)-(3.1.3), satisfies the terminal 
condition w(.,T) = iuq- in L2(0,2tt). Moreover, there exists a positive constant C\ 
independent of w? such that

HI£2(o,T;n2(o,2,r)) - 6,l!MU2(0,27r)- (3-1-7)
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The main purpose of this chapter is to obtain sufficient conditions on the perturbed 
nonlinear term / which will preserve the exact controllability. In our analysis, we 
employ the theory of monotone operators, Lipschitz continuous operators and the 
method of integral contractors to obtain controllability results. We first define the 
solution operator W for the system (3.1.1)-(3.1.3) and study its properties. Let

W : L2(0, T; L%{0, 2tr)) —4 L2(0, T; Z,2(0, 2tt))

be defined by
(3.1.8)

where w(.,t) is the unique solution of (3.1.1)-(3.1.3) corresponding to the control u.

In Section 3.2, we give three sets of sufficient conditions to guarantee the existence 
of the solution operator W. The controllability problem of the given system is then 
reduced to a solvability problem of some suitable operator equation in Section 3.3. 
The Section 3.4 deals with the main results on exact controllability of the system 
(3.1.1)-(3.1.3) through the Lipschitz continuity of W, while in Sections 3.5 and 3.6, we 
study the exact controllability of the system (3.1.1)-(3.1.3) through integral contractor 
method which is a weaker condition than Lipschitz continuity.

3.2 Existence of the solution operator W

Define an operator A on L2(0,2ir) with domain D(A) defined by

dk'
dx

D(A) = {w € tf3(0, 2tt) : —F(0) = ^(2*), k = 0,1,2.}

such that

Aw —
d3w 
dx3

(3.2.1)

It follows from Lemma 8.5.2 of Pazy [114] that A is the infinitesimal generator of a 
Co group of isometry on L2(0,2?r) and denote it by o- Then for all w € D(A)

(Aw,w)Li{Q!27t) = Q. (3.2.2)

This follows readily from

(Aw,w)lHo^) = {-w‘\w) = {w,w'") = -(Aw,w)
where, the middle equality is achieved by integration by parts three times. Also, there 
exists a constant M > 0 such that

sup{||$(t)|| : t £ [0,T]} < M. (3.2.3)



Chapter 3 29

By the variation of constant formula, we can write a mild solution of (3.1.1) - (3.1.3) 
as

io(., t) = ^ $(t - s)(Gu)(., s)ds + J $(f — s)f(t,w(.,s))ds (3.2.4)

Let X d= L2(0, T; L2(0, 2tt)^) and the operator H, K,N : X —► X defined by

(.Hu)(i) = f $(t - s)(Gu)(.,s)ds (3.2.5)
J 0

(Kw)(t) = J $(f — s)w(s)ds (3.2.6)
(Nw){t) = f{t,w(t)), (3.2.7)

where w(i) = By using the above notations and definitions, the equation
(3.2.4) can be written as the operator, equation:

w = Hu + KNw. (3,2.8)

We now prove the following lemmas which will show the existence of the solution 
operator W. We first discuss separately the two situations viz., / is monotone and 
/ is Lipschitz continuous and lastly when / satisfies certain second sub-gradient, 
estimates.

Just like suppressing the x variable in the above equations, we may also suppress t 
variable unless it is essential. In the following f(r) means

LEMMA 3.2.1 Suppose that f satisfy the following:

[fl] There exist, a constant (3 > 0 such that for all r,s £ R

(f{r) ~ f(sj) (r ~s)> —0\r - s|2.

[f2j There exist constants a > 0 and b > 0 such that, for allr £ R

!/(?')! 5: airl + b.

Then the solution operator W is well-defined.

Proof: We first show that the operator K defined by (3.2.6) satisfies {Kw, w)x > 0 
for all iv £ D(A). To see. this, let iv £ D(A) and define

h(t) = f — s)iu(s)ds. Jo
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Then h(t) £ D(A) and since <h(t) is a strongly continuous group, we have that 

h'(t) = w(t) + A f <f>(t — s)w(s)ds = w(t) + Ah(t).
J o

Hence,

(Kw, w)x = Jo (h(t), h'(t) - Ah(t))L2(0>2w)dt

= So (h(^^/(t))mQ,2v)dt - fj(h(t),Ah(t))LHQj2n)dt 

= |llMT)Il!2(0i2ir) > o by (3.2.2).

Similarly, we have

(Nw - Nv, w - v)x = /0T{Nw{t) - (Nv)(t), w(t) - v(t))L2{0j2v)dt

= So f [f(w(x, t)) - f(v(x, t))j [w(x} t) - v(x, tj^dxdt

> -p So So2* K®, *) - w(®.

= —/3||iy - •u||x.
Therefore -N is a strongly monotone operator with monotonicity constant (3. Also, 
hypothesis [/2] implies that N satisfies a growth condition. So the lemma follows 
along the same lines of Lemma 2.2 of George [60]. ■

LEMMA 3.2.2 Suppose that f satisfies :
[/3] There exists a constant a > 0 such that for all r, s, e R

|/(r) - f(s)| < o|r - s|.

Then W is well-defined and continuous.

Proof: By using [/3] in (3.2.5)-(3.2.7), it can be shown easily that [KN]n is a 
contraction for sufficiently large n > 1. Therefore, by generalized contraction principle 
the equation (3.2.8) has a unique solution for each given u. This proves the Lemma.*

The solution operator W is well defined can also be obtained by using sub-gradient 
estimate of / which we denote by Df . Our next lemma gives conditions on / in terms 
of its sub-gradient Df.
The sub-gradient. Df(xr) of / at a point x £ Br{0) {sc € R : |®| < r}, r > 0 is
defined as

Df{x) = {p € R : f{y) - f(x) > p(y - x) - o{\y - ®|) as y -* ®}.
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This implies that

Df(x) = {p e R : lim inf^ {}x^ ~ ~ > o}. (3.2.9)
L »-* |y — as| “ J v '

If Df (x) = 4> or /(.?;) = oo, then Df does not exists at x. As an example, take 
f(x) = |z|, then / is differentiable for all x ^ 0 and in this case

f(x) = Df(x) = {1} if x > 0 
{—1} if x < 0.

Further Df(0) = [—1,1]. On the other hand, one can easily see that for the function 
g(x) = the sub-gradient Dg(0) does not exists (refer [118]).

We can also define a second order sub-gradient D2f by using second order approxi­
mation as:

D’/to = € Dm > _ J1 v—* | y - xM
(3.2.10)

Obviously,

dvm c Dm-

For f(x) = -|z|a, 1 < a < 2, we have f(x) = Df(0) = {0}, but D2f(0) = <j>.

LEMMA= 3.2.3 Suppose that for some r > 0

1. \D2f(x)\ <a at every point x € Br{0), where D2f(x) exists.

2. f(xo) < oo for some xQ e Bz(0).

3. f satisfies [/2] of Lemma 3.2.1.

Then the solution operator W is well-defined.

Proof: From Theorem 1 of Redherffer and Walter [118], it follows that / is locally 
Lipschitz continuous. Because of the local Lipschitz continuity, there exists a unique 
local solution to the equation (3.2.8) in a maximal interval [0, tmaxMmax < T. If 
t-max < T, then limi!'U>(t)IUa(o,2*-) = oo (see Tanabe [131]). In other words, if 
liim_tmax ||ty(t)|U2(o,2ir) < °°) then there exists a unique solution in the interval [0, T). 
Now, [/2] with an application of Grownwall’s inequality implies that ||ic(.)||/,2(o,27r) < 
oo for each u and therefore, w exists on [0,T]. Hence, W is well-defined. ■
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REMARK 3.2.4 In the above lemma, we do not require differentiability of f. If f 
is differentiable then Df(x) reduces to fix). ■

REMARK 3.2.5 If W is well-defined and f satisfies [f2], then it is a trivial mutter 
to see using Grownwall’s inequality that

\\Wu\\x<C1\\u\\x + C2, (3.2.11)

where C\, C2 are positive constants which can be explicitly determined in terms of 
T, a, b, M, ||G||.

REMARK 3.2.6 In case, if f is Lipschitz continuous, then W is also Lipschitz 
continuous. This also can he seen by the sam.e arguments. So, there exists a constant 
C3 such that

Wu-Wv\\x < C3\\u-v\\x. (3.2.12)

3.3 Reduction of Controllability Problem into Solv­
ability Problem

Define an operator L : X —> L2(0,27r) by

{Lu)(x) = fT <±>(T - s)(Gu)(x, s)ds. (3.3.1)
./o

By Theorem 3.1.2 (linear controllability), the bounded linear operator L is onto. 
Therefore, for every wT G L2(0, 2tt), there exists a control u 6 X such that

wT = Lu. (3.3.2)

Let N(L) be the null space of L, then X = N(L) © [jV(L)]x. Thus L*, the pseudo­
inverse of L exists and is defined by

L* = : y = i2(°'2,r) —*
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such that

LL* = I
L*L = PT =f orthogonal projection of X on [N(L)}1 
L*L = I over [N{L))l.

So one obtains a unique //, £ [iV(L)]1 such that Lp = wx- If p is found, then any 
u £ X such that PTu = p will yield Lu = wT. Now define F : X —> Y by

Fu= fT${T-s)f((Wu)(.,s))ds. (3.3.3)
JQ

Thus, it follows that the system (3.1.1)-(3.1.3) is exactly controllable if for every 
Wx £ Y, there exists a solution u E X for the equation:

wx — LuY Fu (3.3.4)

Applying L* to (3.3.4) with u is replaced by /q we get

L*vjT = }i + L*Ffi. (3.3.5)

The above discussions lead us to the following Lemma.

LEMMA 3.3.1 Suppose that the equation (3.3.5) has a solution p for every Wx £ Y, 
then the system. (3.1.1)-(3.1.3) is exactly controllable. m

3.4 Main Results

By using the ideas from the previous sections, we now able to prove our main results.

THEOREM 3.4.1 Suppose that the non-linear function f satisfies [/3] and the Lip- 
schitz constant a is sufficiently small, then the non-linear system (3.1.1)-(3.1.3) is 
exactly controllable.

Proof: By Lemma 3.2.2 and Remark 3.2.6, W is well-defined and Lipschitz contin­
uous with Lipschitz constant C3. Hence with a simple calculation, one can get F is 
Lipschitz. In fact

||Fw — Fv\\ < MaCs\\u - n||.
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Thus, since L* is a bounded linear operator, we observe that Lft'F is a contraction if

1
a< MaC3\\L*\\'

Therefore, by contraction principle, equation (3.3.5) has a unique solution. So direct 
application of Lemma 3.3.1 completes the proof. ■

When W is well-defined and compact, we obtain the following results where we assume 
monotonicity condition of / rather than Lipschitz condition. Note that compactness 
of W can be obtained by many ways (see conditions given in Lemma 4 of Naito and 
Seidman [106] to assure that W is compact).

THEOREM 3.4.2 Assume that

1. conditions [/l], [/2] hold true.

2. W is compact.

3. the growth constant a in [/2] is sufficiently small.

Then the non-linear system (S.l.l)-(S.l.S) is exactly controllable.

Proof: In view of Lemma 3.2.1 and Lemma 3.3.1, we look for the solvability of 
(3.3.5).
Define, an operator R : [JV(jL)]-l —> [IV (L)]1 by

Rp=[I + L*F]p.

Therefore, we have
(Rp,{i) - |j/r||2+ (L#Fp,ii).

We may easily estimate:
\\Fl4 < Cia\\p\\ + C3.

Using the Cauchy-Schwartz inequality, we get

<£**>,/•> > -||£#||||F/*||M > -aC1||i#|||M|2 - Cy|L#||M-
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Hence, if a such that a.Ci||I/#|| < 1, then it follows that lim-n^ca = oo. There­
fore, R is a coercive operator. Further, the compactness of W implies that L*F is 
also compact. Thus R is a compact perturbation of a strongly monotone operator 
and hence it is of type. (M) (see pp 79 of Joshi and Bose [78]). So by Theorem 3.6.9 
of [78], the non-linear mapping R is onto. This proves the theorem. ■

COROLLARY 3.4.3 If we replace condition (1) of Theorem 3-4-2 by Assum.pt.iom 
(1) and (2) of Lemma 3.2.3, then also conclusiom of Theorem. 3.4-2 hold true. •

COROLLARY 3.4.4 As a particular case, Theorem 3.4-2 and Corollary 3-4-3 hold 
true if f is uniformly bounded, that is if there exists a positive constant b > 0 such 
that ]/(?')) < b, for all r G R. ■

In the following section, we assume a weaker notion on the nonlinear function known 
as integral contractors. This notion was developed (see [3]) as a generalization of 
inverse derivative. We will see that under this condition, the solution operator W is 
well defined and system (3.1.1)-(3.1.3) is exactly controllable.

3.5 Existence and uniqueness of the operator W 
by the method of Integral Contractors

The notion of integral contractor was first introduced by Altman [3] and later on 
it was used by many authors to study the existence and uniqueness of solution of 
non-linear evolution systems. In simple, terms, various methods of solving non-linear 
equations can be unified by the single concept of contractors.

Here, we would like to weaken Lipschitz continuity of / by the bounded integral 
contractor and then study the exact controllability of the system (3.1.1)-(3.1.3) as in 
Section 3.4.

Let C — C([0,T];L2(0,27r)) denote the Banach space of continuous functions on 
J = [0, T] with values in (L2) with the standard norm ||io||c =sup0<t<r ||rw(t)||x,2(o,2!r)- 
Define the solution operator W : X —> C by (Wu)(t) = w(.,t), where w(.,t) is the 
unique, solution of the nonlinear integral equation (3.2.4).

Now for the concept of integral contractors, we may refer Chapter 2.
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REMARK 3.5.1 If T is a contractor defined on J x L2(0,2n), then it remains as a 
contractor in [0, s] x L2(0,2ix), for any s. In other words, by taking w,y € CQO, s] x 
L2(0, 2tt)) and extending w(t) = w(s),y(t) — y(s) for all T > t > s we get

supo<t<s \\f{t,w(t) + y(t) + /o $(* - *)(r(s,u>(s))y)(s)ds)

-f(t,w(t)) - (r(i,w(i))y)(*)||L2(0j2ir)

< sup0<t<T il f(t,w{t) + y(t) + /o ${t - s)(T(s,w(s))y)(s)ds)

-f(t, w(t)) - (T(t, w(t))y)(t) 11^(0^)

< 7||y||c < 7l|y||c([0,«];X)-

REMARK 3.5.2 We know that the Lipschitz condition gives the unique solution of 
the given system. (3.1.1)-(3.1.3), but the condition given in the definition of integral 
contractor may not give the uniqueness of the solution operator W. The uniqueness 
of W is ensured by the regularity of the integral contractor. m

DEFINITION 3.5.3 A bounded integral contractor T is said to be regular if the 
integral equation

!/(*)+/ ${t - s)(r(s,w(s))y)(s)ds = z(t) (3.5.1)
J o

has a solution y in C for every w, z E C.

We denote (3 = sup|||r(i,te(i))|[ : t € J,w € Cj. Observe that, if f(t,w(x,t)) is 

Lipschitz continuous uniformly in t, then it has a regular integral contractor {/} with 
T = 0. Refer Altman [3] for other sufficient conditions for the existence of a bounded 
integral contractor for /.

We now prove the existence and uniqueness theorem by using integral contractors.

THEOREM 3.5.4 Suppose that (3.2.8) is satisfied and the nonlinear function f has 
a regular integral contractor T. Then, the solution operator W : X —> C is well 
defined and is Lipschitz continuous. That is there is a constant k > 0 such that

|| Wu\ - Wu2||c < fcllti! - «2lU. (3.5.2)
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Proof: We use the following iteration procedure to construct the sequences {u/n} 
and {yn} in C. Define for n = 0,1,2 • • •

wo(t) — j <$>{t — s)(Gu)(s)ds

yn(t) = wn{t) - f 4>(t - s)f(s,wn{s))ds - w0(t)
w 0

Wn+1 (t) = W„(t.) - [y„(t) + J $(t- s)T(s,wn(s))yn(s)ds\

= [ $(t ~ s)f(s,wn{s))ds - [ §(t-s)T{s,wn{s))yn(s)ds. 
J 0 Jo

(3.5.3)

Substituting for wn+i in yn+i, we can write using the above equation as

yn+i{t) = [ §(t-s)f(s,wn(s))~ [ ${t-s)r(s,wn(s))yn{s)ds 
Jo Jo
- [o $(* - s) [/(s, wn(a) - yn(s) ~ J $(s - r)r(r, wn(T))yn(r)drjda

= - [Q $(* ~ «)[[/(*>«*!»(*) - Vn{s) - Jq T)T(r,wn(r))yn(r)dr)

-f{s, t0„(s)) + T(s, W„(s))yn(s)] da.

Applying the Definition 2.2.4 (see Remark 3.5.1) with w = wn and y = — yn, we get 

!bn+l(i)l!|2(0,2tr) < M'2l2t sup 11(s) |]|2(027r)• (3.5.4)
OCsCt v '

A slightly modified application yields:
ft

llifo+l(*)||£s(o1&r) < / sup ||j/n(T)|||a(o)2ff)<k
•'O 0<T<S

< M474 ^ ■s||yn_i||c-^0iS]j.i2(o,2ir))

< M474yjjyn_1 |lc([0,T}l;L2(0,2jr))i

where, the second inequality was obtained by applying (3.5.4) with n replaced by 
n — 1. Repeating the above argument successively, we get

||l/n+l if) 111,5(0,2?r) ^ ~ (n+1)! 117° Hc([0,T]];Ls(0,27r)) ■

This shows that y„(t) converges to 0 in C and hence inX as n —> oo. We now show 
that iv,, converges to the solution of the system (3.1.1)-(3.1.3). To see this, we write

w»+i(t) - ton(t) = -yn(t) - / $(i - s)T(s,wn{s))yn(s)ds.
Jo
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One can easily estimate

\\wn+X - 10n||c < h (Mr7)n
n!

and thus
(MT'yf

lF»+m - i%||c < fa 2^ —n—
k=n R-

where ki, are arbitrary constants. The right hand side being the tail of a convergent 
series, we deduce that wn is Cauchy and hence it converges to, say, w' in C. Now 
passing to the limit in the second equation in (3.5.3), we get

w'(t) = J <&(t — s)(Gu)(s)ds + J $(£ — s)f(s,w'(s))ds.
Therefore w' is a mild solution of the system (3.1.1)-(3.1.3) in the sense of (3.2.4).

Now the uniqueness can be shown with the help of regularity of the integral contractor. 
Let w\ and iu2 be two solutions of (3.1.1)-(3.1.3) with a given Gu. By the regularity 
condition (3.5.1) with w = w\ and z = vi2 — w\, there exists ay € C such that

y(t)+ f ^(t-s)T{s,w1(s))y{s)ds = w2(t)-wi(t). (3.5.5)
J 0

Applying the definition of integral contractor with w — w\ and using the above 
equation, we get

\\f{t,io2{t)) - /(t,u/i(i)) - T(t,wi{t))y(t)\\c < 7l|y||c- (3.5.6)

As w\ and w2 are solutions of (3.2.4), the equation (3.5.5) yields:

y{t) = w2{f) - wi(t) - / $(t - s)T(s,Wi{s))y(s)ds
Jo

= JQ $(t-*)[f(8,W2(8))-f(a,v>i{s)j\ds

-f ^(t-s)r{s}w1{s))y(8)ds
Jo

= s)[f(s,w2(s)) - f{s,Wi{s)) - r(s,Wi(s))y(s)]da.

Thus, we get
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Hence
sup ||t/(r)||2 < MV [ sup l|y(r)||2ds.

0<T<5

By Grownwall’s inequality, we see that y(t) = 0. Thus w\ — w2, establishing the 
well-definedness of the solution operator W.

We now prove that solution operator W is Lipsehitz continuous. Let u\,u2 € X and 
vii and w2 be the corresponding solution of (3.2.4); i. e,, Wui = uq and Wu2 = w2. 
By the regularity of the integral contractor, there exists y 6 C such that

(Wu2)(t) = (Wtq) W + y(t) + f* ${t - a)T(s, (Wu1)(s))y(s)da. (3.5.7)
J o

Thus by the same arguments as earlier, it is easy to get the following estimate:

||Wu2-WVIc<%||c, (3.5.8)

for some constant k. As Wu\ and Wu2 are solutions of (3.2.4), we get

(Wu2)(t) - (WUlm = [ Ht - s) [/(a, (Wu2)(s)) - f(s, (W«i)(a))]ds

+ [ $(i-s) (Gu2)(s) - (Gui)(s) ds>
Jo L

which implies from (3.5.7) that

V(0 = fQ $(* “ s) [/(s, (WiPi)(s)) - f(s, (W«x)(s)) - T(s, (W«i)(s))y(a)]da
+ / $(f — s) (Gu2)(s) - (C?«i)(s) ds.

Jo L

Again applying the definition of contractors, we get
ft

sup ||y('r) 111,2(0,2ff) <Ci sup 11 J/ (t) 11 £,2 (o 2rr) ds + C2||Gti2 - Guxfc.
Kr<t JO 0<r<s v '0<r<t............... JO 0<r<s

By Growmvall’s inequality , we have

|2SUP I|2/(^”)II£,2(0,2?r) < Ca\[Gu2 - G«i||c.
0 <T<t

Thus, (3.5.8) shows that

\Wu2 - Wtii||c < Ct\\u2 - Uiljcr.

Here C\,C2,Cz, C\ are constants. This completes the proof.
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3.6 Controllability via Integral Contractor Method

THEOREM 3.6.1 Suppose that nonlinear function f has a regular bounded integral 
contractor {I + J$T} and 7 as m Definition (2.2.4), ^ sufficiently small. Then the 

nonlinear system. (3.1.1)-(3.1.3) is exactly controllable.

Proof: By Theorem 3.5.4, the solution operator W is well defined and Lipschitz 
continuous. Therefore W has a integral contractor {I + J$T}. Hence, F defined

by the equation (3.3.3) also has an integral contractor. Since L* is a bounded linear 
operator, we observe that L*F has a bounded integral contractor if

||L#|| j|G||7M2T(l + (3MT)FtMT < 1

Hence equation (3.3.5) has a unique solution by using the contraction principle. Fi­
nally the application of Lemma (3.3.1) proves the exact controllability. ■


