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In this chapter we generalize the concept of the previous chapter by taking a gen­
eral operator approach instead of trigonometric matrix approach. We investigate 
controllability property of a class of semilinear system described by matrix second 
order differential equation. We first obtain necessary and sufficient condition for 
controllability for the linear system and subsequently provide sufficient conditions 
on the nonlinear function, so that the nonlinear system is also controllable. Our 
result on linear system generalizes the work of Hughes and Skelton[42] whereas the
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controllability result for the nonlinear system is new. We make use of two special 
type of matrices $ and W, which behave like Sine and Cosine matrices, to reduce 
the system into integral formulation. We employ tools of nonlinear analysis like 
fixed point theorem to obtain controllability results. In Section 4.1, we provide the 
introduction to the problem, Section 4.2 deals with the controllability of linear sys­
tem. In Section 4.3, we prove the controllability result of the nonlinear system. A 
summary of the chapter is given in section 4.4.

4.1 Introduction

Controllability of linear and nonlinear systems represented by first order differential 
equations has been extensively studied by many authors both in finite and infinite 
dimensional set-up (George and Joshi [46]). Here our aim is to study the control­
lability of finite dimensional semilinear system described by matrix second order 
differential equations. We have treated the second order systems directly rather 
than converting them to first order systems as discussed in chapter 3.

We consider the control system described by the matrix second order nonlinear 
differential equation

where, the state x(t) G Rn ,the control u(t) E Rm, A is matrix of order n x n, B is a 
matrix of order nxm and / : [0, T] x RJ1 —> i?" is a nonlinear function. The initial 
states xq and y0 are in Rn. The homogeneous second order system is given by:

It follows easily that the equation (4.1.2) has a unique solution x(-) passing through 
the initial conditions x(0) = xq and x'(0) = yo.

The following propositions follow easily from standard arguments.

(4.1.1)

^a+At(t) = o
®(0) = Xo, x'(Q) = yo.

(4.1.2)
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Proposition 4.1.1. If 0i(t),$2(i),......., 4>n{t) are solutions of (4-1-2) with initial
conditions aq, x2,......., xn, j/i, ....., Un then their linear combination

nrKi)=y>^), ^ e r
i=1

is also a solution of (4-1-2) with initial conditions

n n0(0) = a-ix-i and 0'( 0) = ^ oqy,;
i=1 i=l

Proposition 4.1.2. (i) If (p is a solution of (4-1.2), then <p’ is also a solutions of 
(4-1-2).

(ii) Let <f>i(t),<j>2(t),......., 4>n{t) be solution of (4-1-2) on [0,T] and s € [0,T], then

{</>l(s)>Ms)’......... >0n(«)}

is a set of linearly independent vectors in EL.

We define two matrices

*=[&(*)>&(*)>.......MW, 0 <t<T

and

(t),....Mt), o<t<T
where 0i,02,.......<Pn are linearly independent solutions of (4.1.2) satisfying <pi(0) =
tf(0) — e*i where {ei, e2,..., en} is the canonical basis for Rn and $(0) = 0 .

The matrices $ and satisfy the following properties:

(1) # and T are solutions of the matrix differential equation

ffM + A(t)X(t) = 0.

That is, #(t) — —A(t)<&(t) and 9(t) =

(2) #(0) = J, $(0) = 0
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H

(3) t(0) = 0, ^(0) = I

Now we shall consider the controlled linear system:

Y

+ Ax(t) - B(t)u(t) 1 

x(0) = x0, x'(0) = 2/o- J

Proposition 4.1.3. The unique solution of the system (4-1.3) is given by

x(t) = $>(t)xo + ^(t)yo + / ty(t — s)B(s)u(s)ds.
Jo

(4.1.3)

(4.1.4)

Proof. We shall show that equation (4.1.4) satisfies the equation (4.1.3). Differenti­
ating the equation(4.1.4),we have

x'(t) = &(t)xQ + ^'(t)yo + f ty'(t — s)B(s)u(s)ds + 'b(Q)B(t)u(t)Jo

But 'F(O) = 0, implies that

x'(t) = $'(t)xo + W(t)yo + / - s)B(s)u(s)d.s
Jo

Differentiating again with respect to t, we get

x"{t) = &'{t)xo + V"(t)ya + f ¥'(i - s)B(s)u(s)ds + $'(0)B(t)u(t)
Jo

Since, $"(t) = -A{t)$(t), %"(t) = -A(t)V(t) and $'(0) = I

x"(t) — —A(t)$(t)x o — A(t)^>(t)yo + f — A(t)^(t — s)B(s)u(s)ds + B(t)u(t)Jo

x"(t) = — A(t)[$(t)xQ + ^f(t)yo + [ — s)B(s)u(s)ds] + B(t)u(t)
Jo

From the equation(4.1.4), we have

x"(t) = —A(t)x(t) + B(t)u(t)

Also, x(0) = xo and x'(0) = yo- Thus (4.1.4) is the unique solution of the system 
(4.1.3) □
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Following the same approach the solution of Matrix Second Order System(4.1.1) can 
be written as

)B(s)u(s)ds+ f — s)f(s,x(s))ds (4.1.5) 
Jo

x(t) 4>(t)x0 + ®(t)y0 + [ 
Jo

4.2 Controllability: Linear System

In this section we obtain the necessary and sufficient conditions for the controllability 
of the linear system(4.1.3). We need the Lemma 3.3.1 to prove the controllability 
result for the system (4.1.3).

The controllability Grammian of the linear control system (4.1.3) is given by:

W(0,T)= [T y(T-s)B(s)B(s)*y*(T-s)ds.
Jo

The necessary and sufficient condition for the controllability of the linear system 
(4.1.3) is given in the following theorem.

Theorem 4.2.1. The linear system (4-1-3) is controllable on [0, T] if and only if 
W{0, T) = /0T t(T - s)B(s)B(s)*%*(T - s)ds is non-singular. □

Proof. Let us suppose that

W (0, T) f $(T - s)B(s)B(s)*V*{T - s)ds

is nonsingular. Now we claim that the control

u{t) = B(t)*$*(T - t)W-\0, T)(xi - <f>(T)xo - V(T)y0) (4.2.1)

transfers the initial state x0 to the final state x\, during [0,T], Substituting u(t) 
given in (4.2.1) in the solution (4.1.4), we obtain

x(t) = $(t)x o + ®(t)y0 +
Jo

s)B(s)B(s)*V*{T - a)W~1(0, T)

{xi - HT)xo - y(T)y0)ds
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At time t=T, we have

x
(T) = $(2>0 + W(T)y0 + JT ^{T-s)B(s)B(sy^f*(T-s)W-1(0,T)

(Xl - $(T)x0 ~ HT)yo)ds 
fT

= $(T)x0 + ®(T)y0 + ^(T-s)B(s)B(s)*^*(T-s)dsW-1{0,T)

(*i - #(T)x0 - i’(T)y0)

= $(r)a:o + nT)Vo + - <l>(T)x0 - *(T)y0)

= $(2>o + ®(T)y0 + (Xl - #(T)x0 - ^(T)y0)

=

Also, at time t — 0, r(0) = #(0)a;o + vI;(0)yo = xq. Hence the system is controllable. 
We prove the converse, by contradiction. Suppose that the system (4.1.3) is con­
trollable but W(0,T) is singular. That is, by Lemma 3.3.1 the rows of 9(t)B(t) are 
linearly dependent functions on [0,T]. Hence there exists a nonzero constant lxn 
row vector a such that

at(t)B(t) = 0 V t £ [0,T],

Let us choose s(0) = xq — 0, x'(0) = yo — 0. Therefore the solution (4.1.4)
becomes

x(t) = [ W(T — s)B(s)u(s)ds.
Jo

Since the system (4.1.3) is controllable on [0,T], taking x(T) = a*.

x(T) = a* = fT t(T - s)B(s)u(s)ds 
Jo

Now premultiplying both side by a, we have

fT

aa
■ f a^(T - s)B(s)u(s)d, Jo

'.s = 0

aa* = 0

It gives a = 0. Hence it contradicts our assumption. Hence W(0, T) is non-singular.

□

Now we investigate the controllability property of the nonlinear system (4.1.1).
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4.3 Controllability: Nonlinear System

The integral representation of the nonlinear system (4.1.1) is given in the equation 
(4.1.5). For studying the controllability of the nonlinear system (4.1.1), we assume 
that the linear system (4.1.3) is controllable and the control function u is from 
L2([0,T],Rm). We make use of the following definitions. Recalling from chapter 2, 
the control operator C : L2([0, T]; Rm) —> Rn of the linear system (4.1.3) is given by

Cu = s)B(s)u(s)ds (4.3.1)

Again from chapter 2, an m x n matrix function P(t) with entries in L2([0,T]) is 
said to be a steering function for (4.1.3) on [0,T] if

fT
I ^(t — s)B(s)P(s)ds = I, I being the identity matrix in Rn 

Jo

We now give different assumptions to ensure the controllability of the nonlinear 
system (4.1.1).

Assumptions:

[K1 ] {JQT ||#(t)||2dt}l — k < oo.

[B1 ] Let b - supto<t<r ||J?(t)|| < oo.

[ft] The nonlinear function / satisfies Caratheodory conditions, that is, x —► /(., x) 
is continuous for almost all t,t—* f(t,.) is measurable for almost all x.

[O] The nonlinear function / is Lipchitz continuous, that is, there exists a constant 
a > 0 such that

\\f(t,x) - f(t,y)\\ < ol\\x - y\\\f x,y € Rn and t £ [0,T].

Since the linear system (4.1.3) is controllable, then by Theorem 2.1.3 there exists a 
steering function P(t) for the linear system. Consider the control u(t) define by

u(t) = P(t){Xl - $(2>0 - ^(T)y0 - [T #.(T - s)f(s, x(s))ds} (4.3.2)

Jo
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where, x(t) is the unique solution of (4.1.5) with control u(t). Now substituting this 
control u(t) into equation (4.1.5), we have

x(t) = $(t)x0 + ^(t)yo + / 4>(T - s)f(s,x(s))ds + [ ^(T — s)B(s){P(s)
Jo Jo

{xi - $(T)xo - *(T)yo - f t(T - r)/(r, x{r))dr}ds} (4.3.3)Jo

If the equation (4.3.3) is solvable then x(t) satisfies .x(0) = xq and x(T) = x\. This 
implies that the system (4.1.5) is controllable with control u(t) given by (4.3.2). 
Hence, controllability of the system (4.1.5) is equivalent to the solvability of the 
equation (4.3.3). Now applying the Banach contraction principle, we obtain the 
solvability of the equation (4.3.3).

Now we define a mapping F : C([0, T]; Rn) —> C([0, T]; Rn) by

(Fx)(t) = ®(t)xo + \&(t)yQ + f 4f(T - s)f(s, x(s))ds + f #(T - s)B(s){P(s)
Jo Jo

{xi - $(T)x 0 - ®(T)yo - fT HT ~ r)/(r, x(r))dr}ds} (4.3.4)

Jo
We prove that F is a contraction in the following Lemma:

Lemma 4.3.1. Suppose that B(t) , ^>(t) and f satisfy the assumptions [K\], [HI], 
[/1] and [f 2]. Let the steering operator P(t) satisfies ||P(t)|| < p and amT( 1 + 
mbpT) < 1. Then F is a contraction on C([0,T\] Rn).

Proof. By definition 
liFx - Fy\\c([Q,T];Rn)

sup ||(Fa;)(i) - (Fy)(t) 
te[o,T\

sup
te[o,rj

I / t(T
Jo

s)(f(s,x(s)) f(s,y(s))ds+ [ f (T-s) 
Jo
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< SUP / ||®(T-s)I| ll(/(s,z(s)) - f(s,y(s))\\ds
te[o.T] Jo
+ sup tmT-smmmmm

te[o,T\ Jo
[ ||tf(T - r)|| ||(/(r,a:(r)) - f{r,y{r)))\\dsdT 

Jo
< sup m I a:||a:(s) — y(s)||ds + sup m2bpt I a|[y(r)) — ar(r)|j<ir

ie[o,Tj Jo te[o,T] Jo

< ma sup j \\x(s) — y(s)\\ds + m2bpTa I sup ||j/(t)) — x(r)\\dT
te[o,T] Jo Jo t€[0,T]

< maT\\x — y\\ +m2bpTaT\\x — y\\

< maT( 1 + mbpT)\\x — y||

< maT(l + mbpT)\\x — y\\

Since aT( 1 + mbpT) < 1, F is a contraction. □

Now we have the following theorem concerning the controllability of the system 
(4.1.1).

Theorem 4.3.1. Suppose that B{t), xV(i) and f satisfy the assumptions [Jfl], [51], 
[/1] and [/2j. Further, the steering operator P(t) satisfies \\P{t)\\ <p andamT( 1 + 
mbpT) < 1. Then the system (f. 1.1) is controllable. □

Proof. In the Lemma 4.3.1 we have proved that F, as defined in the equation (4.3.4), 
is a contraction. Hence using the Banach contraction principle, F has a fixed point. 
Thus the system (4.3.3) is solvable, subsequently the system (4.1.1) is controllable.

□

If the nonlinear function / is uniformly bounded then by using Schauder’s fixed point 
theorem applied on the operator F defined in (4.3.4) we can prove the following 
result.

Theorem 4.3.2. suppose that the linear system is controllable and the nonlinear 
function f(t,x) is Lipschitz and uniformly bounded, that is 3a > 0 such that 
||/(£,:r) — f(t,y)|| < |[a; — y\\ Vx,y G Rn and there exists M > 0 such that 
j|/(t,x)|| < M V x € Rn. Then the nonlinear system is controllable. □
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4.4 Summary

In this chapter we have generalized the methodology, presented in chapter 2, to 
prove controllability result for both MSOL and MSON in finite dimensional space. 
Instead of using Sine and Cosine matrices, here we have used general matrices $ 
and Matrices $ and 'J, have simillar properties as Sine and Cosine matrices.
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