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In this chapter we study controllability of a system described by an integral inclusion 
of Urysohn type with delay. The existence of solution of Urysohn Inclusion is studied 
in (Angel [1]). In our approach we reduce the controllability problem of the nonlinear 
system into solvability problem of another integral inclusion. The solvability of 
this integral inclusion is subsequently established by imposing suitable standard 
boundedness, convexity and semicontinuity conditions on the set-valued mapping 
defining the integral inclusion, and by employing Bohnenblust-Karlin extension of 
Kakutani’s fixed point theorem for set-valued mappings. Section 7.1, deals with 
the general introduction of the problem, in section 7.2, we give the controllability
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problem in terms of solvability problem. Section 7.3, we study the solvability of the 
nonlinear integral equation. Section 7.4, deals with the main results. Chapter ends 
with a summary in section 7.5.

7.1 Introduction

Integral inclusions arise quite naturally in the treatment of many optimal control 
problems. In recent years a number of papers appeared in the literature concern
ing integral inclusions, in particular inclusions of Hammerstein type and Urysohn 
type(refer Rangimchannov[66],Gaidarov[29], Angel[l]). This type of inclusions have 
been used to model many thermostatic devices (refer Glashoff and sperekels[33], 
[34]). Here we consider the nonlinear control system described by the following 
Urysohn integral inclusion on the time interval [0, T] , T > 0

where, for each t € [0, T] the state x(t) is in Rn and the control u(t) € Rm.
For any given real number 0 < r < T and for any function x e (?([—r,T]; Rn) and 
s e [0, T], we define an element xs 6 (7([—r, 0]; Rn) by xs(0) = x(s+8), —r<6< 0.

The initial conditions are given by

where, h : [0,T] x [0,T] x L°°([—r,0]; Rn) —> Rn is a nonlinear function, g : [0,T] x 
[0, T5] x L°°([—r, 0]; Rn) —» MnXn is also a nonlinear function, where Mnxn is a 
space of n x n matrices. For (t, s) € [0,T] x [0,T], K(t,s) is n x n, matrix F : 
[0,T] x L°°([—r, 0]-,Rn) —»■ 2R is a set valued mapping.

Chuong(refer [20]) studied a general Urysohn inclusion of Volterra type, without de-

(7.1.1)

x(6) = </>($), —r <0 < 0, (7.1.2)

for a fixed, <f> € C[—r, 0].
H : L°°([—r, T]; Rn) —> CQOjT]; Rn) is the Urysohn operator defined by
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lay and control. The existence for such system was established under much stronger
hypothesis on the set-valued mapping. The existence of the solution of (7.1.1)- 
(7.1.2) without control was established in (Angel [1]). For fixed u the solution of 
(7.1.1)-(7.1.2) can be defined as follows:

Definition 7.1.1. A solution of (7.1.1)-(7.1.2) is a function x, defined on [—r,T] 
with x{t) = <f)(t), —r<t< 0, where <fi € C*([—r, 0];i?n) and x(.) € CQO, T]; Rn) on 
[0,T], satisfying the following integral equation

for any selection v £ L1([0,T]; i?71) satisfying the inclusion v(t) £ F(t,xt) almost 
everywhere on [0, T],

We now define controllability for the system (7.1.1)-(7.1.2) (Rusel [68]).

Definition 7.1.2. The system (7.1.1)-(7.1.2) is said to be controllable on [0,T] if 
for any pair of vectors x0, xi 6 Rn, there exists a control u £ L2([0. T}:Rn) such that 
the solution of (1.1)-(1.2) together with x(0) = </>(0) = xq also satisfies x(T) — xi.

To ensure the existence of solution for (7.1.1)-(7.1.2) the following conditions on h, 
g, K and F are assumed.

[H ] The function h : [0,T] x [0,T] x L°°([—r, 0]; An) -+ Rn satisfies the following 
conditions:

(a) for each (t, s) £ [0,T] x [0,T], the map <f> -* h(t, s, f) is continuous,

(b) for almost all t £ [0,T],

fT
/ sup |h(t, s, 4>)\ds < oo, 

Jo

(C)
•T

lim / sup |h{tf, s, <f) — h(t", s, 4>)\ds = 0, 
Jo <f>eL°°

(d) h(0, •, •) = 0.
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[G ] The function g : [0, T] x [0, T] x L°°([—r, 0]; Rn) —» Mnxn satisfies the following 
conditions:

(a) g is bounded,

(b) for each (£, s) € [0,T] x [0,T], the map (j> g(t, s, <fi) is continuous,

(c) for each t" G [0, T} and almost every s € [0, T]

lim [ sup \g(t', s, 6) - g(t", s, 4>)\
t->t" 4>£L°=

[F ] For the set-valued mapping F : [0,T] x L°°([—r, 0]: Rn) —»• 2Rn, the following 
conditions are assumed:

(a) for all (t, <f>) £ [0, T] x L°°([—r, 0]; Rn), F(t, 4>) is convex. F is upper semi- 
continuous in the sense of Kurotowski (refer [45]) with respect to 4>\

(b) for any (t, (p) € [0,T] x L°°([—r,0];i?n),

F(i,-$) = f)cl(J(F(t,4>),< 5}
<5>0

where (j> G L°°([—r, 0]; Rn). Since the intersection of closed set is closed, 
so each of F(t, <p) is closed.

(c) there exists a measurable set-valued function P : [0,T] —» E1, a constant 
M > 0, and for each e > 0, a function ?/>£ e L1([0,T];i2"), ip€{t) > 0, 
such that, for given x G L°°([~r,T]: Rn) and selection £(t) G F(t,xt), 
there exists a selection ??(£) G P(t), with

1. Jq r](t)dt < M
2. \((t)\ < + e<n(t)

[K ] for each (t,s) G [0,T] x [0,T], (t, s) -* K(t,s) is continuous with \\K(t, s)j| < 
k(t, s) for k(t, s) G L2([0, T] x [0, T])

Here the conditions [H-a] and [H-b] are used to establish the complete continuity of 
the Urysohn operator (see Krasnoselskii, [51]), and the condition [F-c] is used for 
proving equi - absolute integrability (see Ioffe [6]) condition of the set of selections.

Here we will use operator theory in the analysis of controllability(Joshi and George 
[46]). So some basic definition regarding control operator axe as follows:
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Definition 7.1.3. The control operator C : L2([0, t\] Rrn) —+ Rn of the system 
(7,1.1)-(7.1.2) he defined by

Definition 7.1.4. A hounded linear operator S : Rn L2([0,t\: Rm) is said to be 
steering operator for the associated linear system

if CS=I where, I being the identity operator on Rn

Definition 7.1.5. An mx n matrix function P(t) with entries in L2([0, T\: Rm) is 
said to be a steering function for (7.1.4)on [0,T] if

We note that if the linear system (7.1.4) is controllable then there exists a steering 
function P(t),(refer [68]).

7.2 Controllability and Feed-Back Formulation

For studying the controllability of (7.1.1)-(7.1.2), we assume that the corresponding 
linear system (7.1.4) is controllable and let P(t) be a steering function for it. Now 
the nonlinear system (7.1.1)-(7.1.2)is controllable on [0,T] if and only if there exists 
a control u which steers a given initial state cp(0) of the system to a desired final 
state x\. That is, there exists a control function u such that

(7.1.3)

(7.1.4)

•T

Xx = x(T) = ^>(0) + g(T, s, xs)v(s)ds

(7.2.1)
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for any selection v G L1([0,T]; Rn) satisfying the inclusion v(t) G F(t,xt) almost 
everywhere on [0,T], Let us define a control u(t) by

u(t) = P(t)[xi - <p(0) - [ h(T, s, xs)ds — f g(T,s,xa)v(s)ds], (7.2.2)
Jo Jo

where x(.) satisfies the nonlinear system (7.1.1)-(7.1.2). Now substituting this con
trol u(t) into the nonlinear integral equation (7.1.1)-(7.1.2), we get

x(t) — (f)(0) + f h(t,s,xs)ds+ j g(t,s,xs)v(s)ds + f K(t,s)P(s)Jo Jo Jo

[si — ^>(0) — f h(T,T,xr)dr— f g(T,T,xT)v(r)dT]ds. (7.2.3) Jo Jo
If the equation (7.2.3) is solvable then x(t) satisfies rc(0) = (f)(0) and x(T) = x%. 
This implies that the system (7.1.1)-(7.1.2) is controllable with a control u given by
(7.2.2) . Hence the controllability of the nonlinear integral inclusion system (7.1.1)-
(7.1.2) is equivalent to the solvability of the integral equation (7.2.3) with suitable 
selection v(t) € F(t,xt).

7.3 Solvability

We apply fixed point theorem for establishing solvability of the nonlinear integral 
equation(7.2.3).We now recast the integral equation (7.2.3) with a selection v as a 
set-valued mapping and apply fixed point theorem for a set-valued mapping.

We introduce two set-valued mappings $ and 4/ whose domain S is defined by

Sr € L°°([—r,T];i2")| x\^A = (f>, ^.t] € C([0,T];/r*)} (7.3.1)

The maps $ : 5 —> L1([0,T]; Rn) and T : S —> S, are defined by

$(z) = {t? G I/L([0,T];iin)|y(t) G F(t,xt),a.e.,on[0,T}} (7.3.2)

ft ft
$(x) = {z € S\z(t) = (Hx)(t) + I g(t, s,xs)v(s)ds+ I K(t,s)P(s)

Jo Jo
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[x\ — (j)(0) — f h(T,T,xT)dr— f g(T,T,xr)v(r)dT]dsJo Jo
, z|[_r,0] = <f>,v e <F(x)} (7.3.3)

We will employ the following Bohnenblust-Karlin extension of KaKutani’s fixed 
point theorem for set-valued mappings.

Theorem 7.3.1. (Bohnenblust-Karlin [12]) Let E be a non-empty, closed convex 
subsets of a Banach space B. /f T : E —>• 2s is such that

(a) r(o) is non-empty and convex for each a G E,

(b) the graph o/F, £(Fj C E x E, is closed,

(c) U {r(a)/a G E} is contained in a sequentially compact set T G B,
then the map F has a fixed point, that is, there exists a a0 € E such that
Co 6 F(o'o).

□

We will apply this theorem to the map \P defined on the closed convex set S C

In order to apply Theorem 7.3.1, we need to prove that the set \&(S) is relatively 
sequentially compact. This property in turn, depends on the weak relative compact
ness of $(S) in L1 ([0, T]; Rn).

Theorem 7.3.2. (Angel [1]) The set $(S) defined by the relation (7.3.2) is an 
equi-absolutely integrable set and is weakly compact in L1([0, T]; Rn). □

We have the following theorem on the relative compactness of the set vF (s).

Theorem 7.3.3. Under the hypotheses (H),(G),(F) and (K), for each x G S, ^(x) 
is a non-empty and the set HI (5) defined by the relation (7.3.3) is a relatively se
quentially compact subset of L°°([0,T\-,Rn) □

Proof. First we shall show that ip(S) ^ 0 V x € S. For a given x G S we have
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(j>{x) ^ 0 (Angel [1]). Hence choosing v e <p(x) we define

pT pt pty(t) = (f){0) + / h(t,s,xs)ds + / g(t, s,xs)v(s)ds + / K(t,s)P(s) 
Jo Jo Jo

{£i — <?!>(0) — / h(T, r, a;T)dr — / ^(T, r, xr)v{T)dr}ds 
Jo Jo

For any if, t" € [0, T], we have

I y{tf) - y{tff) I = I / (&(*', s, xs) - h(f, s, xs))ds + ( f g(if, s, xs)v(s)ds
Jo Jo

I g(t",s,xs)v(s)ds) + { K(t',s)P(s)ds —
Jo Jo
ft" fT

I K(t", s)P(s)ds}[xi — (f)(0) — / h(T,T,xT)dr —
Jo Jo
fT
/ g(T,T,Xr)v(T)dT] |

Jo

< f mp\h(t',s,<i>)-h(f,s,<t>)\ds-+ f \g(t?,s,xs)- 
J 0 <£€L°° Jo

t*5(i",s,:zs)||w(s)|ds + f |5(i",s,a:s)||t;(s)|ds +

Jt'
ft'

{ \K(t’,s)-K(f,s)\\P(s)\ds +
Jo

j' |Wa)||P(a)|*}{|*xl + |^(0)| +
fT . fT
/ \h(T. r. xT)\dr + / \g(T,T,xT)\\v(r)\dT}ds

Jo Jo
II + 1% + I3 + Ii-

By [H-c], 3 5i > 0 such that

1\ = f sup \h(if, s, </>) — h{t", s, <p)\ds 
Jo 0ei°°

< if \i'-f\<51
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Using the condition [F-c] for 82 > 0

h = [ \g(t',s,xs)-3(t",s,£s)||'u(s)|ds
Jo

< / sup [git/, s,<j))-g(t";s;</>)\ip$2(s) + S2r)(s)\ds
Jo

= [ sup |g(t', s, <f>) - g(t", s, <p)\ipSl(s)ds +
Jo 4>eL,°°
h / sup |g{t'y s, (j>) - g(t", s, 4>) |r){s)ds 

Jo 4>eL°°
I21 + J22

Since g is a bounded function, taking its bound as Mg and ip$2 € L1([0,T]; Rn). We 
apply the Lesbesgue dominated convergence theorem. Therefore, for a small $3 > 0

lim f sup \g(t!, s, <j>) - g(f, s, <f>) |ipg2 (s)ds

Using [G-c]

= f Jin2, sup <t>) ~ 9{t", s, $fofo (s)ds

hi = / sup |g(t', s, <j>) - g(f, s, <j>) |fs2 (s)ds
Jo <peL°°

< 5j^j i>62(s)ds for j ipS2(s)ds = kx <
00

e if It'-f\<83

I22 = 82 [ sup }(?(//, s, f) - g(f, s, 4>)\rj(s)ds 
Jo

8^2 Ad( Jpt
' v(s)ds
0< 8\2MqM

<

JlZIVlgi 
€

10 MgM 9
2MgM (taking < 10 MgMJ
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h

<

<

<
<
<

Mg(ki + - if)I for t" - t' < <S4

~ , taking <L <----------------- r5 y mg{M + K)l

The function h satisfies the condition [H], so for any given t € [0,T], there exists a 
finite b — b(t) such that

fT)ds < / sup \h(t,s,(f>)ds < b(t) 
Jo

= {Nil + l^(0)l+ [ \h(T,T1xr)\dT+ [ \g(T,T,xT)\\v(r)\dr} 
Jo Jo

< f4 \K(lf,8)-K(lf,ts)\\P(s)\d8 + J* |ir(t"sS)||P(s)|ds)

< (Ni( + |^(0)| + 6(T) + Mg(M + h)}
rt"(P / |K(tf, s) - K{f, s)[ds + KP ds)

Jo Jt'
where, K and P are bounds of K(t, s) and P(s)

< R{Pif- + KP{t' -1"))
10 PRt1

< r(^r + kpi>s) W <mi Taking S, <

- R{m+KPwwp)
e

Thus, continuity of y, follows by choosing <5 < min(8\, 5%, S3,84, S5) and so the func
tion z is defined by

(f){t) , —r < t < 0z(t) =
y(t) ,0 <t <T
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is piecewise continuous.

Here the elements of ^?(S) in the interval [0,T] form an equicontinuos family. Hence 
Relative sequential compactness will now follow from the equiboundedness of \6r(S'), 
since then any sequence in ^f(S) say, {zk}, restricted to [0, T], will have a uniformly 
convergent subsequence by the Arzela - Ascoli theorem. Now to show that '3'(S') is 
equibounded, let us consider y € \P(S) on [0,T], for a given to .€ [0,71.

/■i rto rta
y{t o) = <£(0) + / h(t0,s,xs)ds+ / g(t0,s,xs)v(s)ds + / K(t0,s)P(s) 

Jo Jo Jo
{%i — <p(0) — / h(T, r, xT)dr — I g(Ty t, xT)v(T)dr}ds 

Jo Jo
nT pt0 pto

|y(to)| < 1^(0) | + / \h(t0,s,xs)\ds+ \g(t0,s,xs)\\v(s)\ds+ \K(t0,s)\
Jo Jo Jo

l-P(s)11®1 - m - [ K1'-. T, xT)dr - [ g(T, r, xT)v(r)dT\ds 
J 0 J 0

< 10(0)1 + / \h(t0,s,xs)\ds + Mg(M + k1) +
Jo

(KPt0){\xi\ + |0(O)| + [ \h(T,T,xT)\dr + Mg(M + k{)
Jo

< [0(0)1 + b(t0) + Mg(M + h) + (KPto){\xi\ + |0(O)( + 
h(T) + Mg(M + h)}

< oo

Hence y is bounded uniformly on [0, Tj. It follows that the set #(5) is relatively 
sequentially compact, since the initial function is fixed and the restrictions of 
elements of S to [0, T] are continuous. □

Theorem 7.3.4. The set $(x) is convex for each x G 8. □

Proof. Let y^l\y^ 6 lL(x). Then there exists v®(t) 6 F(t,xi), i=l,2 such that

yw(t) = ^(0) + [ h(t,s,xs)ds+ f g(t,s,xs)v(-'l)(s)ds + [ K(s,t)P(s)
Jo Jo Jo

fT rT[mi — 0(0) — J h(T,T,xT)dr— I g(T,T,xT)v^(r)dT]ds.
Jo Jo
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Thus for 0 < A < 1,

fTAy(1)(t) + (1 - A)y(2)(i) = 0(0) + / h(t, s, zs)<is+
Jo

[ g(t, s, xs)(Xu(1)(s) + (1 - A)u^(s))ds + f K(s, t)P(s). Jo Jo
fT fT

{xi — 0(0) — I h(T,r,xT)dr— / ^(T, r,a:T)(Au^(r) + (1 — A)u^(r))dr}ds. Jo Jo
By the convexity of F(t,xf) we have (Av^(t) + (1 — A)u^(i)) £ F(t,xt).
Hence 'I'(a:) is convex. □

Now we prove that G{fi!) is closed. For proving this, we use the following theorems, 
which was used in (Angel [2]) and modified by (Cesari [16]).

Theorem 7.3.5. Let I = [0,T], consider the set-valued mapping, F : IxL°° —> 2Bn, 
and assume that F satisfies the conditions (F-a) and (F-b) with respect to 0. Let 

£fc, x, xk be functions measurable on I, x,xk bounded, and let £,£& £ L1(J; Rn). 
Then if £k(t) £ F(t,xt) a.e in I and £* —* £ weakly in L1(/; Rn), while x xk 
uniformly on I, then f(t) £ F(t,xt) in I. □

We now use Theorem(7.3.5) to show that the graph of the map defined by the 
relation (7.3.3), has a closed graph.

Theorem 7.3.6. Under the assumption (H),(G),(F) and (K) the map : S —* 2s 
has a closed graph. That is, {(x,y) € S x S | y £ \k(x)}is closed. □

Proof. Let {xk, yk} be a sequence of functions such that yk £ ®(Xk) which converges 
to a limit point (x,y) of G(^). Thus, xk x and yk —> y uniformly on [0,T]. By 
definition of # there exists a sequence vk, with Vk € ^(xk), such that

Vk(t) = <f>(0) + f h(t,s,xkl 
Jo )ds+ f g(t, s, Xk. Jo

)vk(s)ds+ f K(t,s)P(s)
Jo

[®i h(T, r, xkr)dT - [ g(T, r, xkT)vk(r)drjds 
Jo

Without loss of generality we may assume that vk —» v weakly in IA([0, T]; Rn) and
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Nx'-i
v(s) € F(s,xs). We wish to show y satisfies the equation

y(t) = <f>(0) + [ h(t, s, xs)ds + [ g(t,s,x3)v(s)ds + [ K(t,s)P(s)
Jo Jo Jo

[T fT[xx — 0(0) — / h(T,T,xT)d,T — / g(T, r, xT) i;(r)dr]ds
Jo Jo

Now considering,

pT pi pi\y(t) - (f)(0) - h(t, s, xa)ds — / g(t,s,xs)v(s)ds- K(t,s)P(s)
Jo Jo Jo

[xI - (f)(0) - ( h(T,r,xT)dT - f g(T,T,xT)v(T)dr]ds\Jo Jo

= \y(t)-yk(t)+yk(t)-<j>(0)- [ h(t,s,xs)ds— f g(t,s,xs)v(s)ds- [ K(t,s)P(s)
Jo Jo Jo

fT fT[x\ — (f)(0) — / h(T,r,xr)dr — / g(T,r,xT)v(T)dr]ds |
Jo Jo

= Iy(t) - Vk(t) + 0(0) + [ h(t, s, xk„)ds + [ g(t, s, xks)vk(s)ds + f K(t, s)P(s)
Jo Jo Jo

[xi-^(0)- [ h(T, t, xkr)dr — [ g{T,T,xkT)vk(r)dr]ds 
Jo Jo

—(f)(0)— f h(t,s,xs)ds — ( g(t,s,xs)v(s)ds — f K(t,s)P(s)Jo Jo Jo

[aq — (f)(0) — f h(T,T,xr)dr— f g(T,T,xT)v(T)dr]ds\Jo Jo

< \y(t)~yk(t)\+ [ \h(t,s,xk3)-h(t,s,xs)\ds+ [ \g(t, s, xkJvk(s)-g(t, s, xs)v(s)\ds 
Jo Jo

+ [ IK(t, s)P(s)[ f (h(T, T, xT) - h(T, r, xkT))dr+
Jo Jo

/ g(T, t, xt)v(t) - g(T, r, xfcT)ufc(r)dr]ds|
Jo

< \y(t) - yk(t)\ + [ \h(t, s,xks) — h(t, s, xs)\ds + [ \g(t,s,xs)\\vk(s) - v(s)\ds
Jo Jo

+ f \g(t,s,xks) - g(t,,s,xs)\\vk(s)\ds+ f \K(t,s)P(s)\
Jo Jo
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|[ / (h(T, r,xT) - h(T, r, xkT))dr + f g(T, r,xT)v(r) - g(T,r,2:fcT)ufe(T)dT]|<is 
Jo Jo

Here we need to show that the relation holds pointwise. So for a fixed to we consider 
each terms separately.

lv(*o) - Vk(to)\ < g

since yk —* y uniformly. From [H] each element of the sequence of functions
s —* \h(t0, s, xk)\ k=l,2,  is bounded above by the integrable function s
sup |/i(t0), s, 4>\- Since xk —► x uniformly we have from [H]that h(t0l s, xka) —> 
h(to, s, xs) pointwise a.e. in [0,T] and so

lim / h(t0,s,xks)ds = / h(t0,s,xs)ds 
fc->co Jo Jo

Also,
ptQ/ \g(t,s,xs)\\vk(s)-v(s)\ds <

Jo
Applying Egorov’s theorem and condition [G]

ft o
/ \g(to,s,xks) - g(t0,s,xs)\\vk(s)\ds 

Jo

can be made less than |. Using the continuity and boundedness of K, P and the 
conditions [H] ,[G] and [F] for the following terms, we get

[ |K(t, s)P(s)\ |[ f (h(T, r, xT) - h(T, r, xkT))dr

fT ej 9{T, U %t)v(t) - g(T, r, ^T)ufc(r)dr]\ds < -+

Hence for a given e > 0

\y(t) - (f)(0) - [ h(t,s,xs)ds+ f g(t,s,xs)v(s)ds- f K(t,s)P(s) 
Jo Jo Jo

fT fT[xi — (f>(0) — / h(T,r,xT)dT — / y(T, r, xT)ti(r)dr](i 
Jo Jo

Hence, (a;, y) &Q and the graph of \F is closed.

's| < e

□

With this theorem all of the hypothesis of the fixed point theorem are satisfied. And
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now we consider the main controllability theorem:

7.4 The main Result

Theorem 7.4.1. Under the assumption [H]-[B], the nonlinear system described by 
the integral inclusion (7.2.1) is controllable. □

Proof. We have proved in Theorem 7.3.2, Theorem 7.3.3, Theorem 7.3.4 and Theo
rem 7.3.6 that under the assumptions [H]-[B] the map if : S —* 2s satisfies all the 
hypotheses of the Bohnenblust-Karlin extension of KaKutani’s fixed point theorem. 
Hence \& has a fixed point in S. Let x £ S be the fixed point of the mapping if 
defined by the relation (7.3.3) that is a: € if(x). Therefore, for a selection v £ <p{x) 
such that v(t) £ F(t, xt) a.e, we have

*(*)

m+ rJo
h(t, S,X; ,)ds + I g(t, s} xs)v(s)ds

Jo

+
f K(s, t)B(s)P(s)[xi - <£(0) - [Th(T, r,xT)dr 

Jo Jo
T

g(T, t, xT)v(T)dr]ds.

Obviously x(0) = x0 and x(T) = x\. Hence the system is controllable. □

We conclude this section with an example, which demonstrates our result. 

Example 7.4.1. Let us consider the integral inclusion:

m e /Jo

1. sin(s2)sin(t2) cos(sx(s))
+

-F(s,a;(sj)]ds+ f e* Su(s)ds 
Jol3 + arctanx(s) 3\/l +1 

where r—0, m=n—l, and F : [0, T] x R —*• 2R is the set-valued map defined by

u, with |n| < t + |a:|, if — 1 — < x < 1 + t^fi 0,
F(t,x) = ^ u, with \u\ < |®|, t — 0,

0, otherwise.
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Here F has a closed graph and convex values, also the growth condition [F-c] is 
satisfied for the set-valued map F, since any selection £(f) € F(t, x(t)) satisfies

\Z(t)\<t + \x(t)\<t + l + 1

W)
It follows that F(t,x(t) is integrally bounded. Now

h(t, s, x)
sin(s2)sin(t2) 

3 + arctanx(s)

satisfies
\h(t, s, s)| < 1

and h(0, •, •) = 0 while

g(t, s,x) = cos(sx(s)) 
3 VlTt

is bounded. Also h, g and K(t, s) = et_s satisfies all the conditions [H], [G] and [K]. 
Since the linear system is obviously controllable, applying Theorem 7.4.1 we have 
the above integral inclusion is controllable.

7.5 Summary

In this chapter controllability result for a system described by an integral inclu
sion of Urysohn type with delay has been proved. The controllability problem was 
transformed into a solvability problem. Bohnenblust-Karlin extension of Kakutani’s 
fixed point theorem for set-valued mappings was applied to prove the solvability. A 
numerical example has been given at the end.
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