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In this chapter, new results for exponential and asymptotic stability of the null so
lutions of nonlinear discrete-time systems using the concept of (sp) matrix and the 
concept of generalised subradius are derived in Sections 5.1 and 5.2 respectively. 
Accurate estimate for the norm of solution of such system is also derived in Section 
5.2. The problem of the asymptotic relationship between the solutions of a linear 
Volterra difference equation and its perturbed equation is proved by using the di
chotomic condition of linear Volterra system in Section 5.3. Numerical examples are 
also given to support the results in each case.

5.1 Stability using (sp) Matrix

5.1.1 Importance of (sp) Matrix

In this chapter, a new result for the exponential stability of the null solution of a 
nonlinear non-autonomous discrete dynamical system described by

x(t+ 1) = g(t,x(t)), t e No (5.1.1)

where g : No x 0 —> 0, II C Rn is a continuous nonlinear function satisfying 
g(t, 0) = 0 Vt € No, is derived using the concept of (sp) matrix introduced by Xue 
and Guo [63]. Consider g in the form

g(t,x(t)) = Ax(t) + f(t,x(t))

where x(t) G 0, A G s = {A = (dij)nxn ■ caj > 0,E”=1% < 1 = 1,2, ...,n} is a
(sp) matrix, and the function / : Nq x Cl —> fi satisfies the inequality

II f(t,x(t)) || < a{t) || x(t) ||, t G N0

where, is a convergent series of positive numbers. We prove that the null
solution of the system is exponentially stable.
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It is well known that if the spectral radius of the jacobian Dg(0) of system (5.1.1) 
is strictly smaller than 1, then the null solution is exponentially stable. In order to 
check this condition, we have to compute the eigenvalues of the jacobian, which is 
a difficult task for higher dimensional systems. Checking if a matrix is (sp) can be 
easily done even for higher dimensional matrices, using a simple algorithm described 
in the definition of the (sp) matrix (see section 2.6.3, definition 2.6.2). Therefore, 
the method proposed in this paper is very efficient for numerical computations, as 
it avoids the evaluation of the eigenvalues of the jacobian.

Recently, Xue and Guo [63] studied asymptotic stability of null solution of

x(t + 1) = Ax(t) t € No (5.1.2)

by introducing the notion of (sp) matrix (see Section 2.6.3, Theorem 2.6.6) and 
proved that, for A £ s, the zero solution of linear system (5.1.2) is asymptotically 
stable if and only if A is a (sp) matrix. We perceive system (5.1.1) as a perturbation 
of system (5.1.2). We provide sufficient conditions on the nonlinear function / to 
ensure that the null solution of the perturbed system (5.1.1) is exponentially stable.

5.1.2 Exponential Stability of Null Solution of Semi-linear 
System

Before we prove the main result, we first establish the following theorem. This 
theorem guarantees that if A e s is an (sp) matrix then the zero solution of linear 
system (5.1.2) is not only asymptotically stable but is exponentially stable.

Theorem 5.1.1. Consider the autonomous linear system (5.1.2), where A is a nxn 
(sp) matrix and let i>(t,to) be the transition matrix for ( 5.1.2). Then there exist 
positive constants 0 and p € (0,1) such that

II $(Mo) II < 0Pt~to

Proof. Since A is a (sp) matrix, then by Theorem 2.6.6, the null solution of system 
(5.1.2) is asymptotically stable and hence it is uniformly asymptotically stable as 
the system is autonomous. Then for every e > 0 there exists 5 > 0 and iV(e) > 0

65



Trupti P Shah 5.1. STABILITY USING (SP) MATRIX

such that for || z0 ||< 5, we have

II $(t,to)xo || < e

for t > to + N(e). Also from the uniform stability of the solution x = 0, there exists 
an ?7i > 0 such that

|| $(Mo) || < T]i

for t>to + N(e), where ifr can be chosen arbitrarily small.

Also because the uniform asymptotic stability implies the uniform stability, we ob
tain || <b(t, t0) || is bounded by positive number /A for ail t > to. We then have for 
t € [to + mN, t0 + (m + 1) N], m > 0

II $(t,t0) || < || <&(£, t0 + mN) || || $(t0 + mN, t0 + (m- 1 )N) || ... || $(i0 + N,t0) [

< PiV?
< ^ ) («*U* = frfrn+l)* where 0=i}.irl==r)f <1

< 0rf~to for mN <t — to<{m + 1 )N

and this proves the theorem. □

Theorem 5.1.2. Suppose that

(a) Aesisanxn (sp) matrix.

(b) / : No x 0 —>• 12 , Q C Rn is a continuous nonlinear function satisfying

(i) f(t, 0) = 0 VteAo

(ii) For every 5 > 0, there exists a sequence a(t) satisfying a(t) > 0 for all 
t € No and YltLo a(f) < 00 such that

|| f{t,x{t)) ||< a{t) || x{t) || for || x(t) ||< 5 

then the zero solution of the non-linear system (5.1.1) is exponentially stable.

Proof. Since A is a (sp) matrix, it follows from Theorem 5.1.1 that

II ||< f3rjt~m for t0<m<t, forsome (3 > 0 and r) e (0,1)

66



Trupti P Shah 5.1. STABILITY USING (SP) MATRIX

By using the variation of constant formula, the solution of equation (5.1.1) is given
by

x(t,to,x0) = $(t,t0)x0 + + 1 )f(j,x(j))

Thus,

II »(*) II < f5rf-t0 | 1 %o | | +Egjtt*

< 1 | | +/^E*-xorf

Hence Vj~* || x(t) || < d{rfto 11 II

I II
'i_1 II

la(J) II x(j) || }

Applying the Gronwall’s inequality,

v * II x(t) II < v *° II 1 nyo [1 + fa xa(j)]
< V~to II || exp lT?r}tQfa-la{3)}

< rfto | xq I M, where exp [E*-“x0/3?7-1a(j)] < M < oo

|| x(t) || < || so ||

Hence the null solution of (5.1.1) is exponentially stable. □
Corollary 5.1.1. If A is a (sp) matrix and lim

IMHO
of (5.1.1) is exponentially stable.

IWI = 0 then the zero solution

Proof. It is easy to see that under this condition, || f(t,x) ||= o(|| x ||) i.e. if given 
e > 0 , there is 5 > 0 such that || f(t, x) \\< e || x ||, whenever || x ]|< 5 and t G No 
and by applying the above theorem we obtain the result. □

5.1.3 Numerical Examples

Example 5.1.1. Consider the 4 dimensional nonlinear system

x(t + 1) = Ax(t) + f(t,x(t))
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where A

l0 1 0 o\
01/300 
001/30 
10 0 0V

and

^ 5xi(t)sinxi(t) ^ 

x2(t)cosx2(t) 

x3 (t) sinx i (t) cosx 3 (t) 

x4(t)cos2x2(t) Jn = R4

Here A is a (sp) matrix. The function f is continuous, it satisfies fit, 0) = 0 and

1 j X2(t)cOSX2(t) |2 , 1 Xi(t)cOs2x2(t) ,2 
16 ¥ 1 +l t2 1

+25 I i2 + | x3(t)cosx3(t)sinxi(t) |2
t2 t2

<

<

25
16t4
25

%.e. f(t,x(t)) || <
16t4
A
At2 11

{| xi(t) |2 + | x2(t) |2 + | x3(i) |2 + | x4(t) ]2} 

x(t) l2

x(t)

Since < oo, / satisfies all assumption of Theorem 5.1.2. Hence the zero

( 1 \
solution is exponentially stable. If we take initial state as x0 then it

V-1/
reaches to zero state in 12 iterations. Figure 5.1 shows that the zero solution of the 
given system is exponentially stable. Note that the verification of the (sp) matrix 

can be done using Matlab program P — 5 given in the Appendix and remaining 
computation of the data is done using program P — 6 of the Appendix.

Example 5.1.2. Consider the system

x(t + 1) = Ax(t) + f(t,x(t)), t € N0

with the same matrix A as given in the above example and the nonlinear function
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State computation

Figure 5.1: Asymptotic behavior of null solution

( 3x3(t)xi(t) \

f(t.x) given by f{t,x(t)) = \ xi (t)x2(t) 
x3(t)x2(t)

Since

\ XA(t)x3(t)

II II2 = y^{9 I X!(t)x3(t) I2 + I Xi(t)x2(t) I2 + I x2{t)x3(t) |2 + | x3(t)ar4(t) |2}
< y^{| Xi(t)x3(t) I2 + I x1(t)x2(t) I2 + I x2(t)x3(t) I2 + I x3(t)x4(t) I2}

< yJt{I Xi(t) |2| x3{t) I2 + I Xi(t) |2| x2(t) |2 + | x2(t) |2| x3(t) I2 +

+ I x3(t) |2| x4(t) I2}

<

<

i.e.^MX <

It shows that lim 
ll*ll-o

Y^r{I Xl(t) |2 (| X3(t) I2 + I x2(t) |2) + I x3(t) I2 (I x2(t) I2 + I x4(t) I2)} 

Y^t{I Xi(t) I2 (I xx{t) I2 + I x2(t) I2 + I x3(f) I2 + I x4{t) I2)

+ | x3 |2 (| xl{t) |2 + | X2(f) |2 + | X3(t) |2 + | X4(t) |2)}
^{l Xx(t) |2 + | X3(t) |2}

^ = 0. Hence according to Corollary 5.1.1, the zero solution
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is exponentially stable. If we take the initial state Xq —

state within 11 iterations.

( 1 ^

1

v-1/

it reaches to null

5.2 Stability using Generalized Subradius

5.2.1 Introduction

Let Rn be the set of n-real vectors endowed with the Euclidean norm |j . jj. Consider 
the n dimensional discrete system

x(t + 1) = A(t)x(t) + f(t,x{t)), t € 1V0 = {0,1,2,...} (5.2.1)

where (A(t))teN0 is a sequence of real n xn matrices and {/(i, x(t))}teN0 is a sequence 
of nonlinear continuous vector functions. In [43], Medina and Gil derived accurate 
estimates for the norms of solutions using the approach based on the ’’freezing” 
method for difference equations and on recent estimates for the powers of a constant 
matrix.

Also many authors have studied the asymptotic stability of the null solution of such 
systems. A well-known result of Perron which dates back to 1929 (see Gordon [50]), ( 
Ortega [14] , page 270) and ( LaSalle [15] , Theorem 9.14) states that system (5.2.1) 
is asymptotically stable with A(t) = A (constant matrix) provided that spectral 
radius p(A) of A is less than 1 and f{t,x) = o(|| x ||). In [37], we established 
asymptotic stability of the null solution using a concept of (sp) matrix and taking 
some growth condition on /.

To obtain the estimates for the norms of solution and asymptotic stability of the 
null solution of system (5.2.1), we use the recent concept of generalized subradius.

In (Czornik 2005 [5]), the ideas of generalized spectral subradius and the joint spec
tral subradius are introduced and shown the relationship between generalized spec
tral radii and the stability of discrete time-varying linear system, (refer Section
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2.6.4).

Let
$(t,0) = A(t- l)A(t - 2)..,A(0), = I

denotes the transition matrix of the system

x(t + 1) = A(t)x(t) , t e N0 (5.2.2)

and

£(£,(), iro) = $(t,Q)xo

is the unique solution of equation (5.2.2) with initial condition ,x(0.0, xo) = Xq. Let 
E denotes a nonempty set of all real nxn matrices and p*(E) denotes the generalized 
subradius of E (refer Section 2.6.4).

In [5], Czornik, proved that the discrete time-varying linear system (5.2.2) with 
(A(t))— a sequence of matrices taken from E and any initial state xq € iT4, limt....+00 x(t) = 
0 if and only if p*(E) < 1 (refer Theorem 2.6.7).

Note that if p*(E) < 1, then for fixed d £ (p*(E), 1) there exist matrices ,Ai2,..., AinQ € 
E such that ]| AilAi2...AirHj ||< d.

We say that the zero solution of (5.2.1) is stable if for any e > 0 there exist 6 > 0 
and to G No such that

II x(t) || < c

whenever t> to and |[ xq || < 8.

We say that the zero solution of (5.2.1) is absorbing if for any Xq € Rn,

lim II x(t) ||— 0.
> oo

We say that the zero solution of (5.2.1) is asymptotically stable if it is both stable 
and absorbing.

We extend the result proved by Czornik [5] for the nonlinear system (5.2.1) under 
the following assumptions.
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Assumptions :

[A] Let p*(E) < 1 and

OO

|[ (|< f3j,V 0 < j < t < oo where < r), for some constant rj >
i=o

[B] There exist constants q,p>0 such that

II f(t,x) j|< q || x |j +p, 'ix € Br = {a; e Ft :|| x j|< r} for some r > 0.

[C] The constants q and q defined above satisfy qq < 1.

5.2.2 Accurate Estimate of Solution

Now we derive accurate estimate for the norm of solution of system (5.2.1).

Theorem 5.2.1. Under Assumptions [A],[B] and [C] any solution {x(t)}(°::Q of 
(5.2.1) satisfies the inequality

provided that

ii u\ n^- A) II x° II +Wsup || x{t) ||<---- ——----
t> o i — qq

.. r(l — qq) — pi] 
xq ||<----------------- for some r > 0

A>

Proof. By inductive arguments, it is easy to see that the unique solution {x'(i)}£L0 
of (5.2.1) under initial condition a;(0) = Xq is given by

t-i
x(t) = $(t,0)ao + X^(Lj + 1)/0‘»*C?)) 

i=o

i.e.

t-1
II x(t) || <|| $(i,0) HI II +5Z II $(*>3 + II (9 II XU) II +/“) */ II x || < r

j=o
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Hence,

II x(t) || < fa || x0 || +q _ max
2=0,1

t-1 1
x(i) || Eli $(t,j +1) || II II

j—O j—o

i.e.

x(t) II < Po II II +Q. max *(*) 1 II i +1) II II +o
i=0

max || x(i) \\< po || £o || +qrj max || x(i) || +prj
i=0,l ,...t &=0,1>—t

sup II x(i) II (1 - qrj) < p0 || || +W
i> 0

i.e.

provided that

Hence the theorem.

sup || rr(i) ||<
i> 0

Po II II +m
(i - qv)

Xq || < r(l — qrj) — p,r) 
Po

□

5.2.3 Asymptotic Behavior of Null Solution

We now prove the asymptotic stability of the null solution of system (5.2.1). 

Theorem 5.2.2. Suppose that the system (5.2.1) satisfies

(i) lim^oo Ejlo II $(*> j + 1) 1 = 0

(ii) />*(£) < 1 and

(iii) Assumption [B]

Then the zero solution of (5.2.1) is asymptotically stable.

Proof. The unique solution {x(t)}^0 of (5.2.1) under initial condition x(0) = x0 is
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given by
t-i

x(t) = $(t,0)xo + J2${t,j + 1 )f(j,x(j)) 

j=o
Hence

t-1
II x(t) II < II *M) HI a*> || +E || $(t, j + 1) HU ||

3=0

< II $(t,0) mi x0 II +]T II $(t,j + 1) II (q II x(j) II +jj)
-3=0

i.e. II X(t) II < (II *(t,o) nil *0II +/iE II +1) ll> + Eff II ^ +1) llll *V) II
3=0 j=0

Now applying the discrete Gronwall’s inequality,

IkWI! < {ll®(t.0)ll!k„||+Up||*(t,i + l)i|}n[l+9||*{t,; + l)||]

3=0 i=0

Since condition (ii) and Theorem 2.6.7 implies that

]| $(t,0) llll xq ||—» 0, as t —* oo.

Hence by using condition (i), we prove

|| x(t) || —> 0 as t —> oo

Hence the proof. □

5.2.4 Numerial Example

Example 5.2.1. Consider the non-autonomous system given by the following equa
tion.

x(t +1) = A(t)x(t) + fit, x(t)) (5.2.3)

where the sequence A(t) = 

and

11 o
1 .04t

, Let E = {A(h) : h = 0.002,0.004, .006,...}
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f = IJ r

\xi (t) + ex\(t) 
\xx{t)

. Let e E (0, |). For n = 10, we can verify that the

generalized spectral radius p«(E) = 0.008 < 1 and r] = 1. Also

1 A 1= ^4X2 + e:r2 + e ^2 + 4^1}

< ^{\x22 + ™l + £2X22 + \x2l}

<

1 A
< + f x

<

36 2
d2 || x ||2 taking d = (—I- e) < 1

36 
d ,.< - hr - 6 11

i.e., || f(t,x)

\\f(t,x)\\ < q\\x taking q = -

i.e. / satisfies the Assumption [D] with q — ~ — = 0.1167 < 1 taking e = 0.2
without loss of generality and fi = 0. The function f is continuous and it satisfies 
/(0) = 0. Note that qg = 0.1167 < 1. Hence all the assumptions of Theorem (5.2.2)

are satisfied. We can see in Figure 5.2 that initial state xq —
2

-9
reaches to null

state in 10 iterations. Hence the null solution of equation (5.2.3) is asymptotically 
stable.

State Computation

Figure 5.2: Asymptotic behavior of null solution
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5.3 Asymptotic Equivalence of Discrete Volterra 
Systems

Now we show that under certain conditions there exists a homeomorphism between 
solutions of linear discrete Volterra system and its nonlinear perturbation. This 
correspondence is elevated to asymptotic equivalence under suitable condition. Nu
merical example is given to illustrate the result.

5.3.1 Introduction

Two systems of differential or difference equations are said to be asymptotically 
equivalent if, corresponding to each solution of one system, there exists a solution 
of the other system such that the difference between these two solutions eventually 
tends to zero.

The problem of the asymptotic relationship between the solutions of a linear Volterra 
difference equation and its perturbed nonlinear equation is studied by many authors 
in several papers (see [13], [4],[53], [31]). The authors Choi and Koo [53], have 
studied this problem by using resolvent matrix and comparison principle. Pinto [31] 
studied the asymptotic equivalence between the solutions of linear difference system 
given by

x(t + 1) = A(t)x(t) (5.3.1)

and its perturbed nonlinear system

y(t + 1) = A(t)y(t) + f(t, y{t)) (5.3.2)

by means of the concept of {h. k) dichotomy. Let No = {0,1,2,...} and t0 € N(). 
Here we consider a linear Volterra system of convolution type

t
x(t+l) - A(t)x(t) + ^B(t-r)x(r), x(t0) = x0} f € IVto = {f0,f0 +1,...} (5.3.3)

r=to

76



Trupti P Shah 5.3. ASYMPTOTIC EQUIVALENCE OF DISCRETE VOLTERRA SYSTEMS

and its nonlinear perturbation

t

y(t +1) = A(t)y(t) + ^2 B{t ~ r)y{r) + /(£, y(t)), y(t0) = x0, t£ Nto (5.3.4)
r=to

where A(t) is a n x n nonsingular matrix function, B(t) is a n x n matrix function 
and / : Nto x BT —> IT is a continuous nonlinear function. It can be proved that

x(t,t0,x0) = X(t)x o (5.3.5)

is a unique solution of equation (5.3.3) with x(to) = xo- where X(t) is a n x n 
matrix, called the fundamental matrix of system (5.3.3) and satisfies the following 

equation
t

X(t + 1) = A(t)X(t) + r)X(r)
r=t o

It is easily proved that the solution of the perturbed equation (5.3.4) is given by

t- i

y(t,t0,x0) = X(t)xQ + J>(i-r-l)/(r,i,(r)) (5.3.6)
r=to

Mathematically, systems (5.3.3) and (5.3.4) are said to be asymptotically equivalent 
if, for every solution x(t) of (5.3.3), there exists a solution y(t) of (5.3.4) such that

y(t) = x(t) + o(l) as t —> oo.

In this chapter, we investigate the asymptotic equivalence between two Volterra 
systems by using the concept of ordinary dichotomy. In [8], Elaydi defined the 
ordinary dichotomy and provided some applications.

Definition 5.3.1. The linear system (5.3.3) has an ordinary dichotomy if there 
exists a projection matrix P and a positive constant M such that

1 XitjPX-^s) || < M for t>s> t0 
|| X(t)(I - P)X~l($) || < M for s>t> t0.
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Let [| x ||= supt>to || x(t) || Define

C(t0) := {x : Nto Rn : || x || < 00} (5.3.7)

Obviously G'(i0) is a Banach space. Our result generalizes the theorem proved by 
Pinto [31]. We make the following assumptions.

Assumptions :

[A] The linear system (5.3.3) has an ordinary dichotomy on Nto.

[B] / : Nto x Rn —> Rn is a continuous function such that

I f(t,x) - f(t,y) 1 < p{t) || x - y ||

where p € ll([to, 00]) and Y7=t0 II /(s>0) IK 00 •
[C] There exists a € Nto be so large that M YZa p{t) — a <1

Under asymptotic condition X(t)P —> 0 as t —»• 00, we will prove that

y(t) = x(t) + o(l) as t 00

We remark that for B(t) = 0, Vi e Ato, system (5.3.3) and (5.3.4) reduces to the 
particular case of system (5.3.1) and (5.3.2) respectively.

5.3.2 Asymptotic Equivalence

Theorem 5.3.1. Let Assumptions [A], [B] and [C] hold true. Then there exists a 
homeomorpkism between the bounded solutions x(t) € C(t0) of linear system (5.3.3) 
and bounded solution y(t) € C(t0) of the perturbed nonlinear system (5.3.4). More

over,
y(t) = x(t) + o(l)

provided that X(t)P —* 0 as t -* 00.
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Proof. According to Assumption [<7], there is a € Nto be such that

OO

a = M^p(s) < 1.
s~a

Consider Banach space C(a) as defined in (5.3.7) with the

j] x ||= sup || x(t) ||
t>a

On this space we define the operator T as follows :

t-l OO

(Ty){t) = x(t) + Y,X(t)PX-'(*)H‘,v(>)) - EX(t)(I - P)X-'(s)f(s,y(s))
S=tt s=t

(5.3.8)
The infinite sum is obviously convergent and since

OO

II Ty(t) I| <|| x(t) || +M E II f(s,y(s)) ||
s—a

Therefore,

OO

II Ty(t) || <|| x(t) || +M]T{//(s) || y(s) || + || f(s, 0) ||}

T maps (7(a) into itself. Moreover, for all yi{t),y2{t) € 0(a), we have

t-i
II Tyi(t)-Ty2(t) J < £||X(i)PX-I(s){/(s,in(s))-/(s,y2(s))}

8=aOO

+E ii xw-p)x-Hs)u(»Ma)) - n*,y,m
s=i
oo

< II /(«>lh(*)) - /(«,!&(«)) I!
$—a
oo

< llyx(*)-!fa(«) II
s—a

oo
< sup II yi{t) - y2(t) 1 M^ju(s)

t>a
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Therefore Banach’s fixed point theorem implies that T has a unique fixed point 
y(t) e C(a) i.e.

V(t) = Ty(t)

This y(t) is a solution of equation (5.3.4). Hence, if x(t) is a solution of (5.3.3), then 
y(t) is a solution of (5.3.4) with y(t) € C(a).

Conversely, if y(t) is a solution of (5.3.4) with y(t) € C(a), then x(t) defined by 
(5.3.8) with y(t) = Ty(t) is a bounded solution of (5.3.3).

Therefore (5.3.8) with y(t) = Ty(t) establishes a one-to-one correspondence be
tween the bounded solutions of (5.3.3) and (5.3.8) for t e Na.

Consider now for t 6 Na, x°(t) a bounded solution of (5.3.3) and y°(t) the cor
responding bounded solution of (5.3.4). Then from (5.3.8) with y(t) — Ty(t) and 
the corresponding equation with the replacement of x(t) and y{t) by x°(t) and y°(t), 
we obtain

II V(t) - y°(t) || <|| x(t) - x°(t) || +a || y{t) - y°(t) ||

and

|| x(t) - x°(t) || <|| y(t) - y°(t) || +a || y(t) - y°{t) ||< (1 + a) || y{t) - y°{t) [| 

Thus, it follows that

(1 + a)"1 || x(t) - x°{t) ||<|| y{t) - y°(t) || < (1 + a)-1 || x{t) - x°(t) ||

which shows that the one-to-one correspondence between the bounded solutions of 
(5.3.3) and (5.3.4) for t G Na is continuous and its inverse is continuous, so it is a 
homeomorphism. But the solutions of (5.3.3) and (5.3.4) are defined for all t e Na 
and are uniquely determined by the initial data, so we have a homeomorphism on 

Na.
Now let e > 0 be given and choose tx e Na so large that

CO oo

II f(s>y(s^ II y(s) II + II f(s,0) 11} < e
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Thus, if X(t)P —» 0 as t —> oo, then we find

*i-i

1 x{t) - y(t) ||<1 X(t)P || II (»)/(«.»(«)) 1 +e < 2e
S~~0>

for all large t. Hence x(t) — y(t) —► 0 as t —*■ oo. □

5.3.3 Numerical Example

We use Matlab program P — 7 for the computations involved in the following ex
ample.

Example 5.3.1. Consider the Volterra system

t
V(t+ 1) = A(t)y(t) + r)^(r) + /(*> ^))>

r=to

with A(t) = ( ^ ] and Bit)

V o (t +1) J
Let e be a small constant and f(t, y) =

4-*"1 0
0 3_t_1

sinyi(t) ’
1 ~ cosy2(t) )

and y(0)

f(t,x) - f(t,y) e
¥

smx i — smyi 
cosx 2 — cosy2

. 2e ..
< pWx-y

Hence f satisfies Assumption [B] with y(t) = It is easily verified that the linear 
system satisfies the dichotomy condition with M = 1. We also verify Assumption 
[C] with a = 0.0104 < 1 in 5 time steps. So all the Assumptions of theorem (5.3.1) 
are satisfied. The solutions of linear system and nonlinear system in 5 time steps 
are as follows.

y — 1.0e+003 ^ 0.0010 0.0006 0.0003 0.0001 0.0001 0.0000
-0.0010 -0.0023 -0.0079 -0.0345 -0.1848 -1.1747

x = l.Oe + 003 f 0.0010 0.0006 0.0003 0.0001 0.0001 0.0000
-0.0010 -0.0023 -0.0079 -0.0345 -0.1849 -1.1750
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Hence
y{t) = x(t) + o(l) as t —> 00.

5.4 Summary

In this chapter asymptotic stability of discrete time nonlinear system is studied 
using the concepts of (sp) matrix and generalized radius. Also accurate estimate 
for the bound of solution of nonlinear system is obtained. Asymptotic equivalence 
of solutions of linear and nonlinear discrete Volterra systems is discussed using the 
notion of ordinary dichotomy. Numerical examples are included to give more clarity 
and understanding in each case.
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