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1.1 Introduction

In the present thesis, we investigate controllability and stability problems of discrete­
time systems. Since more and more digital devices are being used for information 
processing and control purposes in a variety of system applications, including indus­
trial processes, power networks, biological systems and communication networks, 
study of discrete-time systems is essential. This trend is mainly due to the avail­
ability of low cost digital computers. So, for those applications where digital de­
vices are used, it is reasonable to model the system in discrete-time. In addition, 
there are other application areas, e.g. econometric systems, monetary systems, in­
ventory systems, environmental systems where the underlying models are inherently 
discrete-time and here discrete-time approaches to analysis and control are the most 
appropriate.

In order to deal with these two situations, there has been a lot of interest in devel­
oping techniques which allow us to do study the basic properties of the discrete-time 
systems. The behavior of discrete-time systems can be described in terms of differ­
ence equations. During 90’s only the difference equations have started receiving the
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attention they deserve.

Controllability and Stability are the two basic properties of dynamical systems. A 
system is said to be controllable if it is possible to steer a system from a given initial 
state to an arbitrary final state in finite number of time steps. Kalman ( refer [18], 
[19]) introduced the concept of controllability of finite-dimensional linear systems in 
1960’s and subsequently this concept was extended to nonlinear systems by Krabs ( 
see [58], [59], [60], [61]), Klamka [26], Chen and Narendra [27]. The classical theory 
of controllability for discrete-time systems in finite dimensional space was extended 
for linear abstract system defined on infinite dimensional spaces by Sasu [3] and 
Phat [57] etc.

Problems of optimal control have received a great deal of attention from control 
engineers. In designing an optimal control system, we need to find a rule for deter­
mining the present control decision subject to certain constraints, so as to minimize 
some measure of the deviation from ideal behavior. Many authors (see Belbas [48], 
[49] and Gaishun and Dymkov [11]) have contributed on this problem.

The control theory of linear system is almost saturated in the literature. Though 
there has been many results available for the nonlinear systems, many problems are 
still open for nonlinear system. Furthermore, the computational algorithm for the 
steering control is important for engineering systems, which is not easily available in 
the literature. Development of powerful tools in difference equations, linear algebra 
and functional analysis resulted in the enrichment of control theory considerably.

In the present thesis, we investigate controllability of nonlinear systems by using 
some tools from functional analysis such as fixed point theory, inverse function 
theorem, implicit function theorem etc. Along with controllability results, we made 
attempt to obtain a computational procedure for the actual computation of steering 
control for nonlinear system and we prove that the steering controller which we have 
considered is well-defined ( see [38]).

Volterra systems are often appear in population dynamics. We study the controlla­
bility of discrete Volterra systems both linear and nonlinear using inverse function 
theorem and implicit function theorem. Our results are computational in nature. We 
have also investigated quadratic optimal control for discrete linear Volterra system 
by the conventional minimization method using Lagrange multipliers.
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We are often interested in the qualitative behavior of solutions without actually 
computing them. Realizing that most of the problems that arise in practice are 
nonlinear and mostly unsolvable, this investigation is of vital importance to scien­
tists, engineers and even to applied mathematicians. Also for a given difference 
system, one of the pioneer problems is the study of ultimate behavior of its solu­
tions. i.e the study of asymptotic behavior of discrete systems. There exists a huge 
literature devoted to this problem.

In 2006, Czomik [6] and Xue [63] obtained new necessary and sufficient conditions 
for asymptotic stability of null solution of linear difference system. We extended 
these results to nonlinear difference systems. Also Pinto [31], introduced the con­
cept of (h, k) dichotomy and proved the asymptotic relationship between solution 
of ordinary linear difference system and its nonlinear perturbed system. We extend 
this result to more general discrete Volterra system using the concept of ordinary 
dichotomy. Many authors like Elaydi [9], Kolmanovskii [56], Eloe [36], Medina (refer 
[44], [45], [46]), Baker (see [51], [52]) have greatly contributed in this area.

The problems that we deal in the thesis are as follows:

I. Steering Control of Semi-linear Discrete Dynamical Sys­
tem

Krabs [61] studied the controllability of a general difference system of the form

x(t + 1) = f(x(t)iu(t))

and also obtained controller that steers a given initial state to a desired final state 
for the linear system

x(t + 1) = A(t)x(t) + B(t)u(t), x(0) = xo ,t € No = {0,1,2,(1.1.1)

Here in this problem, we consider a semi-linear system of difference equation of the 
form

x(t + 1) = A(t)x(t) + B(t)u(t) + f(t}x(t)), x(0) = Xo ,t €. No (1.1.2) 

Here, (A(t))i€Jy0 and (B(t))tejy0 are sequences of real n x n and n x in matrices
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respectively, (x(t))t£N0 and (u(t))t£N0 are sequences of state vectors in R1 and control 
vectors in Rm, respectively. /(.,.) : Nq x Rn —> R1 is a nonlinear function satisfying 
Lipschitz condition with respect to the second argument. We give the computational 

scheme for the steering control for (1.1.2). For t € JV0, we define a controller

iV-l
u(t) := + 1)*W,(0, JV)-1^! - $(iV,0)^o - £ + WOXi))]

1=o
(1.1.3)

where Wr(0, N) is called reachability Grammian defined by

N-1
Wr(0, N) := £ m,3 + l)B(j)B(j)**(N,j + 1)*. (1.1.4)

3=0

here 4>(ra,n) is a fundamental matrix of linear homogeneous system

x(t + 1) = A(t)x(t).

We claim that this control is well defined and steers the semi-linear system (1.1.2) 
from xq to X\ under the following conditions (refer [38]).

Conditions :

[L] The linear system (1.1.1) is controllable.

[N] The nonlinear function f{t,x) is Lipschitz continuous with respect to x, 

i.e. 3 a > 0 || f(t, x) — f(t, y) || < a || x — y ||, Var, y e Rn

Under the same assumptions, we also prove that controllability and reachability of 
the system (1.1.2) are equivalent. Numerical example for the computation of steer­
ing control of system (1.1.2) is also provided.

II. Controllability of Discrete Volterra Systems

Gaishun and Dymkov [11] studied the controllability of the Volterra linear discrete 

system
t

x(t + 1) = ^ A(i)x(t — i) + Bu(t), t € N0 = {0,1,2,...}
i=o
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by a method based on the representation of the Volterra operator generated by the 
equation in the ring of formal power series. In this problem, we study controllability 
of a non-autonomous linear Volterra system of the form :

t
T.l : x(t + 1) = ^2A(i)x(t — i) + B(t)u(t), t € N0 (1.1.5)

i=0

and a semi-linear discrete Volterra system of the form

t
Ejy : x{t + 1) = A(i)x(t — i) + B(t)u(t) + f(x(t),u(t)), t e N0 (1.1.6) 

i=o

using a different approach and in much more straightforward manner. Here, (A(t))teN0 
and (B(t))t£N0 91-6 sequences of real n x n and nx m - matrices, respectively, and 
(x(t))teN0 and (u(t))teN0 are sequences of state vectors in Rn and control vectors in 
Rm, respectively. /(.,.) : Rn x Rrn Rn is a nonlinear function of state and control 
variables. It follows easily that for a given control sequence {u(t)}teN0 and initial 
state x(to) = xq, there exists a unique solution to the linear system E/,.

We make the following definitions to obtain solution of Define the set of linear 
operators Qt ■ Rn Rn, t e N0 by

t
Qo = I, Qt+i = ^2 t € N0 (1-1.7)

i=0

Hence the solution of (1.1.5) is given by

t- i
x(t) = Qtxo + ^2QiB(t - i - 1 )u(t-i - 1) (1.1.8)

i= 0

The controllability Grammian for the linear Volterra system (1.1.5) is given by

N

W(0, N) = J2 Qi-1B(N - - i)QU (L1-9)
i= 1

We establish controllability result for the linear Volterra system E^. We give two 
different conditions, for the global controllability of (1.1.5), namely
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(i) condition using controllability Grammian and

(ii) Kalman type rank condition.

Also using the notion of "higher order” functions, inverse function theorem and 
implicit function theorem, we prove local controllability of the semi-linear system 
(1.1.6). Numerical examples are provided to substantiate our results.

III. Asymptotic Stability of Nonlinear Discrete Dynamical 
System Involving (sp) Matrix

We consider the following discrete dynamical system

x(t + l) = g(t,x(t)) t e N0 - {0,1,2,...} (1.1.10)

where g : Nq x Q —*■ Q, Q C K1, is a continuous nonlinear function satisfying 
g(t, 0) = 0 Vt. We take g in the form

g(t,x(t)) = Ax(t) + f(t,x(t))

where x[t) € Q, A e s {A = (a,ij)nxn '.(Hj > 0,S”=1ajj < 1,Vi — 1,2, ...,n} is a 
(sp) matrix, and the function / : N0 x 0 —► Q satisfies the inequality

|| f(t,x(t)) || < a(t) |I x(t) ||, t € N0

where Y^a(f) is a convergent series of positive numbers. We prove that the null 
solution of the system is exponentially stable. It is well known that if the spec­
tral radius of the jacobian Dg{0) of system (1.1.10) is strictly smaller than 1, then 
the null solution is exponentially stable. In order to check this condition, we have 
to compute the eigenvalues of the jacobian, which is a difficult task for higher di­
mensional systems. Checking if a matrix is (sp) can be easily done even for higher 
dimensional matrices, using a simple algorithm (described in the definition of the 
(sp) matrix in the subsequent chapter). Therefore, the method proposed here is very 
efficient for numerical computations, as it avoids the evaluation of the eigenvalues 
of the Jacobian. Recently Xue and Guo [63] studied asymptotic stability of null 
solution of

x(t + 1) = Ax{t) t = 0,1,2,... (1.1.11)
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by introducing the notion of (sp) matrix. In [63], authors proved that the zero solu­
tion of (1.1.11) is asymptotically stable if and only if A is a (sp) matrix. We provide 
sufficient conditions on the nonlinear function / to ensure that the null solution of 
the perturbed system (1.1.10) is not only asymptotically stable but exponentially 
stable also (refer [37]). Exponential stability is much stronger property than asymp­
totic stability. Numerical examples are given to support our results.

IV. Accurate Solution Estimate and Asymptotic Behavior 
of Nonlinear Discrete System

In this problem, we deal with the nonlinear nonautonomous discrete dynamical 
system of the form

x(t + 1) = A(t)x(t) + f(t,x(t)), t G No = {0,1,2,....} (1.1.12)

We first derive accurate estimate for the norm of solution of this system. This give us 
stability condition and bound for the region of attraction of the stationary solution. 
Medina and Gil [43], derived accurate estimates for the norms of solutions of such 
system by using the approach based on ’’freezing” method for difference equations 
and on recent estimates for the powers of a constant matrix.

We also give sufficient conditions for the asymptotic stability of the null solution of 
the above system. Our approach is based on the concept of generalized subradius 
for the coefficient matrices. In ( Czornik 2005 [5]), the ideas of generalized spectral 
subradius and the joint spectral subradius are introduced and shown the relationship 
between generalized spectral radii and the stability of discrete time-varying linear 
system. Numerical example showing asymptotic behavior of the null solution is also 
given to support our result.

V. Asymptotic Equivalence of Discrete Volterra Systems

The problem of the asymptotic relationship between the solutions of a linear Volterra 
difference equation and its perturbed equation is studied by Criscii [34], Morchalo 
[13], Choi [53], Cuevas and Pinto [4], Medina [44] by means of the direct Lya-
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punov method, comparision theorems and by taking certain conditions on nonlinear 
function / and resolvent matrix associated with (1.1.15). Pinto [31] studied the 
asymptotic equivalence between the solutions of linear difference system

x(t + 1) = A(t)x(t),t € N0 (1.1.13)

and its perturbed equation

y(t + 1) = A(t)y(t) + /(£, y(t)) (1.1.14)

under dichotomic situations of system (1.1.13). In this problem, we consider the 
linear Volterra system of the type

t
x(t+l) = A(t)x(t)+B(t-r)x(r), x(t0) = x0, t€ N(t0) = {t0,t0+l, ■■■■}, to € N0

r=to
(1.1.15)

and its perturbation

t
y(t + 1) = A(t)y(t) + J^5(t-r)y(r)+/(t,^(t)), y{t0) = x0, t£N(t0) (1.1.16)

r=t0

where A(t) is a n x n nonsingular matrix function, B(t) is a n x n matrix function 
and / : iV(t0) x Rn Rn is a continuous nonlinear function. It can be proved that

x(t,tQ,Zo) = X(t)Xo (1.1.17)

is a unique solution of equation (1.1.15) with x(to) = x0. where X (t) is a n x n 
matrix, called the fundamental matrix of system (1.1.15) and satisfies the following 
equation

t
X(t + 1) = A(t)X{t) + ]T B(t ~ r)X(r)

r—to

We use Banach’s fixed point theorem and dichotomy property of the linear system to 
obtain the asymptotic equivalence between the solutions of linear difference system 
(1.1.15) and (1.1.16). Our result generalizes the theorem proved by Pinto [31] under 
the following hypothesis.

[A] The linear system (1.1.15) has an ordinary dichotomy on iV(to)
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[B] / : N(t0) x Rn —> Rn is a continuous function such that

II f(t,y) ||</i(t) || x-y ||

where /x e ^([t0,oo]) and || /(s,0) ||< oo.

Furthermore, let P be the projection matrix used in the definition of dichotomy. 
Under asymptotic condition X(t)P —>■ 0 as t —> oo, we prove that

y(t) = x(t) + o(l) as t —> oo

VI. Optimal Control of Discrete Volterra System - A Classi­
cal Approach

The problem of optimal control for discrete Volterra system is highly interesting 
and many authors Gaishun and Dymkov [11], Belbas ([48], [49]) have contributed in 
this directions. Recently Belbas [48] has studied optimal control problem of Volterra 
equations with impulses. Here we adapt independent approach of classical minimiza­
tion technique called method of Lagrangian multipliers to find the optimal control 
of the following linear Volterra system.

t
x(t + 1) = ^ A(i)x(t — i) + Bu(t), t € No (1.1.18)

»=o

where Ai}i = 0,1, ...t’s are n x n nonsingular matrices and B is n x r matrix. We 
consider a quadratic performance index for the finite time process (0 < t < N) as

1 1 JV-l
J = -x*(N)Sx(N) + - y^[a:*(t)<5rr(t) + u*(t)Ru(t)] (1.1.19)

2 2

where S, Q are nxn positive definite or positive semidefinite Hermitian matrices (or 
real symmetric matrices), R is an r x r positive definite Hermitian or real symmetric 
matrix.

We find a controller which minimizes J as given by equation (1.1.19), when it is 
subjected to the constraint equation specified by (1.1.18) and when initial condition 
on state vector is specified as

s(0) = c. (1.1.20)
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For computation of steering control and other numerical examples, we use Matlab 
software.

1.2 Layout of the Thesis

The thesis is organized as follows:

Chapter 1 deals with a general introduction to the thesis.

Chapter 2 focuses on the necessary concepts of control theory and analysis which 
will be used subsequently in the thesis.

In Chapter 3, we investigate the controllability property of a class of semi-linear 
non-autonomous system described by the difference equation

x(t + 1) = A(t)x{t) + B{t)u(t) + f(t, x(t)) t € Nq

under the assumption that its linear part is controllable and the nonlinear function 
/ satisfies a Lipschitz condition. We also give an algorithm to compute steering 
control for the syste'm.

In Chapter 4, a necessary and sufficient condition is established for controllability 
of discrete-time linear Volterra systems. Local controllability result for a semi- 
linear discrete Volterra system is also proved. Numerical examples are provided to 
illustrate our results.

In Chapter 5, we give sufficient conditions for exponential stability of null solution 
of a nonlinear autonomous discrete dynamical system by using the concept of (sp) 
matrix and taking some growth condition on nonlinear function.

We also derive accurate estimate for the norm of solution of discrete system. This 
gives us stability condition and bound for the region of attraction of the station­
ary solution. We also give sufficient conditions for the asymptotic stability of the 
null solution of the system using the approach based on the concept of generalized 
subradius for the coefficient matrices.

The problem of the asymptotic relationship between the solutions of a linear Volterra
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difference equation and its nonlinear perturbation is discussed using the concept of 
discrete dichotomy.

Chapter 6, concludes the thesis with the optimal control problem of liner discrete 
Volterra system using the classical optimization technique of Lagrange multipliers.

Numerical computation is carried out in MATLAB to support our results with ex­
amples. MATLAB programs are included in the Appendix.
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