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ON STRONG EULER SUMMABILITY OF

R. K. Patel ORTHOGONAL SERIES

(Received Avgust 17, 1972)

1. Let {®, (x)} (n=0, 1, 2, ...) be an orthogonal and normal! function
system in the i_nterval {a, b). We consider the orthogonal series

(1.1) 2.C, ®,(x),

with real coefficients sequence {C,}.

The n-th Euler mean of the first order or the (E, 1)-mean of the sequence
of partial sums {S, (x)} of the orthogonal series (1.1) is defined as

e )——~z ( )Skoc), ne0, 1, 2, ...
k=0
where

k
S (=73 C, D, ().

1=0

Series (1.1) is said to be strongly summable (E, 1) to the sum S{x) if

Zn (2) (S ()~ S(x)*=0(2%) as n—>oo*,

k=0

The strong summability (C, 1) of orthogonal series, as well as that of
Fourier series, has been investigated by several authors such as: A. Zygmund,
S. Kaczmarz, S. Borgen, G. Alexits, K. Tandori, B. N. Prasad and U, N. Singh.
A: Zygmund ([6] p. 356) has proved the following theorem.

Theorem A. If series (1.1) by condition 3, Ca<eo is summable (c, 1)
almost everywhere to a function S(x), then it is strongly summable (c, 1) to
this function S (x).

The strong summability (R, %,, 1) of orthogonal series has been _studied
by G. Lorentz, J. Meder, C. Patel and A. Sapre. Meder [4] has proved the
following theorem.

* If the sequence {f, (x)/g,(x) in {a, b) is bounded or convergent to zero for #n-roo
almost everywhere, then we shall write £, (x) =0 {g, (x)} or £, (x) =0 {g, (x)} respectively.
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Thcorem B. If the orthogonal series (1.1) with coefficients satisfying

condition ZC,,<oo is summable (R, A, 1) almost everywhere to a functior
S{x), then it IS strongly summable (R, A,, 1) almost everywhere to this func
tion S (x).

The strong Norlund summability of (1.1) has been discussed by Meder
Meder [5] has proved the following:

Theorem C. If orthogonal series (1.1) is (N, p,) summable to a func
tion S(x) almost everywhere with { p,,}EM~ ok, oc>é~, then it is strongly (N, p,

summable to this function almost everywhere.
In this paper I propose to prove the analogous form for (E, 1)-sum
mibility. We prove the following theorem:

Th;:orem: If the orthogonal series (1.1), with coefficients satisfying con
dition 3. C2V n< o, is summable by the method (E, D) to a function s(x), ther
it is strongly summable (E, 1) almost everywhere to this function.

2. ﬁor the proof of our theorem we need following lemmas:

Lemma I: (refer Knopp [2] p. 136)
Ir mé n , then
L2
as
2n

Lemma 2%**: Writing

<20e for n=1, 2, 3,...

1 k= 2k
”k E;xg—-:o( ) n+1,

W, <0 for [—ﬂugkgn.

we have

Lemma 3%
1 k=t/pn 2 kz

' 2 e\ i n
* The sequence { p,,}eﬁa if {p,} is convex or concave and if
(1) 0< Py <Py OF 0<Py<Ppiy (n=0,1,2,..)
i) potpi+ - +Pp=Py t @

nhp,
(1ii) hm 72 9o where @20, A%p,l,=Ap, ,~Ap,_,
n~»co AP,, 1

are satisfied.
nl, . n
* 7 indicates, the integral part of 5

*** For the proof of lemmas, see Meder [3].

[
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for 1£.k<[ 3 ]-1—1 C, being an absolute constant and n=1, 2, 3,.

3. Progf of the Theorent.
We have
A WICICE e

23 () (S, ()~ () +3 3 (Z) (v () =S ()=
=35 )(Sk<x>—~ck(x))2+-kxo( )(cw) o ()4
123 (4) G -5 6=

(3.1) =8, +8,+S;, say.
From the hypothesis it is evident that
S;— 0.
Coming now to S,

S, O(I)——

]/”

wogx) 2 (S, () ~ 0, (x))? by Lemma 1.

Now,
1 n
S, (x) =0, (x)=——3 kC, P (x).
00, ()= 3 kG P,

Therefore by the orthonormality properties of {®,(*)},

b
f (S, () — 0, () dx =

a

2 k2 Ch.

(n +1)2

Consequently,

n=1

b
o 1 o 1 n 2
| (S,®- 2dx< S —= 5 k2 Cr=
27 f (S, cn(fc)) <3 o 2,

= i k2Ci S —%20(1) S CiVk<ce.
k=1 n=k k=1

21 MaTemaTHIXH- BECHUK 4

321

( ) z (Sk (X}~ o (x))z O(l)f( ) = (Sk x)—oy (x))z
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Therefore by B. Levy’s theorem (refer Alexits {1] p. 11)

7= (5,090, (®))P< oo

ns

Then, by Kronecker’s lemma (refer Alexits [1] p. 72)

Z (Sk (x)—oy (x))_z =0 (V;) >
k=1

which proves that

‘ S,— 0.

Lastly let us consider S,,

Sz-;,;( ) 3 (-7 P

~0(1) V~ (c,c (x) -1, (x))%, by Lemma 1.

Nm;v, we have

‘ n 1k—~! n k

5, (X) =7, ()= > C, @ (x)]|— e
@-n0=3 6o 5 (1) ]

Whence
b
f (6, (%) ~ 7, ()] dx =

‘% {1 kzt( z)[zikéi(:)—%]+@f21)2}<

2"10

oy

bl RO
5, Ck{l'E(")[anzl(?)”nzfll}*é,%'

. . [3}_}2 2!!

By Ien;xma 2, .
S a5l

P'——l
:

Hence,

n

i PN ]
f [s, (x) = WP < z ci

k=1

1=0

1 fe—1 2 4 k2 Ci
[2" 2 ( J )] +k§1 ("+1)2‘
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Consequently, by Lemma 3,
. PN
— - ldx <
3 [ [0, (5) — 7, () dx
- w 1 [?}+1
:rZJ V; kgl

-3 -] 1 =) o 1
gA[zkzciz—SI—z+z k2Ch ——]
k=1 n=k N k=1

na=k n5{2

Ci-C-E+§~1: s k2Ci
o AV @y iy

where A is an absolute constant.
O S CiVk<oo.
k=1
Therefore by B. Levy’s theorem,

s L

(6, (x) —%,(x))>  converges a.e. in (a, b).
n=1y &

Then by Kronecker’s lemrﬁa,

$ (@ - @r=0(/m) e

k=1
which proves that §,— 0 ae.
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ON VERY STRONG EULER SUMMABILITY OF
ORTHOGONAL SERIES

R. X. PateL, Baroda (India)
1. Introdiuction

Let ON { ¢u{x)} denote an orthonormal system defined in the interval
< a, b > and {C, } al?, that is,

Y ‘
(1.1) T 2 < ool
n=¢q "

Further let
o0
(12) I C.@,(x)

denote orthogonal series being development of functions f( x ) L2 i.e. integrable
with square in Lebesgue sense.

The n-th Euler mean of the first order or the (E, 1)-mean of the sequence
of partial sums { S,(x) } of the orthogonal series ( 1.2 ) is defined as

'cn(x)w-;;; kiﬂ (Z) Sk(xv),‘ n=1012....
where
k ‘
S(x)= T C ¢

Series ( 1.2 ) is said to be very strong summable ( E, 1) to the sum Sf x)if
for every monotone increasing index sequence { v, } and for almost every x the
relation :

k’io (Z)(Svk(x)—S(x))z = O‘(?«n) as n - oo holds,

The very strong Cesiro summability of orthogonal series has been studied
in great details by G. ALEXITS[2] and K. TANDORI[8]. Very strong
Riesz summability of orthogonal series as well as very strong Nérlund summabil-
ity of orthogonal series has béen discussed by MEDER [61,[7].

In this paper, I propose to prove a theorem on very strong ( E, 1 )—sum-
mability of (1.2 ) which reads as_follows ’ X

N
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Theorem ; Let { C; } be a numerical sequence of positive terms such that
* ) * (y =

(1'3.) Vva =+ 1 Cv_‘_1 (v=123,....)

and’
(14) 2C:2 VY < oo, !

Further let { Cy} be an arbitrary sequence of real numbers satisfving the
relation

(1.5) C, =0 (Ck

Suppose that the orthogonal series Z Cy ¢n{x) under these assumptions is
(E, 1) summable to a function f( x) almost everywhere in <a, b >, then it is
very strongly summable (E, 1) to this function almost everywhere in < a, b >. .

2, Lemmas :
" For the proof of our theorem we need following lemmas:
Lemma 1: (Refer KNOPP [3] p. 136).

‘ If m= [»g«] ( the integral part of -g—) then
“n
v ()

nt

< 20e forn=123.....

Lemma 2: (Refer MEDER [5] Lemma 1)

Writting Wnk = —n 1- 0 ( ) n+1
Werha)ve ) :
‘ n

- -1 <
Wnk <0 for [3]+2=k§n.

Lemma 3 : (Refer MEDER [5] Lemma 1)

= 2”1’~0( )}

for 1 < k S [——-] + 1, C, being an absolute constant and # = 1 2,3, c0une

_Lemma 4: Under the condition ( 1.1) the relation

-S’{ (x)~- T, (x)= Ox( 1) is valid almost everywhere for every index sequence
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> L

"}

Proof of Lemma 4: We write

k~1f[s (%) -1, (ﬂ]tus
. b
(21) 52 ozo I[Sn (x)-o, (x)]zdx—f—
=la k k

Zk._lf[ (3=, T gy

= 1; + I, say.

The convergence of I; under the assumed conditions follows from the
theorem of A. N, KOLMOGOROFF [ 4 1.
For convergence of I,
We have

s 3 e a5 (1) ]

Whence

b
f[c (%)=, () P gy —

a n
n v—l
EIC N O
v=0 " zmo i=0

n
v 5]+ Sty
+U£ZWJ>< vil sz nlv__o( )

[ -1 3
+v=[%._.] +2sz"i“2‘1h“ ivj.—fo(':')wnvj_!-
3 ’ .
© VZCZV

+ 21 m == Spy -+ Sp3 + 323, say.
VP o

n

uitl
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Now !

C n
(22) 8y <« - b | v2 sz , by virtue of Lemma 3.

y ==
Again
! ’ ( 1 V -1

(23) Sy = ( )

v-[———]+2 "iZo

Whence from (2.2) and (2.3 ) we get

by virtue of Lemma 2.

b
C =n
f{cs”(:c:)--'cn(x)]2 dx < = % ne.
=1
a . .
Substituting n, for n and summing we get
‘ b .
o
b3 f o (x)-z (x))
kzl [ nk nk ] dx =
: a
| o0 " '
2 (2
=0(1) z%zvcv : -~
k=1"p p=1
| o0 w 1
= 0 ( T k22 =
)k--1 k nvék nzv

q2 0
=0(1)d— I C, < .
i, 2,k

Hence from (2.1)

k--l f[S (x)- -1, (x)] dx
converges almost everywhere from whlch our lemma follows by B. LEVY’S
theorem (refer ALEXITS (1], p. 11 ).~

3. Proof of the Theorem

Let { v, } be an arbitrary strictly increasing sequence of indices. We may
suppose without loss of generality of theorem that v; = 1.

Letzm = Vi <2m + 1. Assume that w = 2™ +1 (m=10,1,2....).

Since from the assumption { C, } ¢/2 and the series (1.2)is (E, 1) summable
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to a function f ( x ) almost everywhere in <a, b>>, so from Lemma 4 it follows
that

lim Sym(x) = f(x)is valid almost everywhere and subsequently
0~ 0

(31)  lim Su[;(x) = f(x).

- 00

For every n we write

2 k)(s (x) f(x))
(3.2) s“k»-z\k)(s (x)-5, (x))

= k==l( )(spkm F2Y) =

= Sax + S, say.
In virtue of (3.1) )
S32 — 0,

() »
v ..1(S (x) -8 (x))

va (m) .

s Vi 2y

Also

=0 (1) (S (%)~ S (x))

H
=0(1) v-Tl—-k____;l(Svk(xr-s%(x))z,

) by virtue of Lemma 1.
Asper(1.3), (1.4)and (1.5)

b
kzﬁl 3 f(s () =8, (DY 4

0(1),‘”1' (c +1) + +(c )
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o (‘“‘k‘k)("k“L1)((":'k+1)2
vk v, +1

=0(1) %
( 2
v+l)(C* )
1 Vk

b}
k=

=0(1)

o kCR
=0(l) = —p
k=1 V¥

oG
=0(1) I C* k< .
k=1 k

results by a simple calculation, from which we get by an application of B.
o0
LEVY’S theorem that the series X 1 S (x)-5_ (x) )2 converges

almost everywhere. Then by KRONECKER’S lemma ( refer ALEXITS [ 1]
p.72)

n
S -8 2
e 1 (3 7%, ) =0 vm)
which proves that

Ssx — 0.

With that theorem is completely proved.
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