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I. Let /(x) e L (~n, a) and be periodic with period 2%.

Let
CD

(LI) S [a cos\x + b sinsfex)
v *=1 nk Knk
be the Fourier Series off(x) with an infinity of gaps («fc, «/e + j )

such that (n^ ^ - «^) -*■ a, as k -*■ .?>.

ih ' ,We shall denote, as usual, by the partial sums of the n order ot (1.1).

The following theorem is known, ([ 1 ], p. 256-257, Note 3).
Theorem A: Iff(x) is bounded and if (1.1) is the Fourier series of f{x)

satisfying Hadamard lacunarity condition viz.

(1.2) "k+llnk>X> U

then,
(1.3) S = 0 (1), as k -> 

n. k
The purpose of this note is to examine the behaviour of the partial sums 

S when the sequence { n. ) satisfies a lacunarity condition appreciably weaker 
nk K

than the condition (1.2) of Hadamard. In fact, we shall consider the sequence 

{nfc} given by -

(1.4) nk - [ /* la > 1, and 1/2 <«<!,[/ 1 being the

greatest integer not greater than / . Jt is easily seen that the sequence {^ }

of (x.4), with a = l, satisfies the Hadamard lacunarity condition (1.2) for all 
sufficiently large k. On the other hand, when 1/2 < a < L we have

sHiA"1,as^8'
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= 0(/c* ~a), by using the well known result ([2], p. 413, 13.31) that 

for every positive integer n,

(2.4) JL
nit

r s*°2 2 nt 
5 sina \ t dt = 1,

and observing that nk is bounded.

If a. — 1, the result ( 1.3 ) follows from our result (2.1 ).
The result ( 2.1) can be sharpened for a value of x for which the expres

sion f (x + 0) +/(x-0)/2 is finite. This is done in the following theorem. 
Lets=/(x + 0)+/(x-0)/2.

- jfca
Theorem 2 : Let n^= [a .], where a > 1, and 1/2 < a < 1. If for 

such a sequence { n^ }, the series (1.1) is the Fourier series of a function/(x), 

then
(2.5) S = 0(Ar~ a),as&-*

\
for a value of x for which the expressionf(x + 0) + f(x- 0 )/2 is finite. 
Proof : By virtue of the lacunarity of the Fourier Series, we have,

, % sin2 n, A t - sin2 n, £ t
S _ s « -----.......1-----------f , (n--------*-± 1 -■..........*— dt,

nk iTC(MA+ 1~V 0 ? smiil

where cp(r) = /(x+'0 + f(x - t) - 2s/2.
Hence,

|S„ <A1AI
nk + 1 0

71 s5q2\ + i**
/<f(0 —J£X—dtsin2 11

+
jt

y tco
0

sin2 nk 11 

sin2 \ t dt

= htkl ~ah + hxkl ~a I2.

We shall show that Ix = 0 (1 ), I8 = 0 (I).
Let us consider I2. Let | .<p(0 | <" s, for 0 < t < 5. It is possible to 
choose such a 5 > 0, since <p (t )-+ as t-* 0.

h<
1 ^ 
~-/I nk-o
I.+ I4.

sin2 n. t
<p(0 sin2 4 t dt -f-

1 "JL. r
nk s

<P (O
sin2 4 t 

sin2 4 t dt
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1. Suppose f(x) « L [—w, tt], and periodic with period

Let
{1.11 - r (ank cos r.k X r bH sin wK x) = EA„k

ibe the Fourier series of f{x) with an infinity of gaps (refc, «!e+i) such that

Hfc+i-nfc-»oo.
We shall be concerned in this note with the series

where *ni= E Anp and * is an appropriate number independent of nk.

Let

2. We prove the following theorems. 

Theorem 1. If f{x) is bounded and if

(2.1) is convergent, then (1.2) is absolutely convergent

Theorem 2. Iff) ^->1, as k~~>ao,
“k

(ii) w(—?L__-WYl~~p-)=0(l),
v \nUi-Wcl V nJe+i'

(iii) 27 i is convergent,
»k

then (1.2) is absolutely convergent, where w(8) is the modulus of continuity oj f(x). 
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lienee the convergence of
•"i rife

follows from the convergence of

-«fe/

Proof of Theorem 2.

By a method similar to the one used by Tomic1 2 and under the- condi
tions of the theorem, we have

f| = 0(l),

V
KJe

-0 £)•
Hence the convergence of ^j—— follows from the convergence of

XL,

Proof of Theorem 3.

snt~s _ An1 ~r^n2^~ • • ■ A-A„k—s
Kit ilk

Now, under the conditions of the theorem, we have8

—0

of

and hence

Thus

Ant—0

(i)
©•

©■

«fc
Vna~h l/nfe)4-|j| 

nh 1
where A is an absolute constant. Therefore

«fe
=0 flog«)A 

' «fc /

1. Tomic (2).
2. Noble (1).
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