
CHAPTER I

INTRODUC I I 0 I

The present thesis is devoted to the study of 

certain problems relating to convergence, absolute 

convergence, absolute summability (c,l) and estimates 

of the partial sums of a lacunary Fourier series.

Let ^n^ be a sequence of strictly increasing 

positive integers.

A lacunary Fourier series corresponding to a 

2v-periodic and Lebesgue integrable function f is the 

trigonometric series
OQ

with an infinity of gaps (n^ , n^+^) such that

(n^+i ~ n^.)  *   ^ as 1c ■—^ , and

jrr

% " ~rf
f(t) cos n^t dt,

tr“pJ^fCt) sin n^t dt,

The numbers an^ and b^ are called the Fourier 

coefficients of the function f.

The series
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Oo

Cbn^- cos n^x a-n|^- sin n^.x)
k = i

is called the conjugate series of the series (L). 
The function

~TT

(1) f(x) 1
2ir

ret)tan(t/2) dt
0

_ lim 
6-h»o rtt) flttanCt/2)

C-

where
'f'(t) = f(x-hb) - f(x-t),

is called the conjugate function of the function f.
The behaviour of the Fourier series (L) is 

intimately connected with the behaviour of the 
sequence .

If the sequence satisfies the condition

(2) ttv+i > > > 1 , for all k,nk

then it is said to satisfy Hadamard lacunarity 
condition.

Considerable amount of work has been done with
regard to the convergence problems of lacunary Fourier 
series satisfying Hadamard lacunarity condition, but
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much remains to be done in respect '-.of the behaviour 
of the series under less stringent conditions. In the 
present thesis, we have studied the behaviour of the 
series under conditions which are less stringent than 
(2).

This chapter is of introductory character and 
seeks to give a brief survey of the problems dealt with 
in the thesis.

Let Ctl denote, as usual, the greatest integer 
not greater than t.

Consider the sequence defined by

(3) = |_a^ 3 , where a > 1 , 0 < r < 1.

It can be easily verified that 

nk+l
------- 5> 1 , as k —> 00 for o'.<:r,< 1,nk

and for r = 1 , the sequence ^n^ in (3) satisfies 
the condition (2) for all sufficiently large k. Thus 
a sequence ^n^ of the type described in (3) is less 
restrictive than a Hadamard sequence.

We also consider certain other conditions 
pertaining to the behaviour of the sequence ,
which are appreciably weaker than Hadamard*s condition 
(2), and which relate to the behaviour of
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1,klQg nk as k &o

where

Hk = min - Vl , Vl - nkJ ,

and
"k+l ~ °k-

4 ios % as k—^ oo ?' o < (3 < 1.

In order to state precisely the results proved 
in the present thesis, it is necessary to give some 
definitions and notations.

Let ^(h,f) denote the modulus of continuity 
of a function ' f in an interval La»*3 > i-6*

tO(h,f) - J3C2~x1 |<£ h I f^xl^ “ I

for h > o and » *2 6 Ea’*3 *

The modulus of continuity of f at a point xq 
will "be defined by

- h, f) = (™|ih |f(Xo + t) - f(x0)| .

A function is said to satisfy a Lipschitz 
condition of order =C, o < °C < 1, in a set E of real
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numbers, if

<0(10 = ooib

uniformly for x in 1, as h—>o through unrestricted 
real values.

The fact that f_satisfies a Lipschitz condition 

of order °c is expressed in symbols as f S Lip <,
We also write, for h > o ,

We shall denote by I a subinterval |x - xQ| § 6
Of [-7T , Wj .

One of the problems investigated by us in 
chapter II of the present thesis relates to the estimates 
of the partial sums Sn^ of the series (L). We may 
recall in this connection the following well known 
result'*' ?

l) Bary (£.2d , p. 256-257, note 3 )

etc.,

and denote by Sm(x) , the partial sums of order m Sf 
the series (L). Thus

cos n x + bn sin n x) Lp P "p P
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(1.1) If the sequence satisfies the Hadamard
lacunarity condition (2) and if f is hounded, 
then
(4) S% = 0(D , as k -—>oo .

It is natural to ask as to how the partial 
sums Sp^ "behave, in general, when the sequence [n^.j 
is of the type (3). One of the first theorems proved 
by us in chapter II gives an estimate which appears to 
be very naturally related to the estimate (4). Our 
theorem is as follows:

(1.2) Let ~ < r < 1, and let the sequence

be as in (3). If the function f is bounded, then
1-r(5) S% = ), as k—-> <*> . •

If r = 1, our sequence ^n^ satisfies Hadamard’s 
condition (2), as has been pointed out earlier, and (5) 
gives the same estimate as (4).

It is of some interest to observe that the 
estimate (5) can be appreciably sharpened in respect 
of the behaviour of the partial sums at a point 
x where the function f is either continuous or has a
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discontinuity of the first kind. We have proved a 

theorem in chapter II which states :

(1.3) If the conditions of the theorem (1.2) are 

satisfied and if, at a point x, f(x + o) and f(x - o) 

are finite, then

1-r
(6) Snk(x) - s(x) = o(k ), as k^—^oo9

where s(x) = f(x + o) **+ f(x - o)/2.

In particular,

Sn^(x) - f(x) = ©(k1"^)

at a point of continuity of f.

It may be pointed out in this connection

that our results regarding the behaviour of the partial

sums Sn of the Fourier series with 
HI

nk =Eak 1 » a > o , and i < r < 1 ,

are sharper than the general conclusions deducible from 

the known results pertaining to the behaviour of partial 

sums Sn of a Fourier series, viz. Sn = O(logn) 

f is bounded and Sn = o(logn) when f(x) is continuous 

at x. Our assertion becomes clear if we observe that 

according to the general results, applied to the 

lacunary Fourier series one can atmost conclude that
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Sn = 0(kr), Cor in case of continuity, Sn^= o(kr)),

where as our results give the estimate Sn^= Q (k^’~r),

(or in case of continuity Sn^ = o(kx"‘r)).

The results (5) and (6) have "been further 

improved by us by proving in chapter II the following 
two theorems (1.4) and (1.5). In these theorems we 

have been able to replace k by logk in the estimates 
(5) and (6) of the partial sums-. Our theorems ares

(1.4) Let o < < r § 1. Let the sequence be as in
(3). If the function f is bounded, then

Snk = Od0gk)» as —>00 •

(1.5) If the conditions of the theorem (1.4) are 

satisfied and if, at a point x, fix + o) and fix - o) 

are finite, then

Sn^(x) - s(x) * o(logk), as k—> <*>.

In particular
S%(X) - f(x) “ o(logk)

at a point x of continuity of f.
In a paper published in the year 1954 

M. E. Noble studied a lacunarity condition which

1) Noble £ll3
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enabled him- to deduce results of general -character 

concerning the behaviour of the Fourier coefficients 

and the absolute convergence of the lacunary Fourier 

series (L) under the assumption that- the corresponding 

function f has certain property e.g. being of bounded 

variation or belonging to lap °C, in a small subinterval 

of the interval of periodicity. Noble*s lacunarity 

condition makes it possible to relax restrictions on 

the behaviour of f.

One of the theorems proved by him is the 

following:
(1.6) If

N
lim lognk

OQ as k —=> o3

and if the function f satisfies the Lipschitz condition 
of order =(, o < =£ < 1 in a subinterval I of E-ir V <1 ^ 

then

(8) ^ = OC

=

l)Kennedy has shown that the conclusion (8) 

holds under the weaker lacunarity condition that 

n^i ~ o . The same author, in a subsequent

1) Kennedy ( JjSl $ hi )
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paper, has replaced the subinterval by a set E of 
positive measure, to draw the conclusion (8), but in 
doing so, the author has replaced the condition 
n^+i~ n^ —by a stronger condition. The 
following theorem is due to Kennedy.

(1.7) If the sequence ^n^ satisfies the condition 
(2) of Hadamard and if

f e Lip °c(E) , o < °C < 1,

where E is a set of positive measure, then (8) holds.
Tomic , while retaining the condition (2) of 

Hadamard, replaced the set of positive measure by a 
single point and studied the behaviour of the Fourier 
coefficients. In,fact, he proved the following theorem.

(1.8) If the sequence ^n^ satisfies the condition 
(2) of Hadamard and if

(9) 60 (xQ , h) = O (h*) , o < < < 1, 

then

(10) ank - o ci/i£> ,
tnjj = O U/n|) ;

where 8 = — .P 24^ •

1) Tomic [19]
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3h chapter III, we have discussed the estimates 
of the Fourier coefficients of the series (L), and have 
used these estimates in our study of the problem of 
absolute convergence and almost everywhere convergence 
of the series (I>).

We have studied the behaviour of the Fourier 
coefficients by replacing the Hadamard condition (2) 
by (3), while retaining the condition (9), and have 
proved the following theorem*
(1.9) Let o < rx < r < 1. Let the sequence be
as in (3). If the function f satisfies the condition 
(9), then

(11)
s*~\ /■•'< , 2(l—r)

_ ~.2(l-r)<

v- oc-^—) 4
where p 2-K

If r = 1, the theorem (1.8), due to Tomic , and 
our theorem (1.9) give the same result.

It follows as a corollary that under the 
conditions of theorem (1.9), the series (L) is 
absolutely convergent.
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Turning to the problem of absolute convergence 
of the lacunary series, it may be recalled that Zygmund^ 

proved in the year 1928 the following theorem relating 
to the absolute convergence of a Fourier J series.
(1.10) If f(x) is of bounded variation and

(12) C0(x , h) 2 A log-2-1'1 2 3 C-jL) ,01 > 0,0 < x < 2it),

then the Fourier series of f(x) converges absolutely.

This theorem does not require any lacunarity 
2)condition. Salem has proved that this theorem is best 

possible In the sense that "M, cannot be replaced by zero. 

While studying the problem of absolute convergence of a 
lacunary Fourier series Szidon ' proved the following 

theorem.'
(1.11) If the sequence £n^| satisfies Hadamard 

lacunarity condition (2) and If f(x) is bounded, then 

the series (L) converges absolutely.

low the following problem can be posed.
Can we replace by zero in (12) by imposing 

some lacunarity condition ? Of course, in view of Szidon's 
theorem (1,11), we have to look for a weaker lacunarity 
condition than Hadamard's condition (2). In this 

chapter III, we study this problem and show that for a

1) Zygmund j21^
2) Salem Q.31 •
3) Szidon ( ]l5] , |l6] )
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sequence ^n-^ of the type defined in (3), the conclusion 

of theorem (1.10) will hold when = o , and even 
more is true. In fact, we prove the following theorem.
(1.12) Let o < r^ < r < 1 , and let the sequence 

he as in (3).

If

(13) 60 (xQ , h) = O (log |) P , 1 < p < 2,

then the series (L) is absolutely convergent provided
that 2 < r < 1.

P
We have also discussed in chapter III the 

question of almost everywhere convergence of the series 
(L) mainly because, certain aspects of this question 

have connections with the chain of ideas developed in 
this chapter. We have not studied in the present thesis 
the problem of almost everywhere convergence systematically 

and in great detail, and one of the theorems proved by 
us in this respect runs as follows:
(1.13) Let the sequence ^n^ be as in theorem (1.12).

If p is such that ~ < p < 1 and the condition (13) is 
satisfied for this p , then the Fourier series (L) 

converges almost everywhere provided that < r < 1.

Chapter I? of this thesis is devoted to the
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study of certain questions concerning the absolute 
convergence of the series (L). In order to explain the 
significance of the results established in this chapter 
it is desirable to recall here briefly the developments 
that have taken place during recent years in respect of 
the problem of absolute convergence of a Fourier series.

S.« Bernstein was one of the first mathematicians 
who investigated the problem of absolute convergence 
of a Fourier series from the point of view of relating 
it to the continuity properties of the generating 
function in the whole interval periodicity. Bernstein 
proved the following theorem which is the starting 
point of a chain of theorems that were subsequently 
proved.

l)The following theorem is due to Bernstein . 

(1.14) If f 6 Lip oc in ~ < °C < 1 ,

then the Fourier series of f(x) converges absolutely.
For =C = i , the series may not converge.

&

This important theorem of Bernstein gave rise 
to other theorems of the kind and was improved upon in 
various ways by authors like Zygmund and others. Later 
L. Neder^ proved ' ‘ ’■ a theorem which is as follows.

1) Bernstein C3l
2) L. BTeder [lOl
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(1.15) If

CfO ff(x+h)-f(x)| < ______^_Ah__
<(h)i#i)... jQh

» 6 > o

h > o , in' Crir , ir] , the Fourier series of f
1converges absolutely for < = ?> •

The ideas of Bernstein were applied to the
question of absolute convergence of a lacunary Fourier

1)series by M. E. Noble who proved the following 
theorem.
(1.16) If

Os) lim Nk
log nk oo

and if f(x) 6 Lip < I < °C < 1, in some subinterval
2I, then the series (L) converges absolutely.

Without the lacunarity condition (15) and 
with I = [-v , tt~[ , Noble's theorem (1.16) reduces
to Bernstein theorem (1.14).

We consider a slightly weaker lacunarity 
condition than Noble's condition (15) and prove the 
following theorem.
CU17) If

(16) lim N,
log B , B > .Z3£3_±_§1

1) M. 1. Noble [ill
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and if the condition (14) is satisfied in some 
subinterval I = £x; [ x - xQ | < 8 , 6 > . ofj^-ir , it],
then the series (L) converges absolutely for <=£ = ^ .

Without the lacunarity condition (16) and with 
I = [-7r , ir] , our theorem reduces to the theorem (1.15) 

of L. leder.
In this chapter we also prove the following 

two theorems.
(1.18) If the lacunarity condition (16) is satisfied 
and if

|f(x+h) - f(x) | <-----------=2-----------^ in I,
[A( h)4(h).... ijMl*

o < °C < 1 , then 
oo .(17) £(1^1* + < 00 .

_ . 2 for t 3 2< + i

(1.19) Under the conditions of theorem (1.17)
cOCL8) ^4_i(>ankt + 5 < 00 >
K=!

for t = <K .
If we omit the lacunarity condition (16) and 

take the interval I = £-ir , irj , then theorems (1.18)
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and (1.19) are reduced to theorems proved "by A.C.Zannen^.

In order to explain certain other results proved 
in this chapter we introduce a definition due to Kennedy. 
Definitions A subset 1 of the internal £yir , 7Q is 
said to have positive spread if there is a number d > o 
such that, for every integer P > 1 , E contains P points
X1 *

I Xp - x I > d P , ( p =* q) .

2)Kennedy discussed the absolute convergence 
of the series (L) by replacing the subinterval I iby 
a settE. C [~7r , of positive spread ; but in 
Kennedy’s theorem , Noble 's lacunarity condition (15) 
has been replaced by a stronger lacunarity condition.
In fact, Kennedy's theorem is as follows:
(1.20) Let

2 sax; is lying

(19) lim
OO

”k+l ~
n| log nk po ( o < p < 1 ) .

Let f(x) 6 Lip °C , o < °C < 1 in E, a subset 
of £.-7r , tt~S of positive spread, Then

ank = 0(n^P) ,

% * 5

1 ) A. C. Zannen £203
2) Kennedy [73
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and the series (L) is absolutely convergent if 

(2{D) °C > | (p”1 - 1).

Kennedy has remarked in the same paper that 
it is an open question as to whether the conclusion

T -1of the theorem (1.20) breaks down when < = g (p -1) ‘.

The question raised by Kennedy has not 
yet been answered. However, we have investigated
conditions bearing upon the function f under which the

1 **1series (1*5 converges absolutely when << = g- ^P -l).

Our result:; is as follows:
(1.21) If the lacunarity condition (19) holds and 
if the condition (14) holds in 1, as h'—>o, through 
unrestricted real values, then the series (L) is 

absolutely convergent for °C = g (p~x - l).
We also prove the following theorems.

(1.22) Under the conditions of theorem (1.20), (17) 
holds for

.,1 - p
*> + (t? ) •

(1.23) If the lacunarity condition (19) holds and if

|f(x+h) - f(x)| °(.
V?

(1,0) 1x0) Iv, Cw->) "5Ti\ZW/
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6 > o , h > o , in E, as h—»o through, unrestricted 
real values, then (17) holds for

1 (3
“ «j3 + ('-^ ) ' ’

(1.24) Under the conditions of theorem (1.20), (18) 

holds for
t < | p + .

(1.25) Under the conditions of theorem (1.21), (18) 

holds for
t = | p + «p

Masako Sato‘S discussed the absolute convergence 

of the series (L) when the function f satisfies some 

continuity condition at a point, instead of in a small 
subinterval or in a set of positive spread, and proved 
the following theorems.

(1.26) Let o < «C < 1, and o < {3 < min (1 - °£ , ^ £ — ).

If

(21) 2/2-°C-2B 2k/2+°C+8
k < n^ < e

(22) | nk+1 - nfc 1 > 4e k n| ,

1) Masako Sato (M , I>3)
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(23)

(24)

(25)

(1.27)

r \

- /

(26)

(27)

(28)

U? \| f(t) - f(t + h)|dt ~ O(ii),

rpj"|f(t) - f(t ± h)jdt = 0(1), tinif.in f'> h^ ,

then

ank
0(l/n^)

hnk * 0d/r£)

let |<a<cc<l,o<p< (2-0/3

and

< << - a < (2-cC-p)/4.

If

I/2o(-2a-p
k

2k/2*K+p
<Bk<e

(22) is satisfied,

P \|f(t) - f(t + h)| dt = O(h^) as h—t> o ,

M |f(t) - f(t ± h) | dt = 0(1) unif.in f >hf

r



21

then, the series (L) converges absolutely.
We also discuss in chapter I?, the absolute

convergence of the series (L) only under the conditions
of the theorem- (1.26). We are, also able to cover a
greater range of values of << viz. 1 < °C < 1.

z
We prove the following theorem.

(1.28) Let j| <; < < 1 and o < p < min (1 - <=C\ ^ ^ — ).

If the conditions (21), (22),(23) and (24) are 
satisfied, then the series (L) is absolutely convergent.

We also prove the following theorems.
(1.29) Let o < °C < 1 . Under the hypothesis of theorem
(1.28), the conclusion (17) holds t > l/2°c .
(1.30) Let o < °C < 1. Under the hypothesis of theorem 
(1.28), the conclusion (18) is yalid for t < °C .

The range i < <K < 1 in theorem (1.28) can be

extended in the discussion of almost everywhere convergence 
of the series (L). In this connection, we prove the 
following theorem.
(1.31) Under the hypothesis of theorem (1.28), the 
series (L) is almost everywhere convergent for ^ < < < 1,

In chapter ¥ of this thesis we discuss 
convergence of the series (L) and (%) > and the
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absolute convergence of. a series associated with the 
series (L).

The convergence problems of the series (L) and 
0^) have been studied under the condition that

^ °° ’ some conditions on the
behaviour of the function f in a subinterval of , 7r}.

The theorems that we have proved in this 
respect are as follows:
(1.32) If f(x) G L2(l) then the series (L) and its 

conjugate series (L^) are almost everywhere convergent.
(1.33) If f(x) is of bounded variation in some 
subinterval I, then the series (L) is convergent to 
f(x + o) + f(x - o)/2 at any point where this 
expression has a meaning and the conjugate series is 
convergent, to f'(x) whenever it exists, and when x is 
a point of the Lebesgue set.

'' Further in this chapter we discuss the 

absolute convergence of the series

(290

and prove the following theorems.
(1.34) If f(x) is bounded i and if
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r • 
”k+i “ \

is convergent, 

convergent. 
(1.35) If

(i)

then the series (29) is absolutely

A+l
n. —^ 1
k

as k —^ °° ,

(ii) cJ (

(iii)

w
\+l “ ”k

o°£
) log( 1----^----) =0(1),

n-k+1

“k is convergent,

then the series (29) is absolutely convergent. 

(1.36) If f(x) is of bounded-variation in some 
subinterval I , and if

o°

K--I
k

is convergent, then the series (29) is absolutely 

convergent.
i „(1.37) If f(x) G Lip °C , o < < < 1 , in some subinterval 
I , and if

0o
1(

K=*
-)

is convergent, then the series (29) is absolutely 

convergent.
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It can be seen from the proofs of theorems 
(1.36) and (1.37) that theorems analogous to these 
theorems hold for the conjugate series (LjJ.

Finally, in chapter 71, which is the last 
chapter of the thesis, we discuss the problem of 
absolute summability (c , l) of the series (L) and its 
conjugate series (I»^).

The following theorems have been proved.
(1.38) If

nk+r“ "k
— log k s P * P > 0 ’

and if f(x) is of bounded variation in some subinterval 
I, then the series (L) and (Lj_) are everywhere, absolutely 
summable (c , l).
(1.39) If

u=>
Cli) '?(-§-- ) . < oo ,K=. ”1

and (iii) f(x) is of bounded variation in some
subinterval I, then the series (L) and (L^) are everywhere 
absolutely summable (c ,1).


