CHAPTER IT

st . o st o s B S

————— - o———-—

1. The notations gn@ definitions will be the same

as given in the introduction. In particular S, will

e
denote the partial sum of the series (L).

1

Tt is known ) that when the sequence {nk}

satisfies the Hadamard lacunarity condition namely

(1) Dy

>A >1,
Dy

and if the function f is bounded, then

(2) Sy, = O, as x—o .

Our object in the present chapter is to obtain

estimates for the partial sums Snk when the sequence

{pkg is given by

¥ iy . .
(3) n o= [&5],a>1,0<r<1.

[akél being the greatest integer not greater than akr.
As has been remarked in the first chapter,
for o < r < 1 such a sequence {pk} is less restrictive

than a Hadamard sequence and it is a Hadamard 4 sequence

— ———

1) Bary [2)
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when r» = 1, This may be seen from the following
considerations.

The sequence {hkg in (3)’, is such that

i s .
Ktl 57, as k—o0
nye .

when o < r < 1.
When r = 1 4, it satisfies the Hadamard
lacunarity condition (1) _for all sufficiently large k.

Firstly, consider the behaviour of

S+ 1)
Ek = -—;j-——-, a>1l, o0<r<1l.
ak
We have
r r
log P, = {kk+l) - ¥'{ log a , and hence
logPy - = ¥ {(1 N YOS BN ) 1}
10g a ‘3‘, H—z .o 00 /™

.ru
R N G I = IR

i

- Aol
"'kl_r (1+ E.H +.....),l-—r>0,

= (Ifi-_—r).Om ,

hence log Pk—~*>o as k —> 9 and hence Pk-él ags k—y o0,
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Now, consider the sequence {nkk as defined in (3),

T . :
n, = [ékr] = o5 - 8, 0£8, <1,

and
e ) (e)T _
My = [a _1 = a - 62 y 0 £6, < 1.
Therefore
(x+1)T
e
e akr - éi
(x+1)F
) kT akr
1 - o1
T
ak

i
Using the fact that ak —3 oo as kK —> oo and

o (et )T n

—— —31 as k —>w , we get _Eil;._w>1.as k —> 00,
" ' "k

a

When » =1 in (3), we have,

n, = [ak] , a>1,

and hence,

nk+1 ak+l - 52 a "(62/8.k)
= e = —a, as k 3o,
e a - 61 1- (61/ak) ‘

Hence there exists A > 1, such that
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T .
oy >A>1,
for all sufficiently large k.
Now, we prove the following two theerems.
THEOREM 1. Iet T
n =Tl ,a>1, and L<rg.

If the function f is bounded, then

= Q@) , as k —yoo ,

(4) Sny

THEOREM 2. Let .
34
me =[a¥], a>1, and £ <r < 1.

If at a point x , f(x + o) and ( f(x - 0) are finite

it

and s f(x + 0) + f(x - 0)/2 , then for this x

(5) Snk -8 = G(kl—r) s 88 k — O o
PROOF OF THEOREM 1.
By virtue of“the lacunarity of the Fourier series}

we have,

T
. . - RevEn, Lt

. o 1 ) ’g\.v\l “k"rl %_t Aew “kl ) dt

(6)  sp, =) f‘f(t) ,

2m(ng ., z

3
AACVe ’-‘i‘_b
O

vhere Y (t) = f(x +t) + £f(x - t).
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Wow, when m =Tak"] , 2a>1, ando<ry<r <1,
it can be observed that '

, -

1 Ak U

(7) " S S
T R n,

for all sufficiently large k , where A is a positive

constant independent of k.
It follows from (6) and (7) that

k ol x
Syl & L || Py BTzt gy
k " Ao+ b
1-r .
— | f url L
k s A

Al being a constant which may be different at different
ocgurrences.
The hypothesis implies that | P (£)] < M,

and consequently,

18p. 1 € AKTTe D1 |1 AinE ey n t
K 1 Dy Tye+l
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= Q™) + Qal™)
= Oy,

by using the well knowﬁl) result that for every

positive integer p,

——

[

- '1‘-‘-; "

pT AL ¢
e

0

and observing that =~ Pktl  ig bounded.
e

This proves theorem(l.

If » =1, the result (4) gives the same
estimate as (2).

The result (4) of this theorem is sharpened,
for a value of x for which the expression
f(x + 0) + f(x - 0)/2 is finite, in theorem 2.
PROOF OF THEOREM 2.

It follows from (6) that

CL T Py Le gyt
(9) Sn -8 = 1 7D<t) M1 -
k em(ny ,q-n, ) Aol b
]

1) Titchmarsh ( [17) , p.413,13-31)

dt,
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where P(t) = flx + t) + f(x - t) - 2s/2.

Hence,
1-r - e t
EE PR fsom A M TE gy
ey /SC\Z‘—}_E:
=]
_—
1-r ” \ /g""}““it
+ake T ] 2 P (t) at |
S
- 1-r l-r
(10) = Ak I, + Ak T, -

Now, we shall show that I, = o(l),Ié = o(1).
Let us consider I,. Let | P(t)] < €, for
o £t <8, It is possible to choose such a 6 > o ,

since ¢ (t)—>0 as t-—do .

§
. - 2 }
T % - f (1) 2 meat e
2 Dy Y‘P ! Aivr L
O

+

~ Al m 2k
—;ll-}gg @) : s dt
5

]

I3 + 24 s S2YV.
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§
1 /?)Lh?:m-‘ib
ow ; Ty < & — f CIE
[~3
<A e
kB
I o< 1 ] P (8] at .
I Y £2

§
Having fixed - 8, it is clear that I,—o0 20
aS k"“"%m. |

Hence, 12 = o(1).

Similarly, we can prove that I. = o(1l).

1
Therefore, from (10), we have

‘Snk - s| = °(k1~r5 g vl

which proves the theoren.

As a particular case

l-r

!Snk - £(x)| = ok )

at a point of continuily of the function.

It will not be out of place to make a remark
pertaining to the connection of this result with a known
general result. relating to the behaviour of the

partial sum S, of the Fourier series of a bounded
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function. It is well known that for a bounded f,

S£’== O (1og n) and if in addition f is also continuous
at a point x then S, = o(log n). More than this cannot
be asserted in general. If we apply these resulis to a
lacunary Fourier series with {nk} as in (3), our
conclusion will be that Sgk=4:)(kr) when f is supposed
to be bounded and Sy, = o(k") in the case of continuity,
whereas our theorem gives the better estimate thet

Sn

w = C)(kl"r) and Snk = o(k1T) respectively.

2, The results (4) and (5) of theorems 1 and 2
respectively have been improved in the following

theorems 3 and 4. In these ‘theorems, we have been able

to replace kl”rv by log k¥ in the estimates of the

partial sums.

THEOREM 3. Iet A ‘
sReEat 2 . .
n, = [a51,a>1, and o< r <r <L

If the function f is bounded, then
(11) Snk = log k), as k—> oo ,
THEOREM 4. ILet

n, = [gk#] , 2a>1, and o < riy <r<1.



If at a point x , £(x + o) and f(x - o) are finite

and s = f(x + o) + f(x - 0)/2 , then for that x
Snk - g =of(log k), as k —>0 ,

For proving these theorems, we need a result which

we are stating in the form of a lemma.

LEMMA
-
i u—
“k+('““
, .
(11) 1 \ﬁid%“«+(§t —'gumyk%t]
11 — e as
er1™ P AT Lt
(v}
¢ o Drel YTy 1 Npyy ¥ 0y
= S lee T
k D1 ~ T

where A 1s an absolute constant., ' A will be used as an

absolute constant which may be different at different

occurrences.,

PROOF OF THE LEMMA:

Let
By TWo M P
Let W
=V

at .
me~p /‘5“‘?%&;
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T

2 om”
. . 2 2
o |sin® mb - sin“pt]|
= pog at .,
(12) m-=D sinét
(s
Put mt=u ,—-;%—- =r .
RANRSE o
Then 2 ¥
T = 2 lsin?u - sin®rul du
m=p gin®(w/m) m
[}
‘-‘-rM
NG
Am |sinu - sinzru[
< m-p ) du
u
o
T
= -Am lsin(l = r)u-sin(l + ru| 5
m-p 2 u .
u
(o]
: sin «u 2
Now, since = < T+ Ve have
oo
Am (1 - r2)du

m-7p {1 +u@ + o)) 1+ u(@ - 2§

2
0o

P
Am(l - —
= " m2) du
m - p {1 + u(l + r)} {1 + u(l - r)}

[
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[7 o]

A (2R du g
m AT+ uT+ o) T+ (T - ruj

i

o]

+
=4 (mmp) . "‘ilog(;fj‘%)
= -

!
>
™
8
8{ +
o]
S
]
=
(o}
4153
N\
e
H

This proves the lemma.

We are now in a position to prove theorem 3.

PROCF OF THEOREM 3:
Using (6), we get,

B iy _
Myt i
R - + +
(13) Snk - 21r(nk+l—nk7 ‘( J J
o ~C
ﬂ:\’:’\'« 5

AC WS My 4y {b — Al W & AF

(cpC%)

vy
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3114-:[2-!'%,33_5'.

Tt results from the hypothesis that | P(t)] < M.

Hence -«
s — T
& LA _ai2 L
Y Ill < A | A menr 5 E £-““1bidt
e~y ALt

PRk s SR = il Y

<
Tk Dyes1 T
by the lemma,
11 +
= A 1c>g(*-']r-{“'-i-l'--~—~3}-g ‘ SR Q).

nk+1—nk),8.8 nk

Now, using (7), we get,

(14) 1 1, | = O(log x).
Again,
&
2 { o 2 !
JEA e — P D A Al ke %1 P
20 7 mpyg -y A L
W
M\ T
§
A 1
< = —S— At
Drs1 = P t
,,__:_W__/-:-_"_;“\"—k
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B A {nkﬂ. - Ty _{j’»
Desy ~ P ™ 8
(18) = = Q)

Also
ag
| < A | A2 ey £ — BT et | ot
&

A

gw .
Putting (14) , (15) and (16) together and

(16)

i

using (13), we get ,
Snk = O(log k).
This completes the proof of theorem 3.

PROOF OF THECGREM 4:

From (9), we have,

where I, sy I and Iy are integrals corresponding

to their counterparts in (13).
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R
, . Tt 2 LE _givow Lt
‘ H‘ s A W ‘/’:Lw“"«i—\v_ v W ‘ at
- Myl ~ Tk AL E

[~

. N4t + 0
= A& CLX(8) log ( ;i—l—:~43) , by the ,' lemma,
+1

and using the method followed in the proof of theorem 3
we conclude that I, = o(log k).

By the method used in the proof of theorem 3
and by choosing 6 first and then making By = Oy
sufficiently large, we get I, = o(1) , I; = o(1).

Hence, we finally have,

Sy = 8 = o(log k).



