
CHAPTER II

I§iimates_op_the_partial_sijms_of

A LAC MARY FOURIER 'SERIES

1. The notations and definitions will be the same

as given in the introduction. In particular Sn^ will 

denote the partial sum of the series CD.
w \

It is known*' that when the sequence -^n^| 

satisfies the Hadamard lacunarity condition namely

(1) *Vl

nk
> * > 1 ,

and if the function f is bounded, then 

(2) Snk = 0(1) , as k------>o° .

Our object in the present chapter is to obtain 

estimates for the partial sums Sn^ when the sequence 

is given by

(3) n = Xakrl , a > 1 , o < r < 1 .
k "**

[akr2 being the greatest integer not greater than akr.

As has been remarked in the first chapter,

for o < r < 1 such a sequence is less restrictive

than a Hadamard sequence and it is a Hadamard i sequence

1) Bary {jiQ
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when i* = 1. This may be seen from the following 

considerations.
The sequence £nk^ in (3) , is such that

nk*l
% as k —-> °° ,

when o < r < 1.
When r = 1 j it satisfies the Hadamard 

lacunarity condition Cl)-for all sufficiently large k. 

Firstly, consider the behaviour of

(k+1)1*
r,k

akr
» a > 1 , o < r < 1.

We have
log P, = £(k+l)r - krJ log a , and hence

logPk 
log a

+ ^q-i) i 
13- ' K.2- +

r ( 1 i2 ■ + )

k1-r
( 1 + r > o

— (kl_r).Od) ,

hence log P^—>o as k —} 00 and-hence Pk—^1 as k—> oo
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How, consider the sequence as defined in (3).

n-k
krT - JFfaKA] a - 6^ , o < ^ 3- *

and

_ _ r- (k+l)ri (k+l)r
Vi - La j - a j o ^ ^ 1.

Therefore
w . «<M • •,

”« - t

a
(k+1)

3kr

AF

Using the fact that akr 

(k+l)r

00 ask —> oa and

a 1 as k—*>oq , we get !!k±l------^x as k
ni„ oo
k

When r = 1 in (3), we have,

_k”k “ Lr
and hence,

k+1

n^ = La 2 j a > 1 ,

n.k+l
*k

aAA J* - 6o a -(Sg/a )

X 1 - (6x/ak)~E“ *a - 6 a , as k —>oo

Hence there exists > 1 , such that
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”fc+l'
nk > A > 1 ,

for all sufficiently large k.
New, we prove the following two theorems.

THEOREM 1. Let
”k ■ ^ . a > 1 , | < r < 1.

If the function f is bounded, then

(4) = 0(k1""‘r) , as k—o .

THEOREM 2. Let
= [akr], a > 1 , and | < r < 1.

If at a point x , f(x + o) and ( f(x - o) are finite 
and s a fCx + 0) + f(x - o)/2 , then for this x

(5) Sn "* s = o(k^ r) , as k —> exp .
k

PROOF OF THEOREM 1.
By virtue oftthe lacunarity of the Fourier series, 

we have,

(6) % f( t)k 2v(nk+1 - t^) 

where f (t) = f(x + t) + f(x - t).

dt,



29

Now, when , a > 1 , and o < r-, < r < 1,

it can "be observed that

(7) A k'1-r

nk+l “ "k nk

for all sufficiently large k , where A is a positive 

constant independent of k.

It follows from (6) and (7) that 

X "j|"|Snk' ^ i ffct> a i
K nk 'J /5Cv3-i t !

+ Alk'1-r

n-k
l/fco
V

v3~ ^ b
dt | ,

A^ being a constant which may be different at different 

occurrences.

The hypothesis implies that <M,

and consequently,

Kk! A^k'1-r. \-»l
n., n-k+1

■x
-4v.Vv i-fc

dt

+ Ajk'1-r 1
'5k

.nr
dt

6
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= ock1-1) + ock1-11)

= Ock1-11) ,

by using the well knowri^ result that for every 

positive integer p,

(8)
P TT i h7- w

dt a 1

and observing that nk+l is bounded.
%

This proves theorem 1.

If r - 1 , the result (4) gives the same 

estimate as (2).

The result (4) of this theorem is sharpened, 

for a value of x for which the expression 

f(x + o) + f(x - o)/2 is finite, in theorem 2.

PROOF OF THEOREM 2.

It follows from (6) that

nr
(9) Sn.

k s,r(nk+i-V
f(t) *** + 1 ^
> t

dt.

1) Titchmarsh ( [l7^ , p.413,13*31)
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where fit) = fix + t) + f(x - t) - 2s/2. 

Hence,

Is.'nk < A^k'1-r I -L rrrr

^+1
fit)

^•Scvy ,Hkj>.l4tr 

/Ch A t
dt

+ Ajk1^

o -
t2-

dt (

Cie) l-r
H+ A^k

l-r

How, we shall show that = oCl),^ = o(l). 

Let us consider 1^. Let | t)| < 6 , for 

o < t < 6. It is possible to choose such a 6 > o , 

since fit)—>o as t-—}o .

O

„ , 2. j .

C v3~ ^7
dt

+ I fCt)!

s

a . X I ,

i t dt

= I3 + I4 , say
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Now ig < e nk

£
-^Cvv- r'Hc^ tr 

fc
dt

< A-l 6 .

r\ i_ , .

I. < At —4 x n-
f (tv dt .

k ) V 
' $

Having fixed •’ 8, it is clear that 1^ 
as k —^ cxs.

—..^ Q *"»

Hence, I = o(l).

Similarly, we can prove that I = o(l). 
Therefore, from (10), we have

|S^ - s| = o(k1”r) , _ vh ^

which proves the theorem.
As a particular case

ISnk - f(x)1 = o(k1“r)

at a point of continuity of the function.
It will not he out of place to make a remark 

pertaining to the connection of this result with a known 
general result, relating to the behaviour of the 
partial sum SR of the Fourier series of a bounded
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function. It is well known that for a bounded f,
Sn =s O (log n) and if in addition f is also continuous 

at a point x then Sn = ©(log n). More than this cannot 
be asserted in general. If we apply these results to a 
lacunary Fourier series with as in (3), our
conclusion will be that ^=-0 (kr) when f is supposed 
to be bounded and Sj^ = 0(1^) in the case of continuity, 

whereas our theorem gives the better estimate thair 
Sn^. = 0(k^ r) and Sn^ = o(k^“r) respectively.

2. The results (4) and (5) of theorems 1 and 2

respectively have been improved in the following
theorems 3 and 4. In these theorems, we have been able 

1—rto replace k by log k in the estimates of the 
partial sums.

THEOREM 3. Let

nk = , a > 1 , and 1

If the function f is bounded, then

(11) 11 Odog k), as k—4 00 .

THEOREM' 4. Let

= [a1^ , a > 1 , and o < px < p < 1.
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If at a point x , f(x + o) and f(x - o) are finite 
and s = f(x + o) + f(x - o)/2 , then f6r that' x

Sr,, - s = o(log k), as k —.“k
For proving these theorems, we need a result which 

we are stating in the form of a lemma.
LEMMA. :

(11) 1
Vl~ \

^ | j
___ dt

< A nk+1 + nk 
nk log Vl + nk

Vi " ”k
where A is an absolute constant. ’• A will he used as an 
absolute constant which may be different at different 
occurrences.
PROOF OF THE LEMMA:

Let

nk+1 m
Let

m P _ . -2..J
/j ^ Vv* "»■

dt

o
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(12)

Then

Now,

r
'CC** r

m - p
1sin^ mt - sin^pt]

sm12t

Put mt = u ,-I~ = r .

m - p

m
-'O

! 9 2 I[ siirii - sin ru| du
sin2(u/m) ;‘m

dt

Am
m - p

VA-o^-V")

|sln^u - sin^ruj
du

r

Am
m - p

-Tv'v*/'" v>

Isin(l - r)u-sin(l + r)u|
du

u

since .— < SoC
u 1 + o(U we have

0°

I < Am
m - p

Am(l - -—)

r (1 - r2)du__________________
•£l + u(l + rH jl + u(l - rH

o c

2
60

) r
dum

m {1 + u(l + r)j {l + u(l“- r)}
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CO

fl f.SL.±.E. ) ( _ du
m \ + u(l + r)y \1 + (1 - r)uj

A ) . _2_iog(L+-E )
ro r 1 - r

A (5^).
' Vw

= A (E-iJ2) log(S-l^) 
p m - p

= A ( , log( iaLli ,.
"k nk+l “

This proves the lemma.

We are now in a position to prove theorem 3.

PROOF OF THEOREM 3:

Using (6), we get,

r r'(v+v
(13) % 1

■k “ SvCn^i-n^)
r r

+

J
S
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Hence

(14) 

Again,

= II + Ig + Ig , say.

It results from the hypothesis that | *P(t)| < M.
Tf

! in ! <
nk+l“nk

| ,^H+\ \ t -v&iv? J dt

< a C^l * % ;*qg ( Vl. + ^ ),
k ^k+l ~ ^

hy the lemma,

= A log(|—
nk+l ^k

Now, using (7), we get,

nk+i - 'V ) > 33

| I_ | = O (log k).

n.S±i= 0(1),
nk

”k+l ~ \
I •Vvv>+l-^t — A</Vv'*Wt<t-fcj

- . ~L- \ ,w, t dt

<VVy<.+\ "">'V'

■ S'

”k+l ~ nk dt

-TT
^<+-1
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Also

I X3

(15) -

(16)
Putting (14) , (15) and (16) together and 

using (13), we get ,

snk = Odog k).

This completes the proof of theorem 3.

PROOF OF THEOREM 4:

From (9), we have,

snk 3 = + *2 + *3 ’

where 1^ , Ig and I3 are integrals corresponding 
to their counterparts in (13).

A
"k+l “ “k

n■k+1 ~ ”k
IT

1_
6

= 0(D

! < A
Tf

nk+l “ ”k
\ -lb -- I

< A(nk+i - nk) 62

= Od) .

dt
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Hi < A MS)
n,k+1 n.k 4r_t dt

= a «C6> log ( aeLLigk) f „y the “k+l ” ”k lemma,

and using the method followed in the proof of theorem 3 
we conclude that = o(log k).

By the method used in the proof of theorem 3 
and hy choosing 8 first and then making n^.+1 - n^ 
sufficiently large, we get I2 = o(l) , = o(l).

Hence, we finally have,

Sn - s = o(log k).


