
CHAPTER III

0F_SH_MCM4RI_i:0URIER_SERIESi_ITS 
^2§222JE_CgH¥lRGMCE_AND_ITS_ALMOST 
EVERYWHERE CONVERGENCE

1 In the present chapter we obtain • some

estimates regarding the behaviour of the Fourier

coefficients of a lacunary Fourier series and with the

help of these estimates, we study the behaviour of the

series in respect of its absolute convergence and

almost everywhere convergence,
l)Noble proved that if the series (L) 

satisfies the lacunarity condition

(1)

where

N-
lim k

log n^ as k oo

0,111 (“k - Vi ’ Vu - M -

and if the function f satisfies the Lipschitz condition 

of order «C , o < «C < 1 , in a subinterval

I = ! |x - x0 I < 6 ^ of (£-ir , , then

1) Noble [ul
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(2) ank = ^ (l/i^X »j

= O Cl/n^).
1^Subsequently Kennedy improved this 

result by showing that the conclusion (2) holds 
under the weaker lacunarity condition that n^.+^ - } oo.

2)The same author , in another paper showed that even 
when the subinterval I is replaced by a set 1 of 
positive measure, the conclusion (2) of the theorem 
holds, provided that n^+^ ~ —» 00 is replaced by
a more stringent condition. More precisely the author 
has proved that if the sequence satisfies the
Hadamard lacunarity condition

(3) ^k+l
nk >> > 1 ,

and if,
(4) f G Lip °C(E) , 0 < < < 1 ,
where E is a set of positive measure, then (2) holds.

^3)Tomic , while retaining the Hadamard
lacunarity condition, and replacing the set of positive

!

measure by a single point, studied the behaviour ofj

1) Kennedy C.62
2) Kennedy D7l
3) Tomic [19^
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the Fourier coefficients. He proved the following 
theorem.
THEOREM A (Tomic)

If the series (L) is the Fourier series of 
f(x) satisfying the Hadamard lacunarity condition (3), 
and

(5) , h) = SUP |f(x0+:.i) - f(x_5| = O(^),
o < t < h

o < °C < 1 , then.

(6) an^ = 0(l/n|.) ,

= 0 ?

where p « g-y.< *

We shall now examine the behaviour of the 
Fourier coefficients for the sequence given by
(7) below.

First , we prove the following theorem.
THEOREM 5:

If the series (L) is the Fourier series, 
of a function f(x) satisfying the condition (5), and 
the sequence ^ is given by

(7) * n^ = , a > 1 , and o < r^ < r < 1 ,
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then,

(8)

%k

= 0 (k2(1_r>/ n£) ,

= 0(k2(1_r)/ 5

where p 2 + °C

If r - 1 , then our theorem gives the result 
(6) of Tomic.

PROOF OF THEOREM 5:
There is no loss of generality in taking xQ - 

In virtue of the lacunarity of the Fourier 

series, we have,

(9) Snk- fU)

and hence

r
tr

2F(nk+l“V f(x,t)
/Siv? 'Yvv<vviit —

dt.

-vr

(10) |f(x). Vx)|
VvC1^)+ r -TT

4-

-cr. wc

dt.
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= J1 + h, + X3 ’

where h = hCn^.) = n^ and <f (x,t) = f(x+t) + f(x-t)-2f(x)

The reason why hCn^) is chosen in this way will be 

clear later.
Let A denote an absolute constant which may 

be different at different occurrences.
Now,

I- < A
1 “ nk+l “ |x| < h f (x+t)+f(x-is)-2f(x)

-tt

r
•v^cVV'

\ /Siw -Acvi'^it j

1- t
dt.

Using (11) of chapter II, where the sequence 

is the same as in (7) above, we find that

n.k+1 “ ”k

| ^>C'w'vh<+i ~i
■dt

= OClog k); .
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Hence
(11) I± < AW(o , 2h) log k.

12 < snpnk+l“* “k |x| t h | f(x+t)+f(x-t)-2f(x) I

TT < |t| < h

'vv\c-V"'

kcV
" ~n~ dt •

—

A W(o , 2h) 
nk+l ~ "k

(nk+l “ ^

(12) < KCO(o , 2h).

Also
%

^nk+l” nk^ h ^nk^

(13) < ;A k1-r
nk^ (V

Collecting (11), (12) and (13), we get,

(14) |f(x)-Sn^(x) | < A*0(o , 2h)log k + A" k1-r
nk ^ ^nk ^
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Now, it can "be seen that

.tr

(15) an^ = J^( f(x) - :11 cos nkx dx ,

—-rr

_-rr
lx, = = 1C f(x) - ! sin n^x dx ,= 1 
"nk ¥

where
Nk “ m±n j”k " ®k-i * “k+i " ”k |

and /VK~\

%k - 1 ~ 2KNk - 1^ “ 1 + 2 ^ x “ Nk;cos Px

M

'i - -i-)<

Also

P,T -i(x) has the following obvious properties'! 
^k "

(Fejer kernal)

(16) (i) ^N^-l — 0 ’ for x ’

(ii) Pjj _ ^(t)dtl < tt , for all Nk ,

(iii) v, 5U? f > |% - -t(x)f = 0( —i-n-)
h < |x| < v 1 Nk - 1 i ^
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Hence

U7) unk! -i ( J'
k*>W) _ u. (■**}

j-tr+-
i-OO wo-tO

|f(x)-%k- i(x)||cos nkx| dx 
l£

J*-i + Jg) + Jq 5 say#

Using (14) and the property ',16 (ii) of P^-l ,

we obtain,

(18) Jx <k^0(o , 2h) log k + 1-r
k *^(1^)

T )Now, it is known that

-TT
(19) 1

ir
| <fh - f(x)| dx = o(l)

-r
where <T>v denotes the (c , 1) means of the general 
Fourier series without any lacunarity condition.

With our lacunarity condition, we have,

(2d) |sn - si dx = —k nk+l Tc ! ^nk+i + 1^<r”k+l"’f^x)) 

’(nk^)) ^ ^k “ f^))|dx
L> ^%/VvvAAA'-^(' La.1-3^
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IT

< A k1_r j l(Thk+1 - f(x)fdx + A k1~r f-l -it

(21) o(k )

From the property 16(i±i) of 
and using the fact that

we obtain,

N. < A' k'lr-r
\ '

(22) J2 = o (
. 2(l-r),_
—- - — ^

nk h (nfe)

It can be shown similarly that

(23) Jg = O ( k2(l-r)n^ h2(nk)^*

Collecting (18) , (22) and (23)

(24) la- j < A 0J(o , 2h) log k + A
Xlk

since OJ (o , 2h) = and h(nk)

nr
J <Tnk~f(x)|dx

_ j., and (21),

, we obtain,

k2(l-r)
^nk h2(nk) ^ 1

, -2/24*"k

we get from (24),
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2(1~r)
^1 < A h log k + ^ h2Cnfc)

A log k + A k'2(l-r)
</2+<=C
”k

?

and hence,

(25) Oc
,.2(l-i0k
nPk

Similarly, we obtain,

Oc k'2(l-r)

"6

°C
2 + °C

COROLLARY;
Under the conditions of theorem 5, the 

series (L) is absolutely convergent.

PROOF;
It can be seen that for the sequence 

as in (7), we have, for all sufficiently large k, 

and for any positive number m,
(26) > km .

Hence, using the estimates in (8), we have, for all 

sufficiently large k,
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% = 0(l/ks) ,
k

= 0(l/kd) ;
nk

where s > 1 .
Consequently

CO

^ l%k! +

is convergent.

2 In this section, we shall apply the estimates
of and b^ obtained above in examining the questions 
of absolute convergence and the almost everywhere 
convergence of'the laeunaryv.Fourier series (L).

l)Zygraund proved the following theorem.
THEOREM B: (Zygmund)

If f(x) is of bounded variation and

(27) ,h) < A log 2 ^ .), (?L > o, -v < x < it),

then the Fourier series of f(x) converges absolutely.
This theorem does not require any lacunarity 

condition. Salem' 1 has. proved that this theorem is best 
possible in the sense that cannot be replaced by zero.

1) Zygmund t2l\
2) Salem £l33



■ f
In1 view of uSalem's result the que^||x

naturally arises as to whether *YV can he
zero in (27) by imposing certain lacunarity conditions.
In this connection we shall need the following theorem

1)of Szidon .

THEOREM G:(Szidon)
If,(L) is a Fourier series of a bounded 

function and satisfies the Hadqmard lacunarity condition (3), 
then, it converges absolutely.

It is clear from theorem C that we have to 
look for a weaker condition than Hadamard*s lacunarity 
condition (3). In the following theorem 6 we study this 
problem and show that for a sequence of the type
defined in (7), the conclusion of theorem B will hold

/when ‘VL= o and even more is true.

THEOREM 6:
Let the sequence be as in (7).
Let

(28) ^(x0 , h) = 0(loS g) P, h > o, 1 < p < 2.

Then, the series (L) is absolutely convergent provided that
(29) : | < r < 1 .

Jr

1) Szidon ( [is} , [ifi} )



PROOF OF THEOREM 6:
Without loss of generality we choose xQ 
Using (24), we have,

(30) . 2(l-r)
log k + A (----o“ }

nk h (nk)

Let

h = hCi^) = 1/2+Q 6 > o , we get,

from (30) ,

(315 1%! < A log k +
krp

A k2(1-r)
^e/2+enk

Similarly, .we have,

lttak| < A' -log k + Ak2(l-r)
krP G/2+G°k

Now db

k=\
log k
krP

is convergent for rp > 1 i.e. for r > ~ , and
hy using (26), we have,

°° j^d-r)
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convergent for r > o , 6 > o .
Hence the convergence of

I ank I + I % I >
follows for i < r < x 

P

In the theorem 6, we have to consider p > 1, 
otherwise the range ~ < r < 1 has no meaning. In the 

following theorem we consider p < 1 and examine the 
almost everywhere convergence of the series (L).

In this connection, we prove the following
theorem.
THEOREM 7:

Let the sequence {n^^ he as in (7).
Let the condition (28) he satisfied for

i < p < 1. Then the Fourier series (L) converges

almost everywhere for Si- < r < 1.
2p

PROOF:
From (31), we have,

- ank 0( logjk)

hnk OC )j^rp '



and hence

K~ t 1 1Is convergent for rp > ~w~ i.e. for r > — .- 2p
Therefore f 6 , tt~\ and by Carleson3^ theorem

the Fourier series (L) converges almost everywhere. 
ThiS’ proves the theorem.

In the above theorem, we cannot take

P 1 2 ’ ^ecause then the range kt1- < r < 1 has1
2p

no meaning.

1) Carleson [43


