CHAPTER IV

ON THE ABSOLUTE CONVERGENCE OF A
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1. In}a paper published in the year 1954 Noblel)

studied a lacunarity condition which enabled him to
deduce results of general character concerning the
behaviour of the Fourier coefficients and the absolute
convergence of the lacunary Fourier series (L) under

the agsumption that the corresponding funetion f has
certain property e.ge. being of bounded variation or
belonging to Lip £ , in a small subinterval of the
interval of periodicity, Noble's lacunarity condition
makes it possible to relax restrictions on the behaviour
of f. This approach of Noble gives rise to a question
which was, in fact, posed by Noble himself. Suppose that
the Fourier series of a function f converges absolutely
as a consequence of a certain property P posse;sed by

f in the whole interval -7 , m) . Is it possible to
ensure the absolute convergence of the Fouriler series of
f under the agsumption that f satisfies the property P
in a subinterval (which may be arbitrarily :siall)
instead of the whole interval [fw ’ w] y by imposing

some lacunarity conditions ? One may further ask as to
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what will be the weakest lacunarity condition which
can ensure the absolute convergence of the Fourier
series (L).

We have investigated in this chapter a
lacunarity condition which is slightly weaker than
Noble'!s condition and which enables us to prove
theorems of general character.

Iet I = \{y s lx-x]%8 , 8> o}denote

0
a subinterval of [-m , 7]} .

For h > o , let

(1) ,Q{h) = log(e + h—l) R
J&{h) = log log(e® + n~1) g weceees ebCLy
Let o

(2) Ny = min (my. = ny_q5 Dyeyq = nk).

1)

The following theorem is due to Noble .

THILOREM _A: Ir

N, .-
3) i _._._.1;{._...:
( lim Tog Ty oo,

and if f(x) € Lip « , where % < <1, in gome
subinterval I, then the series (L) is absolutely

convergent.

1) Noble [11]
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Tt may be noted that if we omit the
lacunarity condition (3) and take the interval I = -7, 7],

then this theorem reduces to a theorem due to Bernsteinl).

In the following, we discuss a condition on f
under which the series (L) - converges absolutely even
when £ € Lip % . Our lacunarity condition is weaker than

Noble's condition (3), In fact, we prove the following

theorem.

THEOREM 8: Ir

(4) 1inm Nk =g y B 2. 273 (3 + €)
log my ' )

and if,

Gt Ahq -
A(n) An)... £(n)

in a closed subinterval I, where h > o,,then the series (L)

converges absolutely for o = % .

) = Wt , £) £

y €20,

It may be noted that iftwerdbmit the lacunarity
condition (4) and take the interval I = [-w , 7] then
the theorem 8 :i: reduce& to a theorem due to L.Nederz).
For proving theorem 8 , we require the following

lemmas:

1) Bernstein [31
2) L. Neder [10]
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LEMMA 1 : Tet 0 < 6§ < mand let m be a positive

integer. There exists a trigonometric polynomial

™M .
(5) T (x) =1+ J;.th cosix
- such that
(6) |Tp(x)] < 549 8, for all x ,
r 2 =1
(7) me(x)] < A, m &  exp(-2A,8m),

(8 < |x] € 2m-8)
where A, , A% and Aq are positive absolute constants.
Further if it is supposed that

(8) §>3logm+ 1
A3 m

b

then (7) gives the simpler inequality
(9) [T(x) ] < Ay exp(-Agsm), (8 & |x| < 2m-5),

where Ay is an absolute constant.

This lemma is due to Noblel); but it has been
gtated hefe in a form which was given to it by Kennedyz).
The constant A3 can be chosen, as was done by Barys), to

be 1/8e .

— — o o ——— —— —— . " S S o —

1) Noble [11)
2) Kennedy 73

3) Bary ([23), p.270)
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LEMMA 2: Tf (L) is a Fourier series of f(x) and if
£(x) € 1%(1), then £(x) € I? [, 7.
This is a particular case of a very general

theorem due to Palay—iiwienerl), theorem XLIT',

PROOF OF THEOREM 8:
Without loss of generality we choose Xy =0
We shall prove this theorem for m = 2.

Let o, > w/8 . Choose a3 sequence Mﬁ such

that
18(3 + &) . 3% +
(10) ——i—ﬁr—éa-log n XM < ~§£§g——§l log my .
If k¥ is large enough
(11) M, < %Np,whennkgnp .
Let
( gk(x) fx 2nk ) - f(x an )

so that gk(x) hag its Fourier series

'H' \

13) E{é sin g—— - innx).

( ks P ( bny, cos nx - ap, sin n, )
Consequently by the choice of Mk g 15if k is

is large enough,then gk(x) TMk(X) has Fourier coefficients

o s 1oy o s " T . . SO SO e S0 Tt S o SO Sl e e S S s TP s o S
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ognp 5 Bnp 3 vwhere,

. T
(14) ocnp = 2 gin (‘Z—I?EE— b ,
O~ Tp
. T
B = -23111( mp ) a
P S
for np > n, .

Now, by the hypothesis f(x) is bounded in I,
hence f(x) € Lz(I) and hence by lemma 2, f(x) € sz_-vr ,y T

and consequently by Bessel's in equality

2 . 2 BT 1 2 2
(15) {(a,ﬂp + bnp)sln _2_19__ = I g(ocnp + pnp)
M e e

= 062 | letet 52 = elae Ty Pan)
K an
ey € g
D



v O(e283(8/2)M £(x)|%dx), by lemma 1,
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Now, using (10), it can be observed that

[}
BeMk > 2log My

and hence, we get,

-
§|f<x>f2ax = Otwnd).

Therefore, we get

P

(16) 2( 2 +b§p> -
M anp

1

z«{u L Lot

).

Using Cauchy's inequality, we get,
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e (3 - <k

e )
(17) (Ianp[ lbnpl) (‘4( 5%11) JQY%QEPI)

i

() L ), when «= % .
&<m> NG =R 2

Now, for k > 3 , we have,

. k1
»ﬁ(;igi)= log(e+ )
> log 2k“1
(18) = (k-1)log 2 3
o 2k+l
A, (I k+1 7= log log (e~ + — )

> log log o1

(19) > % log(k-1).

Therefore

K41t
2.

(20) éuaﬂpxz + Jon 1) = O( —L
2€x

(k-1)1og € (1c-1)
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Hence, absolute convergence of the series (L) follows

from the convergence of the series

1
(x-1)10g € (k~1)

‘e

This completes the proof of the theorem.

The following theorems are due to Noblel).
THEOREM _B: o

If the lacunarity condition (8) is satisfied
and if f£(x) € Lip «, 0 < « < 1, in some subinterval I,

and t > 2/2«<+1 , then,

(21)

RTARY:

t t
C oy | + [bnk[ )< oo,
1

THEOREM C: ‘

If the lacunarity condition (3) is satisfied
and if f(x) ¢ Lip« , 0 < ¢ < 1 , in some subinterval I,
and t < « ; then,

A

ny = (lan t + by ) < 0 .

(22)

FARNS

It may be noted that if we omit the lacunarity

condition (3) and take the interval T = [-r s 7} ,

then theorem B reduces to a theorem due to 0. SzaszZ)

o v e ——

1) Noble [117)
2) 0. Szasz [14})
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and theorem C reduces to a theorem due to Hardy ’.
In the following, we discuss the conditions
od f under which (21) holds for t = 2/2«+1 and (22)
holds for t = «. We also consider the weaker lacunarity
condition given in (4).
We prove the following theorems.
THEOREM 9t

If the lacunarity condition (4) is satisfied

and

o
23) |flxm)-£(x)] £ Ah :
( | X (x ' S e o in I,

‘ N oiL
[£n) Lw).... L )| 2

0 £ x< 1, then €21) holds for t = 2/2«<+1 .

THEOREM 10s

Under the conditions of theorem 8, (22) holds
for t = «, ’
It may be remarked that if we omit the lacunarity
condition (4) and take the interval I = [-m , @ ,
then theorems 9 and 10 reduéé ﬁo the theorems proved
b& Zannexz).

We prove these theorems for m = 2.

- - - - — S S Bl e Stk T, B T oA A o P Sk S S e O S, VA i — —-—

1) ‘Hardy L5}
2) Zanmen [ 20}
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PROOF OF THEOREM 9:

Let
2 o 2

T = + b .
W~y T T
Choosing the sequence M. as in (10) and

using the method of theorem 8, we get, as in (16) above

ANy
(24) 2 o= 1 ) .
g\““p niec {/(‘(2%1;) ﬁze(ggg)‘jzowi

Using (18) and (19), we get,

WAt
S22 A '
(25) e ¥ e
_ < o+l '
2K o2k« { e-1)108 (-1}

Now,~we apply Holder's inesquality to get,

2}«: {Hg & K+t l__g_
s 2.
e (3R (%)
e % 2
z;t,

1),
ot {(k«-l)log“e(k-l%g‘g:")‘t
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W |
- J e —— > for = e
+E b 3
(k-:L)J_og‘1 (k-1) ‘

Therefore, the convergence of é@ﬁ follows from the

convergence of

)

2 Ty
S (k-1)1ogT (k1)

Since !aﬁp!t, as also ]bnp[t y do not

exceed T s 1t follows that the series (21) is

"p

convergent,
PROOF OF THEOREM 10:
From (17), we have,

?%H 2(% - <k
(ag | + Ipp 1D = O( )
K aﬂp °p . ﬂ,(..?f__.) €+8(£M)
2 P JkFI
Therefore,
A (et1)(t-4 ) k(=)

L
gn;(Z('anp]‘ +]bnp])<A 2 - .

. +€ IR
e 2.(;%;1> L 1)
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< - A s by (18) and (19).

1+€
(k-1)log  (k-1)

Hence the convergence of (22), for t = « , follows

from the convergence of

oo
1
i 1+€ ¢

K23 (k-1)log  (k-1).

2 We shall need the following two definitions.
DEFINITION 1. Let E be the set of real numbers, and
let « > 0. We say that f(x) € Lip « in B, if

| £(x +{1}) - f(x) | = O(ih}q)

uniformly for x in E, as h—>o0. through unrestricted
real values. _ ‘
DEFINTTION 2. A subset E of [=7 5 7} , is said to
have a positive spread if there is a number T d > o
such that, for every:integer P > 1, E contains P points

R o 3 -1
Xy 9 Ky s seener®y 3 satisfying lx@\%@’ >ar -, (p #a).

Kennedyl) discussed the absolute convergence
of the series (L) by replacing the subinterval I by a

set, a subset B of positive spread. But, in doing so,

I e S T ——r Yoot Ty e oo Sl e W MO Ao e S Tt S B AN o Sy g e S A, S OO WS St e S TS St W O e e S AP vt O o M Rt o S P W W T

1) Kennedy [713
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Noble's lacunarity condition (8) has been replaced by
a stronger lacunarity conditiony In fact, the following

theorem is proved by Kennédy.

THEOREM D
Let
- Pev1 ~ Pk
(28) lim =06 , (o0<g<1).
koo n-i log ny

Let f(x) € ip « , 0 < £ < 1 in B, a subset
of [-m 4, m| of positive spread. Then

(27) ank = O( nk
by, = Oy ®) 5

and the series (L) is absolutely convergent if

-1

(285 < > (g~ - 1)

rol

The author waé unable to decide whether the

conclusion of the theorem breaks down when
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Here, we study a condition on f£(x) underwhich

the series (1) is absolutely convergent for

2T el
CC“"Z-(B "1)0
Let P be a positive integer satisfying

-1 ' ' -1
(29) P <78, AP exp(-Agém) < £ A5 57,
vhere o < § < mand m is a positive integer such that
(8) is satisfied.
Further; let the P poiﬁﬁévxl ; Xy 9eeeer®p
in {-7m, ™} satisfy

(30) lxp - xq] >25 (p# q),
and put
e
(1) Sp(@) = & S mx-x)
‘ L=y

where T, is the trigonometrie polynomial given‘in lemma 1.
We shall also need some results pertaining to

Sp(x) due to Rennedy) which we state in the form of

lemmas.

LEMA 3: (1) Sm(x) is a trigonometric polynomial

of degree m at most, with constant term 1 ;3

(11) [sp(x)]| < A4(P 5y , for all x ,

— — " —— ——— -y s

1) Kennedy [7}
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(111) |Su(x)| < Ay exp(-Ags m) , for all X ,

in [-m , 7] outside the union of the set of

intervals |x - Xﬂt <8, ( £=1,293,.0..,P);
(iv)  |s (=) < 2&¢m(P §)"1 , for all x.

LEMMA 4: TLet P be even and let t; be as in (5) and
let xy be defined by

(32) x = 5212§~223 , (A= 1,2,... P).
Then, we have,
(33) Splx) =1 + é{tj cos jx , .

where the summation is over all integers j which are
multiple of P and satisfy 1< j < m.

Now we are in a position to prove the
following theorem.
THEOREM 11: '

If the lacunarity condition (26) holdsaand if

. : «
[flza)-£(x)] = O h ), €>o0,.

4(0) £ oo S C(n)

h>o0o, in B, as h — o +through unrestricted real
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values, then the series (L) is absolutely convergent

for
PROOF _
We shall prove the theorem for m = 2.
Iet
- B
(34) m = L4y n, log nk] .
Let
(35) & =3n' , B = [e ni] ,

where ¢ > o is a constant.

If we let m =m and & = &, , then by (34)
and (35), (8) is true for all sufficiently large k,
~since g < 1. If further, we take ¢ small enough and
put P = P, , then, for all sufficiently large k, (29)

is true and

(36) , a Pt

X >2 8

k 9
where d is as in defihition 2 for the set E.

Tet gk(x) be as in (12). Then the Fourier
series of gk(x) is given by (13).
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Choose Pk points fx,{ ( L= 1’2”"'Pk)

from the set E, satisfying !Xp - xq] > 28 , (p # a):

PThis is possible because E has positive spread and hence

(36) holds for all sufficiently large k.

Let Smk(x) be 8,(x) as in (33), with m = My

Let
(=) me <y = Ty Ty Ty

Consequently, by the choice of The if k is

large enough, g, (x) Smk(x) has the Fourier coefficients

ocnp s 5% s vwhere

. n_ar

ccn = 2bp_ sin D
2ny )

T

= —2a sin Ij.p...
Bn‘p Yl.p (21'11{ ) ’

for np 2 ny .

2
Now, f(x) € L [=m , m| , using lemma 2,
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because it results from the hypothesis that f is
bounded in a closed subinterval I and consequently
£ € I2(I). Hence & (x) smk(x) e 17 (=7, 7.

Consequently, by Besselt's inequality

% 2k
(38) é%ianp + bn )sin® (2y =1 ;§:

R O

< ;_,c:,l;" _(gi(x)sﬁk(x)dx.

e

il {]

Let Ek be the union of the set of intervals
‘X - XX.} < ék 3 (/é"’: 1,2, ss e o ; Pk)o

Outside By, we have

_ -B
Smk(x) = C)(nk )

by n lemma 3.(iii) ,(34) and (35); and

Smk(x) = O(1)
uniformly for x in Ek , by lemma 3(ii), and (35).
Therefore
wE

H

(39) J,gi(X)qu{(’C)dX O( gk(x)dx)+0(nk

—Ti EK
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But if fx - x£[ < 61{ y and k is large enough, then

¥l

[x_ian—xll<26k,

and so, by the condition satisfied by f(x) in E,

since Xy € B, we have

le ()] < Iotx + gT-rg)] + |00z )=z éﬁ‘g”

5%
(40) = O §+e )
L&) £y ()
Collecting (35), (38), (39), (40) and observing
that
A(8,) = O(log )
L&) = O(log log m) ,

for k large enough, we get,

-2«
e

Ry :
(41) (a2 +12) = O )
‘ ‘“gk P bnp (1ogn,, - 1oglogl+enk)2 ’

and from this it follows that



ZK'H ’ --2k°CB
(42) (a2 +12) = O( —2——— ) ron
< P " (k-logl+ek)2 ’

for k large enough.
Using Cauchy's inequality and neting that,
by the lacunarity condition, the number of nonvanishing

terms in the sum on the left hand gide of (42) is
1
O(¢ 2( B)k), we get,

K+1

(43) S Clan | + I ]) 2 2R,
X

k.logl+ek

1

O(

S8 + Ty

0E— )
kllog k

It

i

O« 1 _ ) 3

k-logl+ek

-1

when « = % (g™ - 1).

From this follows the absolute convergence of the
series (L). ™
This completes the proof of the theorem.

We also prove the following theorems:
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THEOREM 12

Under the conditions of theorem D,
o0
t t
(44) San ] * log I
k=i K k
is convergent for

- 1-8 .
t > — .
ocs+(—§-§—)

THEOREM 13:

If the lacunarity condition (26) is

satigfied and if

of
(458) |f(zxm)-r(x)]| = O( h

T T I e r-p))
¢ 4Gh) flnd::s Aoy

€ >0 ; h>o0, in E, as h—o through unrestricted

real values, then (44) is convergent for

THEOREM 14:

Under the conditions of theorem D,

- on .
(46) gnf{ 2 (apy | + lon 1)
K=y

is convergent for
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THEOREM 15

Under the conditions of theorem 11, the

series (46) is convergent for
t =24 p+ .

PROOF OF THEOREM 12:

Let
2" 2 2

To, = enm o -

Under the conditions of the theorem, using

((4.7),p.204) of Kennedyl), we have
(47) ?;-2 = ocz'ék"‘% :
F P
) Applying Hdlder's inequality and noting
that the number of nonvanishing terms in the above

sum (47) are 0(2('3‘“6)]‘{), we get,

! Y /2 (1-B (1~ 5

ertlp < ( %ﬁr%p) .

' t
kgt + (1-g)(1- §)k)

i

Ota

Therefore, the convergence of ngp follows from the

convergence of

— - — - o it R o A Sl ] S S P S A s Pt AT T Wl i it S SO 1

1) ZXKennedy [‘73
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2 {(1-p)-(ap+iBys} 1
% ?
Kz |
which does converge:: when
1-8

£t > — .
1
© + (55

From this, follows the convergence of the series (44).

PROOF OF THEOREM 13:

We shall prove this theorem for m = 2.

Using (39) and (45), we have,
K+

2 o o
{r”p = O 248 + (1-p) )
> (k-Logt o) T (T=F)

-2k

Applying Holder's inequality, as in theorem 12,

we get
2L kBt (1-8 (1~ &)
irﬁ - o ) .5 —B 2’y
P 2¢g + (1-g)

(k-1ogl¥Ck) 2(1-8) A

= O —&_—— - 1-8
k.logl"'g}; ) [ When t

«p + (=52

From this follows the convergence of the series (44).
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PROOF OF THEOREM 14:

FromuKennedyl), we have

K-H

- _-) (l--J: ~ Bk
Zn B(Jang] + o) = OC2" 2ref s

(¢ -Lp - «pdr
=0C2 2P~ Y,

and hence the series (46) converges when t < = 5B + «B.

PROCF OF THEOREM 153
We shall prove this theorem for m = 2.

Using (43), we have,

KA1
2 ¢ 1

k(-1 (-~ + 1= By

g”p any| + Ton 1) = g - 2 )
‘Z,K kl@gl + ek

(t'—‘*’-ﬁ"g}k

== .0 )

k-logl+€k

= O( e ) , when t "“‘15 + o
p
k~logl+ek ’ 2 1

and hence the series (46) converges.

—— -t v -

1) Kennedy ( [7] , p.204 )




80

3 Ma sako Satol) discussed the absolute convergence
of the series (L) where the function f satisfy some
continuity condition at a point, instead of in a

small subinterval, and proved the following theorenms.

THEOREM E:

Tet 0 < < < 1, and 0 < B < min (1-« , 5% ),
It
2/ 2--=23 Ok /2+(+B
(48) “k <n_<e ,
(49) lnkil-nk[ > ek
o
(50) %ﬁ ‘(lf(t)—f(t +n)at = O™ ,
1 g
(51) ;—j [£(8)-r(tm)]at = O (1) ,unif.inf > hB,
then °
_ &
(52) . = ()(}/nk) ,
b, = O(/n).
THEOREM _F:

Let <a<«<1l,0<p<(2-x)/3,

—— — e - —— ———— R L L T pmm——

1) Masako Sato ( [87 3 [93)
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and /2 < < -a £ (2 -« =~ 8)/4.
If

(83) k <n <e

(49) is satisfied,
W 2 2
(54) %B S/}f(t)-f(t +n)]7dt = Q™) ash—o,

- ] :
2 .o LB
(55) %—-f]f(t%f(t +h)| at = O(1) unif.inf > h,
[}
then, the series (L) is absolutely convergent.
We discuss, here, the absolute convergence
of the series (L) only under the conditions of
theorem E. We are also able to cover a greater range

of « 1.e. !2:_<_oc<1.

More precisely we prove the following
theoren. -

THEOREM 16:

&

et 2 <o« &1and o< p < min(l~%,g~§- ).

LROJE+

-“If the conditions (48),(49),(50) and (51)
are satisfied, then the series (L) is absolutely
convergent.

We need the following lemma for the proof

of the theoremn.
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LEMMA .
If the sequence {nk} satisfies the condition

(49), then,for all sufficiently large Kk,
) 2+8
(56) n, > ck ,

where ¢ 1s an absolute constant.

PROOF:; From (49), we have,
;o) - > 4ek g
K+l T Pk e

and observing that np > p on account of the lacunarity,

we get,
K
Mg "1 7 <np+1 - np)
=y
K
> 4de égp nB
b=t
X 1+
> 4e jgpl P .
b=\
Therefore
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2+8 2 4de 1
=k = + = (n, - L __ j
2 <2 17 5+3
8e . 2%p
> e KT

by choosing k large enough. Hence the lemma is proved.
PROOF OF THEOREM 16

Under the hypothesis of this theorem

1

lany | + loy, |

1

k
= O £§%$§§-) , by the lemma.

Now, our hypothesis implies that 2« > 1 and

BX > o, and hencezfo—uéLw—-) is convergent, which
k2q+gx

)
implies the convergence of E{tlankl + ]bnk]). Hence

K=
the theorem is proved,

We also prove the following theorems.

THEOREM 17:

Let 0 £ < < 1. Under the hypothesis of
theorem 16, 0
Tlag !+ 1on, 1™
Ny k
K=y N
is convergent for t > 1/2<«.
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THEOREM _18:

Iet o £ « < 1., Under the hypothesis of
theorem lé,
P - "
2 Hlany ]+ fony])
is convergent for t £ « .

PROOF OF THEOREM 17:
We have, under the hypothesis of theorem 16,

b t
(lagg]” + Ton 1% = OC 5= ,
k

and usging the lemma

t

: 5 1
([ankl + Ybnk‘ ) = O( ggqf—x—gqg—) N

for all sufficiently large k.
Our hypothesis implies that 2«t > 1 , and

Bt > o, and hence

)
:Z 1

St + pect
R:\ k

is convergent, which implies the convergence of

%u 1%+ o, 15
o, ok S



PROOF OF THEOREM 18:

We have

DO~

- 1
n; .(]ank} + ]bnkl) = Oy~ 2 /n ? |

Ol 1

85

(246 ) (=t &
5 B 5)

for all sufficiently large k,

= OC. L ).

1 + % + («=1)(2+8)
k

Now, our hypothesis implies that «~t > o ,

and /2 > o , hence the series
oo

1
g 2 L (<-t)(2+p)

is convergent which implies the convergence of

)
gnk (lan, | + Ton, ]).

4, In theorem 16, we discussed the absolute

),
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convergence of. the series (L) for the » range % L£«< 1,

This range can be extended in the discussion of the
almost everywhere convergence of the series (L). In
this connection we prove the following theorem.

THEOREM 19:

Under the hypothesls of theorem 16, the

series (L) is almost everywhere convergent for % <« < 1.

PROOF:
Under the hypothesis of the theorem 18,
we have,
2 2 2
( + ) = 1/n. )
op, * Pry O (1/ny
4428
= O/2 ), by the lemma.

Now, our hypothesis implies that 4« > 1 and
2«B > o0, which implies the convergence of
2 2
(a2 + b2 ).
ég‘ & e .
2 - 1)
Hence £ € L” [-7 , m| . Then by Carleson ’ theorem,

the series (L) is almost everywhere convergent.

This completes the proof of the theorem.
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1) Carleson [4)



