
CHAPTER V

SERIES_MD_OR_THE__ABSQLIJTE_CgNVERGERCE 
2I_A„SERIES_ ASSOC IATED_WITH_A_MCMARY 
IQnRIER„SERIlS_

1 In this section, we discuss the convergence
of the series (L) and its conjugate series (Lp in 

[~tt , it3 , when the function f satisfies a certain 
condition in some subinterval I of [yrr , if|. The 
following theorems are due to Kennedy^.

■THEOREM A:
If f(x) is of hounded variation in some 

subinterval I, and': if ~ n^. ---} co as k —-> oo , then

^k ~ O C 1/n^) .
THEOREM B:

If f(x) 6 Lip <K in some 
and if n^.+^ ~ n^, —^ » as k -—oo

subinterval I, 

, then

an-^ = OC l/n^) 5
oa/r$.

1) Kennedy [63
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We prove the following theorems.
THEOREM 20:

If f(x) 6 .1^ (l),then the series (L) and 

its conjugate series (Lj_) are almost everywhere 
convergent.
THEOREM 21:

s ' ,If f(x) is of "bounded variation in some 
subinterval I, then the series (L) is convergent 
to fix + o) + fix - o)/2 at any point where this 
expression has a meaning and the conjugate series 
is convergent to f(x) whenever it exists, and when 
x is a point of the Lebesgue set.
PROOF OF THEOREM 20:

If f(x) G I?(l), then by lemma 2, chapter IF,
f(x) e t? Q- v , ir3 , and hence by Carleson’s^ theorem,
the Fourier series (L) of f converges almost everywhere

2)Also, by Riesz - Fischer theorem, the 
conjugate series (L^) is the Fourier series of 
f(x) 6 I? "£-ir , ir^ whenever f(x) .6 ]l-v , tt\ and 
hence the series (1*^) is almost everywhere convergent 
by Carleson’s theorem.
PROOF OF THEOREM 21:

If Sn are the partial sums and dh are the 
arithmetic means of order n for the series

1) Carleson C.43
2) Bary ( 0-3 , p.64 )
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tio +u^ + u2 +......  + un + ***• »
then,

Sn -
u^ + 2ti2 +....  + nt^

n + 1

In' case of a lacunary series, where in 

calculating Fejer suras it is necessary to replace the 
absent terms by zeros,we have,

(2) S^- %=
"Aj + +.........- +

nk + 1

How, we take
un^_ = a^cosn^x + b^sin n^.x in case of the 

series (L) and

% = N cos n^x - a~ sin n^x in case of the

series 0>j_).

Under the hypothesis of the theorem , we

have,

bn^ = 0(l/nfe) , by theorem A.

Therefore
% = OCl/nj,}
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and hence,

\ % = 0<1)-
Now, the number of terms in the numerator 

of the right hand side of (2) is k, and hence,

(3) l%fc- ,

where A is an absolute constant. 
Now,

---- »o as k—4oonk

whenever:-" • “k+l - *k OO •

Therefore
|Snk - ■

Now, it is known that the Fourier series (L) 
is summable (c, l) to f(x + o) + f(x - o)/2 for 

every value of x for which this expression has a 
meaning i.e*

(Tn^—f(x + o) + f(x - o)/2.
Hence Sn^—> f(x + o) + f(x - o)/2 for every value 

of x for which this expression has a meaning.
It is also known that the series (%) is 

summable (c , l) to f(x) for every value of x 
for which f(x) exists and when x is a point of the 
Lebesgue set. Hence by the same argument as used
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above, (Lj_) converges to f(x) whenever it exists, 
and when x is a point of the Lebesgue set.
2 In this section we shall be concerned with the
series

K-»

where S% * 1
Hi T

unp 01 %ipcos iipX + bnpsin npx ,

and s is an appropriate number independent of n^ 
Let

f (t) * f(x + t) + f(x - t) - 2s/2.
Me prove the following theorems. 

THEOREM 22:
If f(x) is bounded and if

oo
(5) f(—i— )

nk+l “ nk

is convergent, then the series (4)'is absolutely 
convergent.
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THEOREM 23:
If
(i) nk+l as k—> go ,

?1 is convergent, nk
then the series (4) is absolutely convergent. 
THEOREM 24:

oif f(x) is of hounded variation in some

is convergent, then the series (4) is absolutely 
convergent.
THEOREM 25:

If f(x) 6 Lip «c, o < < < 1, in some subinterval 
I, and if <

is convergent, then the series (4) is absolutely 
convergent.

subinterval I, and if

(6)
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PROOF OF THEOREM 22:

We have in virtue of the lacunary Fourier

series

Sn - S(7) 3*
nk 2rak(nk+1-nk)

-rr
f(t) dt,

Therefore

Is% - s

nk
1 n-k+1

2v(nk+i~ nk) n}C n-
i (|f (t)j-~^|~r~ ^

k+l ±-b

1 r
2ir(nk+i “ nk} n'k

y( t)H^-;^4"--dt'
' 1 'S c Vv J- C

How, using nh+l =0(2) , and also using the result 

n,.■k

that
_TT

1
nk

f (t)|
sin n-^t

7~%~
sin t

dt

is hounded, whenever f(x) is bounded, we get.

,Sn-■k
n-

G(
•k nk*i ” nk

H + o<
nk+l ~ nk
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Hence the convergence of the series (4) follows 
from the convergence of the series (5).
PROOF OF THEOREM 23:

By the method similar to one which is used in 
theorem 3, chapter II , we have,

Hence the convergence of the series (4) follows from
the convergence of the series 5'-=-.

nk
2 1

PROOF OF THEOREM 24:

unx + %2 +

We have
1%^ = 0(l/n^) , by theorem A,

and hence

<”k
where A is an absolute constant



95

Hence the convergence of the series (4) follows from 
the convergence of the series (6).
PROOF OF THEOREM 25:

Under the hypothesis of the theorem, we have

un^ “ 0{~S(f) , hy theorem B. "k

Using (8), we get
Sn - s A( ^7 + -J- )+|sj
k Ho ro< 1 2 g
”k n-k

o{
1-°C

nk
nk

oc-4") .
Hence the convergence of the series (4) follows 
from the convergence of the series

UO

t
Theorems analogous to theorems 24 and 25 

can he stated for the conjugate series


