LIST OF FIGURES

Figure No.	Title	Page No.
1.1.	Passive accumulation of liposomes at tumor through leaky tumor endothelium	2
1.2.	Preparation of PEGylated liposomes and conjugation of intact or derivatized monoclonal antibodies (PEGylated Immunoliposomes) through various functionalized PEG derivatives	3
2.1.	Cellular mechanisms of tumor (lymph) angiogenesis	10
2.2.	A. Passive targeting of nanocarriers, B. Active targeting strategies	14
2.3.	Neuropilin-1 domain structure homology	18
2.4.	Mechanisms of NRP action	19
3.1.	Chemical structure of Coomassie Brilliant Blue G-250	46
3.2.	(a). Structure of Ellman's reagent, (b). Reduction of Ellman's reagent	47
3.3	UV absorbance scan of docetaxel in methanol	49
3.4.	Calibration curve of docetaxel in methanol at λ_{max} 231nm	50
3.5.	RP-HPLC absorbance peaks of docetaxel in methanol at λ_{max} of 231nm	51
3.6.	RP-HPLC calibration curve of docetaxel in methanol at λ_{max} of 231nm	52
3.7.	RP-HPLC absorbance peaks of 7-epidocetaxel in methanol at λ_{max} of 231nm	52
3.8.	RP-HPLC calibration curve of 7-epidocetaxel in methanol at λ_{max} of 231nm	53
3.9.	RP-HPLC absorbance peaks of 10-oxo-7-epidocetaxel in Methanol at λ_{max} of 231nm	54
3.10.	RP-HPLC calibration curve of 10-oxo-7-epidocetaxel in methanol at λ_{max} of 231nm	55
3.11.	UV absorbance scan of phospholipid mixture in chloroform at λ_{max} of 472nm	56
3.12.	Calibration curve of phospholipid mixture in chloroform at λ_{max} of 472nm	57
3.13.	Calibration curve of BSA at λ_{max} of 472nm	58
3.14.	Calibration curve of BSA at λ_{max} of 595nm	59
3.15.	UV absorbance scan of cysteine at λ_{max} of 412nm	59

3.16.	Calibration curve of cysteine at λ_{max} of 412nm	60
4.1.	Chemical structure of A. Docetaxel and its degradation impurities B. 10-Oxodocetaxel, C. 7-Epidocetaxel and D. 10-Oxo-7-Epidocetaxel	68
4.2.	Characteristic peaks of (1). DTX (2). 7-epidocetaxel and (3). 10-oxo-7-epidocetaxel.	76
4.3.	Identification of types of impurities formed in liposomes prepared at different hydration temperature in the absence of organic acid	76
4.4.	Comparison of liposomal formulations containing Vitamin E and organic acids as degradation inhibitors	82
4.5.	Mean particle size of prepared conventional liposomes	83
4.6.	Zeta potential of prepared conventional liposomes	83
5.1.	Influence of sodium sulfate concentration on absorbance of the liposomal preparation	94
5.2.	Effect of PEGylation on serum protein binding (P_B) of anionic liposomes	100
5.3.	Chemical structure of DSPE-mPEG ₂₀₀₀ -Maleimide	100
5.4.	FTIR spectra of functional phospholipid derivative, DSPE-mPEG ₂₀₀₀ -Maleeimide	101
6.1.	Modified structure of an IgG antibody molecule	110
6.2.	Enzymatic digestion of IgG antibodies	110
6.3.	Mechanism of silver staining of separated proteins on SDS-PAGE gel	114
6.4.	Modification of neuropilin-1 antibody and preparation of immunoliposomes	120
6.5.	Immunoreactivity of prepared Fab® fragments and immunoliposomes	125
6.6.	Graphs representing % RMFI of A549 cells treated with different concentrations of Fab® fragments and immunoliposomes	126
7.1.	Identification of neuropilin-1 receptor of A549 and B16F10 cells by western blotting	138
7.2.	% neuropilin-1 protein expression with respect to total β tubulin content of loaded protein.	138
7.3.	FACS analysis of neuropili-1 protein (a). A549 cells (b). B16F10 cells	139
7.4.	The comparison of % relative mean fluorescence intensities of A549 and B16F10 cells.	139
7.5.	Confocal images of neuropilin-1 protein expression in A549 cells and B16F10 melanoma cells	140
8.1.	Optical microscopic images of PEGylated liposomes	150

8.2.	Transmission electron microscopic (TEM) images of PEGylated liposomes	150
8.3.	The FTIR spectra of (A) plain docetaxel, (B) docetaxel loaded PEGylated liposomes and (C) blank PEGylated liposomes	151
8.4.	(a). DSC thermogram of plain docetaxel; (b). DSC thermogram of Physical mixture of docetaxel and other components of PEGylated liposomes; (c). DSC thermogram of Docetaxel loaded PEGylated liposomes	152- 153
8.5.	Comparison of cumulative % DTX released from different formulations	155
8.6.	Comparison of % cumulative DTX released from PLs and PILs with Taxotere	156
8.7.	Comparison of <i>in vitro</i> stability of PLs in the presence and absence of 10% sucrose	160
8.8.	The % A549 cell viability after (a). 24hr, (b). 48hr and (c). 72hr of treatment with TXT, CLs, PLs, PILs, and BLs	163
8.9.	The % B16F10 cell viability after (a). 24hr, (b). 48hr and (c). 72hr of treatment with TXT, CLs, PLs, PILs, and BLs	
8.10.	A549 cell Uptake of coumarin loaded CLs, PLs, and ILs	
8.11.	B16F10 cell uptake of coumarin loaded CLs, PLs, and ILs	
8.12.	K9 cell Uptake of coumarin loaded CLs, PLs, and PILs	
8.13.	Comparison of % relative mean fluorescence intensity of (a). A549, (b). B16F10 and (c). K9 cells after incubation with 6-coumarin loaded CLs, PLs, and PILs	
8.14.	Confocal microscopic images of A549 cells after incubation with 6- coumarin loaded CLs, PLs, and PILs	
8.15.	Confocal microscopic images of B16F10 cells (pseudo color given) after incubation with 6-coumarin loaded CLs, PLs, and PILs	
8.16.	Confocal microscopic images of K9 cells c after incubation with 6- coumarin loaded CLs, PLs, and PILs	
8.17.	Zeiss Axio Inverted Microscopic images showing migration of A549 cells in the presence of different concentrations of Taxotere, DTX loaded PLs and PILs	
8.18.	Zeiss Axio Inverted Microscopic images showing migration of B16F10 cells in the presence of different concentrations of Taxotere, DTX loaded PLs and PILs	
8.19.	The % wound covered in the presence of different concentration of Taxotere and DTX loaded PLs and PILs	174
8.20.	The comparison of interaction of docetaxel and docetaxel loaded PEGylated liposomes and Immunoliposomes with MMP-9 and MMP-2 of (A). A549 cells and (B) B16F10 cells	176
8.21.	A549 cell apoptosis after treatment with TXT, PLs, and PILs of 2nM for 24 hr (A) and 42hr (B)	178
8.22.	B16F10 cell apoptosis after treatment with TXT, PLs, and PILs of 2nM for 24 hr (A) and 42hr (B)	178

8.23.	The % A549 and B16F10 cell apoptosis after treatment with 1mL of 2nM Taxotere, DTX loaded PEGylated liposomes (PLs) and PEGylated Immunoliposomes (PILs) for a period of 24hr and 48hr	179
8.24.	EB/AO staining of A549 cells after (A) 24hr and (B) 48hr treatment	181
8.25.	EB/AO staining of B16F10 cells after (A) 24hr and (B) 48hr treatment	181
8.26.	The FACS analysis of % of A549 cells in G0-G1, S and G2-M phase after treatment with 2nM solution of Taxotere, PLs and PILs for a period of (A): 24hr and (B): 48hr	183
8.27.	The FACS analysis of % of B16F10 cells in G0-G1, S and G2-M phase after treatment with 2nM solution of Taxotere, PLs and PILs for a period of (A): 24hr and (B): 48hr	184
8.28.	The % of A549 cells in G0-G1, S and G2-M phase after treatment with 2nM solution of Taxotere, PLs and PILs for a period of (A): 24hr and (B): 48hr	185
8.29.	The % of B16F1o cells in G0-G1, S and G2-M phase after treatment with 2nM solution of Taxotere, PLs and PILs for a period of (A): 24hr and (B): 48hr	186
9.1.	(A) PBS (B) TXT (C) PLs and (D) PILs treated C57BL/6 mice bearing B16 melanoma tumor at 14th day of experiment.	195
9.2.	Solid tumors of control and formulations treated groups after separation from the mice	196
9.3.	Tumor growth inhibition by multiple injections of Taxotere and DTX loaded PLs and PILs in tumor bearing C57BL/6 mice	197
9.4.	Control and formulation treated group mice body weight measured during the experiment	198
9.5.	The mouse skin attached with solid tumor showing the blood vessels around the tumor	200
9.6.	The micro-vessel density around solid tumors treated with different formulations	201
10.1.	Chemical structures of A. Docetaxel and its degradation impurities B. 10-0xodocetaxel, C. 7-Epidocetaxel and D. 10-0xo-7-Epidocetaxel	207
10.2.	Characteristic peaks of (1). DTX (2). 7-epidocetaxel and (3). 10-oxo-7-epidocetaxel	212
10.3A.	The HPLC chromatogram of 7-epidocetaxel after 3 months of storage at 2-8 °C in IMDM medium containing no citric acid	212
10.3B.	The HPLC chromatogram of 10-oxo-7-epidocetaxel after 3 months of storage at 2-8 °C in IMDM medium containing no citric acid	213
10.4A.	The HPLC chromatogram of 7-epidocetaxel after 3 months of storage at 2-8 °C in PBS (pH 4, adjusted with citric acid)	213
10.4B.	The HPLC chromatogram of 10-oxo-7-epidocetaxel after 3 months of storage at 2-8 °C in PBS (pH 4, adjusted with citric acid)	213
10.5.	The % A549 cell viability after (a). 24hr, (b). 48hr and (c). 72hr of treatment with Taxotere, 7-Epidocetaxel, and 10-oxo-7-epidocetaxel	215
10.6.	The % B16F10 cell viability after (a). 24hr, (b). 48hr and (c). 72hr of treatment with Taxotere, 7-Epidocetaxel, and 10-oxo-7-epidocetaxel	216

10.7.	Zeiss Axio Inverted Microscopic images showing migration of A549 cells in the presence of 2mL of 2nM concentration of Taxotere, 7-epidocetaxel, and 10-oxo-7-epidocetaxel	218
10.8.	Zeiss Axio Inverted Microscopic images showing migration of B16F10 cells in the presence of 2mL of 2nM concentration of Taxotere, 7-epidocetaxel, and 10-oxo-7-epidocetaxel	219
10.9.	The % wound covered in the presence of 2mL of 2nM concentration of Taxotere (TXT), 7-epidocetaxel (7-EPI), and 10-oxo-7-epidocetaxel (10-oxo)	219
10.10.	The comparison of interaction of Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel with MMP-9 and MMP-2 of (A). A549 cells and (B) B16F10 cells	221
10.11.	A549 cell apoptosis after treatment with Taxotere, 7-epidocetaxel, and 10-oxo-7-epidocetaxel at 2nM, 10nM, and 25nM concentrations for 24 hr (A) and 42hr (B)	223
10.12.	B16F10 cell apoptosis after treatment with Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel at 2nM, 10nM, and 25nM concentrations for 24 hr (A) and 42hr (B)	224
10.13.	The % A549 (A) and B16F10 (B) cell apoptosis after treatment with 1mL of 2nM, 10nM, and 25nM of Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel for a period of 24hr and 48hr	226
10.14	The FACS analysis of % of A549 cells in G0-G1, S and G2-M phase after treatment with 2nM, 10nM and 25nM solutions of Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel for a period of (A): 24hr and (B): 48hr	229- 231
10.15	The FACS analysis of % of B16F10 cells in G0-G1, S and G2-M phase after treatment with 2nM, 10nM and 25nM solutions of Taxotere, 7-epidocetaxel, and 10-oxo-7-epidocetaxel for a period of (A): 24hr and (B): 48hr	232- 234
10.16	The % of A549 cells in G0-G1, S and G2-M phase after treatment with 2nM, 10nM and 25nM solutions of Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel for a period of (A): 24hr and (B): 48hr	235- 237
10.17	The % of B16F10 cells in G0-G1, S and G2-M phase after treatment with 2nM, 10nM and 25nM solutions of Taxotere, 7-epidocetaxel and 10-oxo-7-epidocetaxel for a period of (A): 24hr and (B): 48hr	238- 240
10.18.	The % group weights after administration of Taxotere alone and Taxotere with 10% impurities separately.	243
10.19.	The appearance of the lungs from mice injected intravenously with highly metastatic B16-F10 melanoma cells (1x10 ⁵) after intravenous administration of single dose of (A) untreated control (PBS); (B) Taxotere 40mg/kg; (C) Taxotere containing 10% 7-epidocetaxel; and (D) Taxotere containing 10% 10-oxo-7-epidocetaxel	244
10.20.	HE staining of the lungs from B16F10 melanoma metastasis bearing mice treated with single dose of (A) untreated control (PBS); (B) Taxotere 40mg/kg; (C) Taxotere containing 10% 7-epidocetaxel and (D): Taxotere containing 10% 10-oxo-7-epidocetaxel	244
10.21.	The % group weights following administration of 20mg/kg single dose of 10-oxo-7-epidocetaxel to mice bearing B16F10 pulmonary metastasis	246
10.22.	The appearance of the lungs from mice injected intravenously with highly metastatic B16F10 melanoma cells (1x10 ⁵) after intravenous administration of single dose of (A) PBS (control); and (B) 10-oxo-7-	247

	epidocetaxel	
10.23.	The suppression of pulmonary tumor growth/metastatic nodules in mice treated with 10-oxo-7-epidocetaxel at 20mg/kg single dose administered intravenously at 9^{th} day of B16F10 melanoma cell inoculation ($1x10^{5}$ /mouse) intravenously	247
10.24.	Images of mice lung sections after H-E staining (Left panel is untreated and Right panel is 10-oxo-7-epidocetaxel treated)	248

•

•

.