List of Figures

Figure 2.1	Growth of cells	14
Figure 2.2	Nanoparticulate platforms for the targeted and controlled	37
	delivery of drugs, (a) liposome, (b) polymeric nanoparticle,	
	(c) lipid polymer hybrid nanoparticle and (d) dendrimer.	
Figure 2.3	Particle schematics, (A) nanosphere, (B) nanocapsule (C)	38
	liposome, (D) micelle, (E) dendrimers functionalized with	
	completed (left) and encapsulated drug molecules.	
Figure 2.4	Targeted particles: (A) example of a folate receptor	48
	targeted particle. Liposome functionalized with PEG	
	tethers to impart STEALTH characteristics and folate for	
	tumor targeting, (B) folate-conjugated PLGA-PGA	
	polymeric micelle loaded with encapsulated doxorubicin	
	and (C) cRGD-functionalized PCL–PEG polymeric micelle	
	containing encapsulated doxorubicin.	
Figure 2.5	Molecular structure of lactide and glycolide based	55
	biodegradable polymer	
Figure 2.6	Different methods for preparation of PLGA NPs.	57
Figure 2.7	Degradation of polycaprolactone.	61
Figure 3.1	Regressed calibration curve of ATZ by HPLC at 215 nm.	93
	Data presented as Mean ± SD, n=3 (some error bars are too	
	small to be shown).	
Figure 3.2	Chromatogram of ATZ solution by HPLC at 215 nm.	94
Figure 3.3	Regressed calibration curve of EXE by HPLC at 247 nm.	98
	Data presented as Mean \pm SD, n = 3 (some error bars are	
	too small to be shown).	
Figure 3.4	Chromatogram of EXE solution by HPLC at 247 nm.	99
Figure 4.1	FTIR spectra of polymers, A: PLGA; B: PEG and C: PLGA-	127
	PEG.	
Figure 4.2	NMR spectra of pegylated PLGA.	128
Figure 4.3	Gel permeation chromatogram of pegylated PLGA.	128
Figure 4.4	FTIR spectra of cPCL.	129
Figure 4.5	Gel permeation chromatogram of cPCL.	130
Pharmacy Do	epartment, The Maharaja Sayajirao University of Baroda	Page X

	LIST OF FIGURES	
Figure 4.6	FTIR spectra of polymers, A: cPCL; B: PEG and C: PCL-PEG.	131
Figure 4.7	NMR spectra of pegylated PCL.	131
Figure 4.8	Gel permeation chromatogram of pegylated PCL.	132
Figure 4.9	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	140
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X1) on PDE of ATZ loaded PLGA NPs.	
Figure 4.10	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	140
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X1) on PS of ATZ loaded PLGA NPs.	·
Figure 4.11	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	141
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X1) on PDE of ATZ loaded PLGA NPs.	
Figure 4.12	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	141
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X1) on PS of ATZ loaded PLGA NPs.	
Figure 4.13	Particle size distribution of ATZ loaded PLGA NPs	142
Figure 4.14	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	152
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X1) on PDE of ATZ loaded cPCL NPs.	
Figure 4.15	Contour plots showing effect of (a) X_1 vs X_2 (at -1 level of	152
,	X_3), (b) X_1 vs X_3 (at -1 level of X_2) and () X_2 vs X_3 (at -1 level	
	of X1) on PS of ATZ loaded cPCL NPs.	•
Figure 4.16	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	153
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X ₁) on PDE of ATZ loaded cPCL NPs.	•
Figure 4.17	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	153
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X1) on PS of ATZ loaded cPCL NPs.	
Figure 4.18	Particle size distribution of ATZ loaded cPCL NPs	154
Figure 4.19	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	163
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X1) on PDE of EXE loaded PLGA NPs.	
Figure 4.20	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	163
Pharmacy De	partment, The Maharaja Sayajirao University of Baroda	Page XI

•	LIST OF FIGURES	
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X ₁) on PS of EXE loaded PLGA NPs.	
Figure 4.21	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	165
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X1) on PDE of EXE loaded PLGA NPs.	
Figure 4.22	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	165
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X1) on PS of EXE loaded PLGA NPs.	
Figure 4.23	Particle size of EXE loaded PLGA NPs	175
Figure 4.24	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	175
	X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3 (at -1	
	level of X ₁) on PDE of EXE loaded cPCL NPs.	
Figure 4.25	Contour plots showing effect of (A) X_1 vs X_2 (at -1 level of	175
	X ₃), (B) X ₁ vs X ₃ (at -1 level of X ₂) and (C) X ₂ vs X ₃ (at -1	
	level of X_1) on PS of EXE loaded cPCL NPs.	
Figure 4.26	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	176
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X ₁) on PDE of EXE loaded cPCL NPs.	X
Figure 4.27	Response surface plot showing effect of (A) X_1 vs X_2 (at -1	176
	level of X_3), (B) X_1 vs X_3 (at -1 level of X_2) and (C) X_2 vs X_3	
	(at -1 level of X ₁) on PS of EXE loaded cPCL NPs.	
Figure 4.28	Particle size distribution of EXE loaded cPCL NPs	177
Figure 4.29	Zeta potential of ATZ loaded PLGA NPs	179
Figure 4.30	TEM image of ATZ loaded PLGA NPs	180
Figure 4.31	DSC thermogram of ATZ (A), ATZ loaded PLGA NPs (B),	181
	Sucrose (C), PLGA (D) and Physical mixture (E).	
Figure 4.32	Drug release profile of ATZ from plain drug suspension,	182
	PLGA NPs and pegylated PLGA NPs across semi-permeable	
	membrane using the dialysis bag diffusion technique in	
	phosphate buffered saline (pH 7.4). The values represent	
	mean ± S.D. of three batches.	
Figure 4.33	Effect of different storage conditions on drug content and	183
	PS of ATZ loaded PLGA NPs.	

******	LIST OF FIGURES	
Figure 4.34	Zeta potential of ATZ loaded cPCL NPs	184
Figure 4.35	TEM image of ATZ loaded cPCL NPs	185
Figure 4.36	DSC thermogram of ATZ (A), ATZ loaded cPCL NPs (B),	186
	Sucrose (C), cPCL (D) and Physical mixture (E).	
Figure 4.37	Drug release profile of ATZ from plain drug suspension,	187
	cPCL NPs and pegylated PCL NPs across semi-permeable	
	membrane using the dialysis bag diffusion technique in	
	phosphate buffered saline (pH 7.4). The values represent	•
	mean ± S.D. of three batches.	
Figure 4.38	Effect of different storage conditions on drug content and	188
	PS of ATZ loaded cPCL NPs.	
Figure 4.39	Zeta potential of EXE loaded PLGA NPs	189
Figure 4.40	TEM image of EXE loaded PLGA NPs	190
Figure 4.41	DSC thermogram of EXE loaded PLGA NPs (A), EXE (B),	191
	Sucrose (C), PLGA (D) and Physical mixture (E).	
Figure 4.42	Drug release profile of EXE from plain drug suspension,	192
	PLGA NPs and pegylated PLGA NPs across semi-permeable	
	membrane using the dialysis bag diffusion technique in	
	phosphate buffered saline (pH 7.4). The values represent	
	mean ± S.D. of three batches.	
Figure 4.43	Effect of different storage conditions on drug content and	193
	PS of ATZ loaded cPCL NPs.	
Figure 4.44	Zeta potential of EXE loaded cPCL NPs	194
Figure 4.45	TEM image of EXE loaded cPCL NPs	195
Figure 4.46	DSC thermogram of EXE loaded cPCL NPs (A), EXE (B),	196
	cPCL (C), Sucrose (D) and Physical mixture (E).	
Figure 4.47	Drug release profile of EXE from plain drug suspension,	197
	PCL NPs and pegylated PCL NPs across semi-permeable	
	membrane using the dialysis bag diffusion technique in	
	phosphate buffered saline (pH 7.4). The values represent	
	mean ± S.D. of three batches.	
Figure 4.48	Effect of different storage conditions on drug content and	198
	PS of ATZ loaded cPCL NPs.	

.

DEFECTION

LIST OF FIGURES Figure 5.1 Phagocytic uptake histograms of 6-Coumarin loaded NP 212 formulations by human acute monocytic leukemia cell line (THP1) after incubation for (a) 60, (b) 120 and (c) 240 min using FACS. Figure 5.2 Phagocytic uptake of 6-Coumarin loaded PLGA and 212 pegylated PLGA NPs using Human acute monocytic leukemia cell line, THP1 after incubation for 60, 120 and 240 min using FACS. Data presented as Mean ± SD, n=3 Drug release profile of ATZ from plain drug suspension, Figure 5.3 213 PLGA NPs and pegylated PLGA NPs across semi-permeable membrane using the dialysis bag diffusion technique in phosphate buffered saline (pH 7.4). The values represent mean \pm S.D. of three batches. Figure 5.4 TEM image of ATZ loaded pegylated PLGA ImmunoNPs. 214 Figure 5.5 Phagocytic uptake histograms of 6-Coumarin loaded NP 216 formulations by human acute monocytic leukemia cell line (THP1) after incubation for (a) 60, (b) 120 and (c) 240 min using FACS. Figure 5.6 Phagocytic uptake of 6-coumarin loaded PCL and pegylated 217 PCL NPs using Human acute monocytic leukemia cell line, THP-1 after incubation for 60, 120 and 240 min using FACS. Data presented as Mean \pm SD, n=3. Drug release profile of EXE from plain drug suspension, 218 Figure 5.7 PCL NPs and pegylated PCL NPs across semi-permeable membrane using the dialysis bag diffusion technique in phosphate buffered saline (pH 7.4). The values represent mean ± S.D. of three batches. Figure 5.8 TEM image of EXE loaded pegylated PCL ImmunoNPs. 219 Figure 6.1 Schematic presentation of principle for cell cycle analysis 224 using DNA intercalating florescence probe in flow cytometry. 228 Figure 6.2 Receptor expression analyses in cell lines. Figure 6.3 Quantitative intracellular uptake histograms of 6-Coumarin 229

Pharmacy Department, The Maharaja Sayajirao University of Baroda P

Page XIV

230

231

231

232

loaded PLGA NPs, pegylated PLGA NPs and ER antibody conjugated ImmunoNPs by MCF7 cells using flow cytometry.

Figure 6.4

Quantitative intracellular uptake of 6-Coumarin loaded PLGA NPs, pegylated PLGA NPs and ER antibody conjugated ImmunoNPs by MCF7 cells using flow cytometry. Uptake was calculated by measuring MFI and represented as mean \pm S.D. (n=3)

- Figure 6.5
- Quantitative intracellular uptake histograms of 6-Coumarin loaded PCL NPs, pegylated PCL NPs and ER antibody conjugated ImmunoNPs by MCF7 cells using flow cytometry.
- Figure 6.6 Quantitative intracellular uptake of 6-Coumarin loaded PCL NPs, pegylated PCL NPs and ER antibody conjugated ImmunoNPs by MCF7 cells using flow cytometry. Uptake was calculated by measuring MFI and represented as mean ± S.D. (n=3)
- Figure 6.7 Qualitative cellular uptake of PLGA NPs, pegylated PLGA and ImmunoNPs using fluorescent microscope. (A-C) ImmunoNPs; (D-F) pegylated PLGA NPs; (G-I) PLGA NPs; (I-L) 6-Coumarin dye solution; (B, E, H and K) nucleus stained using Hoechst 33342; (C, F, I and L) overlapping images.
- Figure 6.8 Qualitative cellular uptake of PCL NPs, pegylated PCL NPs 233 and ImmunoNPs using fluorescent microscope. (A-C) ImmunoNPs; (D-F) pegylated PCL NPs; (G-I) PCL NPs; (I-L) 6-Coumarin dye solution; (B, E, H and K) nucleus stained using Hoechst 33342; (C, F, I and L) overlapping images. Cytotoxicity of ATZ loaded formulations (solution, PLGA 235 Figure 6.9 NPs, PLGA PEG NPs, ImmunoNPs) and blank PLGA PEG NPs on MCF7 (A,B,C) and MDAMB231 (D,E,F) cells after exposure for 6 h (A, D), 24 h (B, E) and 48 h (C, F). Cytotoxicity of ATZ loaded formulations (solution, PCL NPs, Figure 6.10

236

Pharmacy Department, The Maharaja Sayajirao University of Baroda

Page XV

	LIST OF FIGURES	
	PCL PEG NPs, ImmunoNPs) and blank PCL PEG NPs on MCF7 (A,B,C) and MDAMB231 (D,E,F) cells after exposure for 6 h (A, D), 24 h (B, E) and 48 h (C, F).	
Figure 6.11	Cytotoxicity of EXE loaded formulations (solution, PLGA NPs, PLGA PEG NPs, ImmunoNPs) and blank PLGA PEG NPs on MCF7 (A,B,C) and MDAMB231 (D,E,F) cells after exposure for 6 h (A, D), 24 h (B, E) and 48 h (C, F).	238
Figure 6.12	Cytotoxicity of EXE loaded formulations (solution, PCL NPs, PCL PEG NPs, ImmunoNPs) and blank PCL PEG NPs on MCF7 (A,B,C) and MDAMB231 (D,E,F) cells after exposure for 6 h (A, D), 24 h (B, E) and 48 h (C, F).	239
Figure 6.13	Apoptosis estimation in MCF7 cell line after exposure of Control (PBS), A; ATZ Solution, B; ATZ PLGA NPs, C; ATZ PLGA-PEG NPs, D; and ATZ PLGA-PEG ImmunoNPs, E; for 24 and 48 h by Annexin V-FITC and PI staining using FACS technique. Necrotic cells FITC (-) PI (+), Late apoptosis FITC (+) PI (+), Live FITC (-) PI (-), Early apoptotis FITC (+) PI (-).	243
Figure 6.14	Apoptosis estimation in MCF7 cell line after exposure of Control (PBS), A; ATZ Solution, B; ATZ PCL NPs, C; ATZ PCL-PEG NPs, D; and ATZ PCL-PEG ImmunoNPs, E; for 24 and 48 h by Annexin V-FITC and PI staining using FACS technique. Necrotic cells FITC (-) PI (+), Late apoptosis FITC (+) PI (+), Live FITC (-) PI (-), Early apoptotis FITC (+) PI (-).	244
Figure 6.15	Apoptosis estimation in MCF7 cell line after exposure of Control (PBS), A; EXE Solution, B; EXE PLGA NPs, C; EXE PLGA-PEG NPs, D; and EXE PLGA-PEG ImmunoNPs, E; for 24 and 48 h by Annexin V-FITC and PI staining using FACS technique. Necrotic cells FITC (-) PI (+), Late apoptosis FITC (+) PI (+), Live FITC (-) PI (-), Early apoptotis FITC (+) PI (-).	245
Figure 6.16	Apoptosis estimation in MCF7 cell line after exposure of	246

	LIST OF FIGURES	
	Control (PBS), A; EXE Solution, B; EXE PCL NPs, C; EXE PCL- PEG NPs, D; and EXE PCL-PEG ImmunoNPs, E; for 24 and	
	technique. Necrotic cells FITC (-) PI (+), Late apoptosis	
	FITC (+) PI (+), Live FITC (-) PI (-), Early apoptotis FITC (+)	
	PI (-).	
Figure 6.17	Effect of ATZ, ATZ PLGA PEG NPs and ImmunoNPs exposure on cell cycle distribution in MCF7 cells using FACS as an estimation technique.	247
Figure 6.18	Effect of ATZ, ATZ PCL PEG NPs and ImmunoNPs exposure	248
	on cell cycle distribution in MCF7 cells using FACS as an estimation technique.	
Figure 6.19	Effect of EXE, EXE PLGA PEG NPs and ImmunoNPs	249
	exposure on cell cycle distribution in MCF7 cells using	
	FACS as an estimation technique.	
Figure 6.20	Effect of EXE, EXE PCL PEG NPs and ImmunoNPs exposure	250
	on cell cycle distribution in MCF7 cells using FACS as an	
	estimation technique.	
Figure 7.1	Biodistribution of ¹²⁵ I labeled Tyrosine and ER antibody	261
	conjugated PLGA NPs and the radioactivity was measured after 3	
	and 24 h post injection. The values represented as mean \pm SD.	
	Radioactivity is expressed as percent of administered dose per	
	grain of ussue of organ.	264
Figure 7.2	conjugated PCI NPs and the radioactivity was measured after 3	204
	and 24 h post injection. The values represented as mean $+$ SD	
	Radioactivity is expressed as percent of administered dose per	

.

. •

gram of tissue or organ.

·

,