LIST OF TABLES List of Tables Table 2.1 Available antibody-based cancer treatments. 51 Table 3.1 Calibration curve of ATZ by HPLC at 215 nm, Data presented 93 as Mean \pm SD, n=3. Table 3.2 Accuracy of ATZ measurement using mobile phase at 215 96 nm. Table 3.3 Precision of ATZ measurement using mobile phase at 215 96 nm, Data presented as Mean, n=3. Table 3.4 Calibration curve of EXE by HPLC at 247 nm, Data presented 98 as Mean \pm SD, n=3. Table 3.5 Accuracy of EXE measurement using mobile phase at 247 99 nm. Table 3.6 99 Precision of EXE measurement using mobile phase at 247 nm, Data presented as Mean, n=3. Table 4.1 Selection of organic phase in preliminary optimization of 132 **ATZ loaded PLGA NPs** Table 4.2 Selection of volume of organic solvent in preliminary 133 optimization of ATZ loaded PLGA NPs Selection of surfactant in preliminary optimization of ATZ Table 4.3 133 loaded PLGA NPs Table 4.4 Coded values of the formulation parameters of ATZ loaded 134 PLGA NPs Table 4.5 Layout of 3³ full factorial design for ATZ loaded PLGA NPs 135 Table 4.6 Model coefficients estimated by multiple regression analysis 136 for percentage drug entrapment of ATZ loaded PLGA NPs Table 4.7 Model coefficients estimated by multiple regression analysis 136 for particle size of ATZ loaded PLGA NPs Table 4.8 Analysis of Variance (ANOVA) of full and reduced models for 137 PDE of ATZ loaded PLGA NPs Table 4.9 Analysis of Variance (ANOVA) of full and reduced models for 137 PS of ATZ loaded PLGA NPs Table 4.10 Check point analysis, t test analysis and normalized error 143 determination

Pharmacy Department, The Maharaja Sayajirao University of Baroda Page XVIII

	LIST OF TABLES	
Table 4.11	Effect of cryoprotectants and their concentration on PS of lyophilized NPs after re-dispersion in distilled water	143
Table 4.12	Selection of organic phase in preliminary optimization of ATZ loaded cPCL NPs	144
Table 4.13	Selection of volume of organic solvent in preliminary optimization of ATZ loaded cPCL NPs	144
Table 4.14	Selection of surfactant in preliminary optimization of ATZ loaded cPCL NPs	145
Table 4.15	Coded values of the formulation parameters of ATZ loaded cPCL NPs	146
Table 4.16	Layout of 3 ³ full factorial design for ATZ loaded cPCL NPs	147
Table 4.17	Model coefficients estimated by multiple regression analysis for percentage drug entrapment of ATZ loaded cPCL NPs	148
Table 4.18	Model coefficients estimated by multiple regression analysis for particle size of ATZ loaded cPCL NPs	148
Table 4.19	Analysis of Variance (ANOVA) of full and reduced models for PDE of ATZ loaded cPCL NPs	149
Table 4.20	Analysis of Variance (ANOVA) of full and reduced models for PS of ATZ loaded cPCL NPs	149
Table 4.21	Check point analysis, t test analysis and normalized error determination	154
Table 4.22	Effect of cryoprotectants and their concentration on PS of lyophilized NPs after re-dispersion in distilled water	155
Table 4.23	Selection of organic phase in preliminary optimization of EXE loaded PLGA NPs	156
Table 4.24	Selection of surfactant phase in preliminary optimization of EXE loaded PLGA NPs	156
Table 4.25	Selection of surfactant concentration in preliminary optimization of EXE loaded PLGA NPs	157
Table 4.26	Coded values of the formulation parameters of EXE loaded PLGA NPs	157
Table 4.27	Box Behnken experimental design with measured responses for EXE loaded PLGA NPs	158
	·	

Pharmacy Department, The Maharaja Sayajirao University of Baroda

Table 4.28	Model coefficients estimated by multiple regression analysis	159
Table 4 20	Nodel coefficients estimated by multiple permanies enclusis	4 6 0
1 abie 4.29	for DS of EVE loaded DLCA NDs	159
Table 1 30	Analysis of Variance (ANOVA) of full and reduced models for	140
Table 4.50	PDE of EVE loaded PLCA NPs	100
Table 4 31	Analysis of Variance (ANOVA) of full and reduced models for	161
	PS of FYE loaded PLCA NPs	101
Table 4 32	Check point analysis t test analysis and normalized error	164
	determination	101
Table 4.33	Effect of cryoprotectants and their concentration on PS of	167
	lyophilized NPs after re-dispersion in distilled water	
Table 4.34	Selection of organic phase in preliminary optimization of	167
	EXE loaded cPCL NPs	
Table 4.35	Selection of surfactant in preliminary optimization of EXE	168
	loaded cPCL NPs	
Table 4.36	Selection of surfactant concentration in preliminary	168
	optimization of EXE loaded cPCL NPs	
Table 4.37	Coded values of the formulation parameters of EXE loaded	169
	cPCL NPs	
Table 4.38	Box Behnken experimental design with measured responses	169
	for EXE loaded cPCL NPs	
Table 4.39	Model coefficients estimated by multiple regression analysis	171
	for PDE of EXE loaded cPCL NPs	
Table 4.40	Model coefficients estimated by multiple regression analysis	171
	for PS of EXE loaded cPCL NPs	
Table 4.41	Analysis of Variance (ANOVA) of full and reduced models for	172
	PDE of EXE loaded cPCL NPs	
Table 4.42	Analysis of Variance (ANOVA) of full and reduced models for	172
	PS of EXE loaded cPCL NPs	
Table 4.43	Check point analysis, t test analysis and normalized error	178
	determination	حسر د
Table 4.44	Effect of cryoprotectants and their concentration on PS of	178

	LIST OF TABLES	
	lyophilized NPs after re-dispersion in distilled water	
Table 4.45	Stability data of ATZ loaded PLGA NPs stored at different	183
	temperature conditions	
Table 4.46	Stability data of ATZ loaded cPCL NPs stored at different	188
	temperature conditions	
Table 4.47	Stability data of EXE loaded PLGA NPs stored at different	193
	temperature conditions	
Table 4.48	Stability data of EXE loaded cPCL NPs stored at different	198
	temperature conditions	
Table 5.1	Physicochemical characterization of ATZ loaded PLGA NPs,	210
	pegylated PLGA NPs and ImmunoNPs	
Table 5.2	Physicochemical characterization of EXE loaded cPCL NPs,	215
	pegylated PCL NPs and ImmunoNPs	
Table 6.1	Intracellular uptake of 6-Coumarin loaded PLGA NPs,	230
	pegylated PLGA NPs and ER antibody conjugated	
	ImmunoNPs by MCF7 cells using flow cytometry. Uptake was	
	calculated by measuring MFI and represented as mean \pm S.D.	
	(n=3)	
Table 6.2	Intracellular uptake of 6-Coumarin loaded PCL NPs,	231
	pegylated PCL NPs and ER antibody conjugated ImmunoNPs	
	by MCF7 cells using flow cytometry. Uptake was calculated	
	by measuring MFI and represented as mean \pm S.D. (n=3)	
Table 6.3	Cytotoxicity of formulations loaded with ATZ and tested on	236
	MCF7 cell line	
Table 6.4	Cytotoxicity of formulations loaded with EXE and tested on	238
	MCF7 cell line	
Table 6.5	Apoptosis studies in MCF7 cell line after treatment of (a)	241
	Control (PBS), (b) ATZ solution, ATZ loaded (c) PLGA, (d)	
	PLGA-PEG NPs and (d) PLGA-PEG ImmunoNPs using FACS	
	technique.	
Table 6.6	Apoptosis studies in MCF7 cell line after treatment of (a)	241
	Control (PBS), (b) ATZ solution, ATZ loaded (c) PCL, (d) PCL-	
	PEG NPs and (d) PCL-PEG ImmunoNPs using FACS	

Pharmacy Department, The Maharaja Sayajirao University of Baroda

Number of

	LIST OF TABLES	
	technique.	
Table 6.7	Apoptosis studies in MCF7 cell line after treatment of (a)	242
	Control (PBS), (b) EXE solution, EXE loaded (c) PLGA, (d)	
	PLGA-PEG NPs and (d) PLGA-PEG ImmunoNPs using FACS	
	technique.	
Table 6.8	Apoptosis studies in MCF7 cell line after treatment of (a)	242
	Control (PBS), (b) EXE solution, EXE loaded (c) PCL, (d) PCL-	
	PEG NPs and (d) PCL-PEG ImmunoNPs using FACS	
	technique.	
Table 6.9	Cell cycle analysis in MCF7 cell line after treatment of (a)	248
	Control (PBS), (b) ATZ solution, ATZ loaded (c) PLGA-PEG	
	NPs and (d) PLGA-PEG ImmunoNPs by PI staining using	
	FACS technique.	
Table 6.10	Cell cycle analysis in MCF7 cell line after treatment of (a)	249
	Control (PBS), (b) ATZ solution, ATZ loaded (c) PCL-PEG NPs	
	and (d) PCL-PEG ImmunoNPs by PI staining using FACS	
	technique.	
Table 6.11	Cell cycle analysis in MCF7 cell line after treatment of (a)	250
	Control (PBS), (b) EXE solution, EXE loaded (c) PLGA-PEG	
	NPs and (d) PLGA-PEG ImmunoNPs by PI staining using	
	FACS technique.	
Table 6.12	Cell cycle analysis in MCF7 cell line after treatment of (a)	251
	Control (PBS), (b) EXE solution, EXE loaded (c) PCL-PEG NPs	
	and (d) PCL-PEG ImmunoNPs by PI staining using FACS	
	technique.	
Table 7.1	Approximate half life of various radioisotopes.	255
Table 7.2	Stability of iodinated complexes after 24 h.	259
Table 7.3	Biodistribution of ¹²⁵ I labeled Tyrosine and ER antibody	260
	conjugated PLGA NPs and the radioactivity was measured after 3	
	and 24 h post injection. The values represented as mean ± SD.	
	Radioactivity is expressed as percent of administered dose per	
Table 74	gram of tissue of organ.	261
	Different ratio between the tissue/organ of the labeled Tyrosifie	201

Pharmacy Department, The Maharaja Sayajirao University of Baroda

NATE OF STREET

..

	and ER antibody conjugated PLGA NPs.	
Table 7.5	Biodistribution of ¹²⁵ I labeled Tyrosine and ER antibody	262
	conjugated PCL NPs and the radioactivity was measured after 3	
	\sim and 24 h post injection. The values represented as mean ± SD.	
	Radioactivity is expressed as percent of administered dose per	
· · . • . ·	gram of tissue or organ.	
Table 7.6	Different ratio between the tissue/organ of ¹²⁵ I labeled Tyrosine	263
	and ER antibody conjugated PCL NPs.	

Pharmacy Department, The Maharaja Sayajirao University of Baroda

7000000

e.