Appendix B

Development Tools and Software programs

Appendix B: Development Tools and Software programs

This appendix gives list of Software development tools and Hardware development tools used for implementation of proposed techniques on FPGA and DSP.

Software Development Description	
Tools	
MATLAB 7.12.0.635	It is an interactive environment for algorithm development,
(R2011a)	data visualization, data analysis, and rapid prototyping.
LTE-A Link Level	It simulates test scenarios for analysis of
Simulator LTE-A_v1.0_r100	LTE-A Downlink Physical Layer
Xilinx ISE Design	It is a tool for HDL code design, synthesis
Suite 14.6	and analysis for FPGA Development.
ModelSim PE Student	It is HDL Simulator to simulate, verify and
Edition 10.2c	debug the HDL Code developed
CCStudio v3.3	It comprises of compilers for TI TMS320C6713
6713 DSK CCStudio	and tools for development and debugging
SiLabs IDE	It consists of Keil C compiler to develop
v4.2	C code for Wireless Control of FTE Robot .
Eclipse IDE Release 3.7.0	It is used to develop C code for Wireless module.
Pololu Wixel	To program Wireless module
Configuration Utility	with Wireless Serial Application.

Table B. 1: Software Development Tools with Description

Hardware tools	Description
XUP Atlys Spartan-6	For real-time implementation of throughput
Developemnt Kit	optimization techniques on Spartan-6 FPGA.
Spectrum Digital	For real-time implementation of throughput
TMS320C6713 DSK	optimization techniques on TMS320C6713 DSP.
SiLabs Microcontroller	It is used to develop and debug the C.
Development kit	code developed for FTE Robot
FTE Robot	Mobile Robot with various features
Pololu Wireless	To implement Wireless Control of
Wixel Modules	FTE Robot.

Table B. 2: Hardware Development Tools with Description

۱

Table B.3 gives the Fuzzy Inference files developed for FL Decision model for MIMO mode switching in LTE-A Downlink Physical Layer.

FIS Files	Description	
FIS_ decision.fis	FL Decision model for MIMO mode Switching	

Table B. 3: FIS Files

Table B.4 lists the MATLAB files developed for simulation of the proposed techniques.

MATLAB Files	Description
Softcomputing_for_MIMO_Systems	To open the main GUI for developed
	Soft-Computing Techniques
MIMO_WS	To open GUI MIMO Wireless Simulator
	and simulation of performance analysis
LTE_ sim_ test_ allmodes	To compare throughput of MIMO
	configuration in LTE-A Downlink Physical layer
LTE_ sim_ test_ ann_ simulink	To simulate and test the performance of ANN
	based MIMO channel Estimation techniques developed .
LTE_sim_test_flmodel	To simulate and test the performance of
	FL Decision model for MIMO mode switching
LTE_ channel_ estimator_ ann	To simulate and test the performance of
	MIMO Channel estimation based on ANN architectures
ANN_MIMO_Channel_Estimation	Simulation and Implementation FL Decision
	model for MIMO mode switching
FL_based_MIMO_switching	Simulation and Implementation of GRNN
	based MIMO Channel Estimation Technique

Table B. 4: MATLAB files with Description

Table B.5 lists the Simulink models developed for ANN based MIMO channel estimation and FL Decision model for MIMO mode switching.

Simulink Model Files	Description
fuzzy_switching_fixedpont_fil_new.mdl	For FIL simulation of FL
	Decision model
fuzzy_switching_fixedpont_pil.mdl	For PIL Simulation on DSP of
	FL Decision model
grnn_ channelest pil	PIL Simulation on DSP of GRNN
ł 	based MIMO Channel estimation

Table B. 5: MATLAB Simulink model files

Figure B.6 lists the user friendly GUI developed for performance analysis of MIMO Wireless Systems.

GUI Files	GUI Description
Softcomputing_for_MIMO_Systems.fig	Design and Implementation of Embedded
	Architecture Using Soft-Computing Techniques
	for Parametric Optimization of MIMO
	Wireless System
MIMO_WS.fig	MIMO Wireless Simulator
Capacity_analysis.fig	Capacity Analysis of MIMO Wireless Systems
sttc_performance.fig	Performance analysis of STTC code
	design and BER
vblast_ receiver_ compare.fig	Performance analysis of VBLAST
	Receiver techniques
diversity_compare_figure.fig	Performance analysis of Diversity
	Techniques for MIMO Wireless
ANN_MIMO_Channel_Estimation.fig	Throughput Analysis for ANN based
	MIMO Channel Estimation
FL_based_MIMO_switching.fig	Throughput Analysis for FL based
	MIMO mode switching

Table B. 6: GUI Figure files

ł