
Chapter 2

Background:
Robust Adaptive

Observer Estimators

11

Chapter 2
Background: Robust Adaptive Observer Estimators

A device that estimates or observes state variables of a system is called a state
observer. A state observer utilizes measurements of the system inputs and outputs and a
model of the system based on differential or difference equations.

Three main classical observers are: Luenberger observer, adaptive observer and
Kalman filter. For deterministic systems without random noise the Luenberger observer
and its extensions (Luenberger 1971; Bhattacharyya 1976; Fairman and Gupta 1980;
O'Reilley 1983) may be used for time-invariant systems with known parameters. The
equation for the Luenberger observer contains error correction terms, which ensures
stability and convergence of the observer even when the system being observed is
unstable. When the parameters of the system are unknown or time varying, an adaptive
observer may be used, which in addition to estimating the system states, estimates the
system parameters. Achieving this added requirement, while maintaining stability, has
resulted in the development of significantly complex observer structure. Because
prediction error can no longer be unambiguously associated with errors in estimating
state, a persistently exciting signal must be generate to insure the stability of the adaptive
observer. Even with this persistently exciting plant signal, the adaptive observer has
significant difficulty distinguishing between the effects of inaccurate parameter estimates
and measurement disturbances.

Disturbances can be either stochastic or deterministic. While stationary stochastic
input processes with a zero-mean Gaussian distribution can be effectively rejected by a
Kalman filter when accurate noise statistics are available, fixed non-stochastic
disturbances can only be rejected when the observer is augmented with a dynamic model
of the disturbance (Lin 1994). Time varying disturbances of either type that can not be
modeled as a linear system are difficult if not impossible to reject. Any ability to
compensate for either stochastic or deterministic disturbances is called disturbance
rejection.

Rejection of a single disturbance can be achieved in a straight forward manner
with a single observer when the system has known parameters. No known disturbance
rejection methodologies exist for adaptive observers. Even with a persistently exciting
plant input the adaptive observer has difficult distinguishing between the effect of
inaccurate parameter estimates and disturbances. Additional difficulties exist when the
adaptive observer is utilized in a closed loop regulator because the controller suppresses
the persistently exciting input signal needed for the convergence of parameter estimates.

The two main applications of observers are observer-based state feedback control
and fault detection. Both applications rely on accurate state estimation and suffer from
performance degradation when input disturbances corrupt the observer’s state estimates.

12

Classical observers are partitioned into deterministic and stochastic variants.
Deterministic observers require relatively noise free measurements of a system’s input
and output while stochastic observers can model additive measurement noise and process
noise and provide the linear least means square estimates of state

2.1 Deterministic
/

Deterministic observers for time invariant plants with known parameters are
commonly referred to as Luenberger Observers (Luenberger 1971) while observers for
plants with unknown parameters are known simply as adaptive observers.

• Luenberger Observer
The Luenberger observer estimates the stale variables of linear time-invariant systems
with known parameters. Consider a dynamic system of order n described by the
following equations

x = Ax + Bu

where u(t) are the p inputs andy(t) the m outputs. A, B and C are (n x n), (n xp) and (m x
n) matrices respectively. A Luenberger observer is described by

x = Ax + L(y — Cx) + Bu 2.2

where x is the estimates of the state x. If the system (A, C) is observable then the
constant L can be selected so that (A - LC) is asymptotically stable and x(t)
asymptotically approaches x(t). The L{y - Cx) term provides a provides a proportional
correction factor that insures stability of the observer even when the system (A, B) is
unstable. A schematic of the observer in this open-loop configuration is shown in Fig 2.1.

d.
m

U rO y
_xJ * plant ~

4------- observer 4----------------------------
A

X
Fig 2.1 Observer Schematics

13

• Robust PI Observer
The PI observer includes an additional term, the integral of the estimation error, v, in the
observer equation

x = Ax + L(y-y) + B(u + v) 23

v = Ki(Cx-y)
where Ki is a (n x n) matrix and is selected so the matrix R,

A-LC B
KiC 0

is asymptotically stable.
• Adaptive Observer

2,4

When the plant has unknown parameters, an observer must be adaptive and
capable of estimating the system parameters A, B and C. Parameters estimates are only
required for those parameters that are known. Estimation of these system parameters is
aided by associating the parameters with the measurements y(t) and u(t) (Carroll and
Lindorff 1973; Kudva and Narendra 1973). This is accomplished by first transforming
the system's unknown and known parameters to left companion observable canonical
form

: [-o|a]x+&m
2.5

y = cX=Xl

Where aT= [ai,a2,....an], bT= [bi.b2,....bn], cT = [1,0,0] and A = with T/i-i

representing an ((n -7) x (n -7)) identity matrix. Now only the n parameters in a(t) are
needed to specify A(t) and the n parameters in b(t) are needed to specify (B (t), C (t)).
Introduction of the constant k, a (n x 1) vector, allows further algebraic manipulation of
equations so that the system parameters a(t) and b(t) are associated with the
measurements y(t) and u(t) respectively:

x = Kx + [k — a{t)\y{t) + b(t)u(t)
2.6

y = cx = x,
k is selected so the matrix K = [~k| A] is asymptotically stable. A P adaptive observer
can now be described by

Jc = Kx + [fc - a(t)x1 (0 + b{t)u{t) + w, (t) + w2 (t) 2.7

where a(t)and b(t) are estimates of the parameters a(t) and b(t). w,(t)and w2 (t) are n-
dimensional signal that are required to insure stability of the observer[l]. The adaptation
laws for the parameters a(t) and b(t) are

28

14

a = T, (cx - y)wl

b-T2 {cx - y)w2

The constant matrices Fi and I2 are proportionality constants that affect the rate of
convergence of the parameter estimates.

Fig 2.2 Adaptive Observer schematic

Fig 2.2 shows a schematic of the adaptive observer implementation Equation 2.7 is
implemented by the Observer block, and Equation 2.8 is implemented by the Identifier
block.

2.2 Stochastic
Stochastic observers are commonly referred to as Kalman filters (Kalman 1960).

They structure is the same as simple linear observe with a gain optimized to solving the
on-line the Linear Least Mean Square (LLMS) estimation problem. The filter
dynamically calculates the prediction and estimation error covariance and at each filters
iteration and calculates the optimal observer gain When the plant is time invariant and
the random noise has a fixed variance the gain of the observer converges to a fixed value,
the observer can then be calculated off-line.

• Kalman Filter

Consider a dynamic system of order n described by the following discrete linear
system model

x (k+1) = Ax(k) + Bu(k) + v(k)
y(k) = Cx(k) + w (k) 2.9

15

where: \(k) and v/(k) are the process and measurement zero-mean Gaussian noise
sequence with Q(k) and R(k) covariance matrices, respectively. The observer equation
for the corresponding Kalman filter (Santina, Stubberud et al. 1994) is

**i* = Mk\k-x+Kk k -]+ *«(*) 2-10

where the optimal Kalman Gain Kk is given by

Kk=Pkl^Ck(CkPklk_,Ck+Rkrl 2.11

Kalman gain is defined in terms of the state prediction covariance matrix P^k_%. P^ :

V> =Mk-l)Pk_llk_1A(k-l) + Q(k~l) 2.12

which is given in terms of the state estimation error covariance at the previous filter
iteration, Pk-ipc-i

=[/-*(*-0C(*-l)]PMM 2.13

The estimation error covariance definition is recursive because of the Pk-iM term. If
however the noise covariances and the system do not vary with time a non-recursive
solution for K can be obtained by solving the following algebraic Riccatti equation for
the state prediction covariance matrix Pk]k-i

V, = CPt]l-,C+Q 2.14

The solution of this equation gives Kalman gain.

2.3 Observer-based control

State feedback controllers designed as Linear Quadratic Regulators (LQR)
have impressive robustness properties (Anderson and Moore 1989), including the
rejection of disturbances from unknown inputs, actuator faults and plant perturbations. A
LQR however requires access to system state variables. When state variables are
unavailable a state observer must be included in the feedback loop, but this drastically
reduces the robustness of state feedback control. The Linear Quadratic Gaussian/ Loop
Transfer Recovery (LQG/LTR) techniques were introduced to recover some of the
robustness properties of LQR, but these techniques often do not achieve full loop transfer
recovery, and do not have disturbance rejection properties of the original LQR.

The PI observer, can be used to enhance the LTR procedure; the integral action of
the PI observer allows additional freedom in adjusting the controller. A PI observer based
controller can be designed with frequency and time recovery properties.

16

An equivalent loop transfer recovery procedure, however, does not exist for the adaptive
observer-based controller. Therefore, LTR techniques can not be used to recover the
disturbance rejection properties of the original LQR. Instead, the adaptive control
community has developed Model Reference Adaptive Control (MRAC) for linear
systems with unknown parameters (Narendra and Lin 1980; Kaufmann, Bar-Kana et al.
1994). MRAC does not use state information in the controller implementation, but rather
relies only on measurement of the input and output of the system and a separate reference
model to adapt the control gain. While MRAC can adapt to known disturbances
(Kaufmann, Bar-Kana et al. 1994) it does not provide estimate of the disturbance or
states.

2.4 Model Uncertainty and Robust Control

A key reason for using feedback is to reduce the effects of uncertainty which may appear
in different forms as disturbances or as other imperfections in the models used to design
the feedback law. Model uncertainty and robustness have been a central theme in the
development of the field of automatic control.

A central problem in the early development of automatic control was to construct
feedback amplifiers whose properties remain constant in spite of variations in supply
voltage and component variations. This problem was the key for the telephone industry
that emerged in the 1920s. The problem was solved by [1]. We quote from his paper:

“ .. by building an amplifier whose gain is deliberately made say 40 decibels higher than
necessary (10 000 fold excess on energy basis) and then feeding the output back on the
input in such a way as to throw away excess gain, it has been found possible to effect
extraordinarily improvement in constancy of amplification and freedom from
nonlinearity.”

Blacks invention had a tremendous impact and it inspired much theoretical work. This
was required both for understanding and for development of design method. A novel
approach to stability was developed in [2], fundamental limitations were explored by [3]
who also developed methods for designing feedback amplifiers, see [4]. A systematic
approach to design controllers that were robust to gain variations were also developed by
Bode.

The work on feedback amplifiers became a central part of the theory of servomechanisms
that appeared in the 1940s, [5], [6]. Systems were then described using transfer functions
or frequency responses. It was very natural to capture uncertainty in terms of deviations
of the frequency responses. A number of measures such as amplitude and phase margins
and maximum sensitivities were also introduced to describe robustness. Design tools such
as the Bode diagram introduced to design feedback amplifiers also found good use in
design of servomechanisms. Bode’s work on robust design was generalized to deal with
arbitrary variations in the process by Horowitz [7]. The design techniques used were
largely graphical.

17

The state-space theory that appeared in the 1960s represented significant paradigm shift.
Systems were now described using differential equations. There was a very vigorous
development that gave new insight, new concepts [8], [9] and new design methods.
Control design problems were formulated as optimization problems which gave effective
design methods, [10], [11], and [12]. Control of linear systems with Gaussian
disturbances and quadratic criteria, the LQG problem, was particularly attractive because
it admitted analytical solutions [13], [14], and [15]. The design computations were also
improved because it was possible to capitalize on advances in numerical linear algebra
and efficient software. The controller obtained from LQG theory also had a very
interesting structure. It was a composition of a Kalman filter and a state feedback.

The state-space theory became the predominant approach, [16]. Safonov and Athans [17]
showed that the phase margin is at least SOM and the amplitude margin is infinite for an
LQG problem where all state variables are measured.

The paper [18] represented a paradigm shift which brought robustness to the forefront. It
started a new development that led to the so called HL theory. The idea was to develop
systematic design methods that were guaranteed to give stable closed loop systems for
systems with model uncertainty. The original work was based on frequency responses
and interpolation theory which led to compensators of high order. Game theory is another
approach to H» theoiy. The tL theory is well described in books [19], [20] and [21].

Major advances in robust design were made in the book [22] where the HL control
problem was regarded as a loop shaping problem. This gave effective design methods and
it also reestablished the links with classical control. This line of research has been
continued by [23] who has obtained definite results relating modeling errors and robust
control.

2.4.1 Robust Adaptive Control of Nonafflne Nonlinear Plants

Most adaptive control systems assume the nonlinear plant: 1) is affine with respect to the
input; 2) has accessible states [24], [25]; 3) is feedback linearizable; 4) has a known well
defined relative degree [25]; and 5) satisfies the minimum phase condition ([26, pp. 11,
12]; [27, p. 16]). The first two assumptions are used to simplify the analysis, while the
third imposes well known restrictive conditions ([3, pp. 39-42], [27, p. 16], [28, p. 438-
439]) to transform the plant dynamics from nonlinear to linear via a change of
coordinates and feedback. The last two assumptions are needed to guarantee closed-loop
stability when an analytic output or state feedback controller is used for exact (or
asymptotic) tracking of an arbitrary reference signal [29], [30].

Unlike affine plants, there are relatively few adaptive control techniques for nonaffine
plants. As a result control system designers are often forced to approximate plant
dynamics with linear models (such as ARMA models [25]) or make mathematical
approximations to solve control-design equations derived from nonaffine system
equations [24]. In either case, an assumption of “sufficiently small input magnitudes” is

18

made in addition to some of the assumptions cited above. Recently, situations have arisen
where required inputs surpass the small magnitude restriction and one or more of the
assumptions listed above [24]. Such situations often arise when new and more
sophisticated systems are built and/or higher performance is needed from existing plants.
If states are not accessible and inputs surpass the standard magnitude restriction, affine
approximate input-output models such as NARMA-L1 and NARMA-L2 models, can be
used to identify nonaffine plants in adaptive control schemes [24]. Though NARMA-L1
and NARMA-L2 models (and adaptive control systems derived from them) allow larger
inputs than ARMA models, die allowable inputs may not be big enough for some
applications. Furthermore, the maximum permissible input magnitude is not easily
determined.

An affine approximate model, where input magnitude restrictions are replaced by a
restriction on input changes [31], [32], was developed by linearizing the NARMA[25],
[33], [34] model with respect to the last input instead of a stationary point as is typically
done. Such a model is suitable for applications that require large inputs. Using this
model, we developed a tracking control law for nonaffine plants models. This control law
works for discrete nonaffine plants including: 1) minimum phase; 2) nonminimum phase;
3) feedback linearizable; and 4) nonfeedback linearizable plants that require large input
magnitudes. Unlike most controllers, the control signal of this controller is not an analytic
function of the plant output and the control-signal changes are restricted to small values.
Restricting the control signal changes to small values limits the controller to applications
where the plant output is required to track slowly varying reference signals.

The NARMA model may be approximated online with the affine model of [30], [31] and
realized with a neural network. Convergence of the neural network weights is guaranteed
by a deadzone approach to prevent instability due to modeling errors. Closed-loop
stability is proved by showing all signals are bounded and neural network weights
converge to finite values. A simulation example is provided for illustration.

2.5 Ho,; Preview Control

Much work has focused on the H» feedback control problem, since the landmark state-
space solution was presented [35]. A controller that optimizes the H„ norm was found to
exist if and only if the stabilizing solutions of two algebraic Riccati equations satisfy
three inequality conditions (see [35]). Although it is generally accepted that feedforward
control can greatly enhance performance, most work in the HOT control focuses on the use
of single-degree-of-freedom (SDOF), i.e., feedback only, controller design. In several
earlier works, [36], [37], [38], and [39], the two-degree of freedom (2DOF) H« control
problems were investigated. Most of these formulations often increase the order of the
controller structure, which is a major drawback.

It has been shown that preview control can improve performance when future
information about the desired output or exogenous disturbance is available. The LQ
based preview control formulation is well established. In an early derivation, [39], the
optimal preview control signal was found to consist of three control terms: one feedback

19

and two feed forward terms. These two feed forward terms consist of the preview signal
inside the preview window (a convolution term) and outside the preview window (a
“kick” term). If the kick term is neglected [40], results into a simpler preview control
algorithm. These LQ based preview control algorithms have been applied to a wide range
of applications [41], [42]).

Preview control algorithms based on the HU norm have gained increased interest
recently. [43] and [44], a derivation is proposed based on game theories. The Riccati
Equation is then modified accordingly and the feed forward control law is assumed
unchanged from the LQ-preview control formulation. [45] describes HU preview control
formulation based on stored disturbances on finite-dimensional operations. The stored
disturbances describes the perturbations of the preview control systems and allows for the
derivation of the control law. A Hamiltonian based formulation [46] developed to allow
for the simultaneous design of feedback, feed forward and preview control components.
The approach of [46] may be generalized to a framework suitable for the continuous and
discrete-time, LQ, HU tracking and regulation problems.

2.5.1 EU: Optimal Preview Controller

It is doubtless that H® optimization is one of the most important fruits of
automatic control theory. The method for deriving the (sub-) optimal solution to the
problem is well known as far as causal control scheme is concerned. However, there are
some systems that we can measure the future value of exogenous disturbances, such as
active noise reduction systems. If we consider H® optimization problem for those
systems, we can obtain better controller than the cases when the future value cannot be
measured. We consider this problem for continuous- time systems in this note.

There are two approaches proposed in existing literatures. One approach is
studied by Shaked et al. [51], [52]. They use game theory and a saddle point, as is done
for causal I L optimization problem by Green et al, [57]. The other approach is proposed
by Kojima et al. [47]-[50]. They reformulated the problem in infinite-dimensional
setting, and obtain the optimal solution by using functional-analytic technique.

These two approaches are essentially based on state-space method. [16] is based
on transfer function method, as in [53]. Bilateral Laplace transformation [56] plays a key
role in our argument. In continuous-time system theory, preview (or delay) element is
essentially infinite-dimensional system. However, by our method, Hoo-optimal preview
problem is reduced to a causal and finite-dimensional HU optimization problem, whose
solution is well known. No infinite-dimensional technique is required in this note.

Furthermore, the relationship between preview horizon and optimal H«>
performance is discussed in this note. Obviously, the optimal value of Hoo norm is a
nonincreasing function of preview horizon. However, it does not necessarily decrease
monotonously. As pointed out in [47], there are some cases that the optimal H„ norm
reaches its minimum value for some finite preview horizon.

20

2.5.2 Stochastic H2/EL Control With State-Dependent Noise

Mixed H2/HL control problem for deterministic systems has become a popular research

topic in recent years. It has attracted much attention and has been widely applied to
various fields; [64]-[69] and the references therein. In recent years, some researchers
have turned their attentions to the stochastic IL control problem. For example, on the
systems governed by It’s stochastic differential equation, a class of very general linear
fL stochastic problem with state- and control- dependent noise was studied by [70], and
a stochastic bounded real lemma was derived, which has important applications in robust
Ho, stochastic filtering (see, e.g., [71]). Reference [72] treated with the robust control in
the presence of stochastic uncertainty. [73] is on H2 and EL-control (H2 and EL filtering)
for Markov jump linear systems, and [74] on EL control (filtering) for discrete-time
stochastic systems.

EL control is an important robust control design for eliminating efficiently the effect of

disturbance v (t), and has been widely employed to deal with robust performance control
problem with uncertain disturbance. Obviously, there may be more than one solution to

Ho. control problem with a desired robustness. In engineering practice, we want the

control u(t) not only to eliminate the effect of disturbance, but also to minimize a desired
control performance when the worst case disturbance v*(t, x)is imposed. Since the H2

performance is more appealing for control engineering, it naturally leads to the mixed

H2/EE0 control problem [64], [67], [68]. If the solution (u(t, x), v*(t, x)) of the above

design exists, then we say the H2/Hco problem has a pair of solutions (u (t, x), v (t, x)).

In deterministic EL theory, EL norm is defined by a norm of the rational transfer matrix,
which cannot be directly generalized to nonlinear or stochastic systems [70], [75].
However, from the view of time-domain, a norm of the transfer function is the same as L2

- induced norm of the input-output operator with initial state zero, this important feature

makes it possible to develop the nonlinear or stochastic EL control theory. In [70], the

stochastic H,„ norm is given by a norm of the perturbation operator L, which measures the

worst case effect that the stochastic disturbance may have on the controlled output z.

One of the important approaches solving H2/H„ problems belongs to the Nash game

theory [64], [76] and [77]. By constructing two performances Ji(u, v)and Lfu, v)

associated with H„ robustness and H2 optimization, respectively, the control can be
converted into finding the Nash equilibria point (u*, v*), such that [64]

21

Jityyy') <
In [64], by using a Nash game approach, the mixed H3/K„ control problem of

deterministic linear systems was solved, and the necessary and sufficient conditions were
presented in terms of the existence of solutions of a cross-coupled Riccati equations.
Because the results of [64], on the one hand, are very elegant in theory; and on the other
hand, the cross-coupled Riccati equations may be solved by a standard numerical
integration, it has become a popular paper in this area. The method used in [64] has been

generalized to the nonlinear [78] and output feedback H2/H„ control [79].

Up to now, few results have been obtained on the stochastic H2/H„ problem with state- or

control-dependent noise. [63]extends the results of [44] on the deterministic H2/H„

control problem to the stochastic systems governed by Ito differential equations with
state-dependent noise

In order to develop a parallel stochastic Hg/IL theory to that of [64], two essential

difficulties arise, i.e., how to extend [70, Lemma 4] and [67, Lemma 2.2] to stochastic
systems. By utilizing a comparison theorem on the algebraic Riccati equation (ARE) [71]
stochastic bounded real lemma [70], and the standard theory of differential equations,
[63] overcome these two difficulties, and obtain two more general results. Based on

which the infinite and finite horizon H2/EL stochastic state feedback control problems

may be solved, respectively. When the state variables cannot be measured directly, how
to design a stochastic controller based on the available information, is very valuable in

practice, and has been studied in stochastic [70] and multiobjective H2/EL control [79].

By solving a two-step convex optimization problem, an observer-based suboptimal

H2/Hoo dynamic output feedback control design is developed for the stochastic systems

with uncertain disturbance.

2.6 BILINEAR SYSTEMS

A number of practical systems such as biochemical process nuclear fission
processes, physiological processes, population of species, thermal control processes,
complex power systems, automobile, air craft etc. exist in bilinear and linear time
varying nature. The aim of the section is to develop a design procedure to design
optimum reduced order observer-estimator for bilinear-cum-linear time varying systems.

22

The problem of estimating the state variables of a dynamic system, given observations of
the output, variables, is of fundamental importance in the design of an optimal control
system. If one considers the class of linear systems, then there are two approaches
available in the literature. If the output variables can be measured exactly and if there are
no other stochastic disturbances acting on the system, then one can use a Luenberger
Observer. On the other hand, if all the output variables are corrupted by additive white
noise, then one can use a Kalman filter for state estimation.

There are many cases in which some of the output variables are noise free while others
are noisy. One can argue that no measurement is exactly noise free. On the other hand,
there are many engineering systems in which the accuracy of measuring one variable is
much greater than the accuracy of measuring some others. In such problems the
measurement covariance matrix is almost singular and it can lead to ill-conditioned
matrices and numerical problems. Thus, one can attempt to model the very accurate
measurements as being deterministic.

Bilinear systems [80] [81] are special class of nonlinear systems as they are linear
separately with respect to state and Control variables, but not jointly i.e. products of state
and control variables appear in the system equations. The Continuous time SISO Bilinear
System (BLS) are characterized by the following dynamic equations.

. X(t) = A0 X(t) + A1 U(t) X(t) + B U(t); X(0)=Xo(2.15)
Y(t) = C X(t) (2.16)

Where: the state vector X, input vector U, output vector Y, the System matrices A0, A1,
B and C are of dimensions n, 1,1, (n x n), (n x n), (n x 1) and (1 x n)3 respectively.

Bilinear systems can also be defined to be time varying or time invariant according
to how A0, A1, B, C depend on time t. They are called:

• homogeneous in state if B=0
• homogeneous in the input if A0 = 0 and
• strictly bilinear if A0 = B = 0

The input controls the state evolution not only additively by means of term B
and U(t) but also multiplicatively be means of term A1 U(t) X(t). Hence control for the
BLS is more effective than for linear systems. With respect to optimization BLS offer
better performance. The multiplicative control allows the modeling of those systems
whose dynamics depend at least approximately in a linear fashion on a control law.
Dynamics of general AC machine is represented by a quadratic system.

2.6.1 Observer Design
Consider the continuous time, bilinear time invariant system given by

X(t) = A°X(t) + X J=i pA1Uj(t) X(t) + B U(t)
Y(t) = C X(t)

(2.17)
(2.18)

23

Where: the dimensions of state vector X, input U, output Y, system matrices A0, AJ, B
and C are n, p, m, (n x n), (n x n), (n x p) and (m x n) respectively System can also be
rewritten as a linear time varying system (LTVS) in the form,

X(t) = [A°+ X J=i PAJ Uj(t)] X(t) + B U(t) ...2.19 .

= A(t)X(t) + BU(t)(2.20)

where: A(t) = A0 + A1 Ui(t) + A2 U2(t) + + Ap Up(t)
= A0 + S J=ip AJ Uj(t)(2.21)

Let the q-dimensional observer be of the form

Z(t) = D Z(t) + F(t) Y(t) + T(t) B U(t)(2.22)
with r-dimensional output

W(t) = G(t) Z(t) + H(t) Y(t)(2.23)
Where: Dimensions of the observer state Z, observer matrices D, F, T, G and H
are q, (q x q), (q x m), (q x n), (r x q) and (r x m) respectively.

For the design of observer, various approaches such as: Funahansi [S2-83], Generalized
Matrix Inverse [84], Hara’s and are made.

We will use Generalized Matrix Inverse method subject to the conditions:

• System must be completely observable.
• D is a stable matrix
• T(t) is differentiable matrix i.e. non singular for all t and T!(t) must exist.
• F(t) C = [T(t) + T(t) A(t) - D T(t)]
• Consistency condition, [T(t)+T(t) A(t)-D T(t)] (I-C’C)=0 must be

satisfied.
• G(t) T(t) + H(t) C = K(t), where K(t) is the feedback gain matrix.

Discrete linear time varying system (LTVS) in the form,

X(k+1) = [A°+A'Ui(k) + A2U2(k) + + ApUp(k)] X(t) + BU(k)

= A(k) X(k) + B U(k)(2.24)
where A(k) = [AO + I J=ip AJ Uj(k)]

Since U(k) is function of time, A(k) is function of time itself and its derivatives are
bounded. Assuming that observer is of the form:

Z(k+1) = D Z(k) + F(k) Y(k) + T(k+1) B U(k) (2.25)

can be designed using measurement on input and output such that Z(k) represents a
linear transformation of states as Z(k) = T(k) X(k), provided:

24

• The system is completely observable. |T(k+l) ;C |T is invertible.
• The consistency condition [T(k+1) A(k) - D T(k)][I - C'1 C] = 0 must be

satisfied
. F(k) = [T(k+1) A(k) - D T(k)]C'

Where C'1 is the generalized inverse of matrix C.

It can be proved that if the above conditions are satisfied Z (k) -> T (k) X (k) as k -> oo.
It is possible to design a reduced order observer of dimension q=n-m can be designed
using following stepwise procedure:

1. Check system observability.

2. Choose a constant [(n-m) x (n-m)] matrix D, whose eigenvalues are arbitrary,
uncommon with A (k) and be with in the unit circle of stability.

3. Let T (k+1) be [(n-m) x n] matrix, whose elements are unspecified function.

4. Matrix T(k) must satisfy the consistency condition
[T(k+l)A(k)-DT(k)][I - C’C] = 0

5. Assuming C has a full rank i.e. system has no redundant outputs [rank c = m < n]
Compute

F(k) = [T(k+1)A(k)-DT(k)]C-1

6. Use unspecified element of D and T(k) to satisfy the condition
det | T(k+1): C |T * 0 for all k > 0

7. The estimated state X (k+1) is obtained using the relation:
{ [T(k+1) C]T [[Z(k+1) Y(k+1)]T}->

2.6.2 C Implementation

This section describes case studies of optimal reduced order observer design for second order,
third order systems with single/multiple outputs.

2.6.2.1 Optimum reduced order observer-estimator for Second Order
LTYS with single output

Consider a second order system with single output as,

X(k+1) = «i(k) 1
_ 0 a2(k) J X(k) + U(k

Y(k+1) = [1 0] X(k). With initial condition XT(0) = [1 1] and U„(k) = I .The
performance index: J30= 1/2 [10 X2(30)] + 1/2 d [X2(k) + U2(k)]
Design an optimum reduced order observer for two different sets of eigen
values observer system matrix D. Assume sinusoidal variation of a(k). Study for

25

the exponential variation of a(k).
Let us assume: ai(k) = - 0.2 - 0.10 Sin (k II /6)

a2(k) = - 0.3 - 0.15 Sin (k II /6) ... for sinusoidal Variation
and

a,(k) = -0.2-0.10 exp (-0.1k)
a2(k) = - 0.3 - 0.15 exp (-0.2 k)... for exponential Variation

/* Sinusoidal variation of alpha if A=1, B=0 */
/* Exponential variation of alpha if A=0, B=1 */
#include <stdio.h>
#inelude<conio.h>
#include <math.h>
#define pi 3.14
EDLE*fdl;
void main()

{ charfilel[8];
int A,B,k;
float Dll,DEL,alphal[30],alpha2[30],Pll[30],P12[30],P21[30],

P22[30],K11 [30],K12[30],F11 [30],G11 [30] Jil 1 [30], Z1 [30],
WN1 [30],XI [30],X2[30],X1 E[30],X2E[30],N[30],L[30],0[30]
,Z1A[30],Z10[30],X10E[30],X20E[30];

clrscrO;
printf("enter o/p file name\n");
scanf("%s",filel);
clrscrQ;
printf(''Enter the values of A,B,D1 l\n");
scanf("%d %d %f',&A,&B,&Dll);
for(k=0;k<=30;k++)

{ alphal[k]=A*(-0.2-0.010*sin(k*pi/6))+B*(-0.2-0.1*exp(-0.1
*k));

alpha2[k]=A*(-0.3-0.015*sin(k*pi/4))+B *(-0.3-0.2*exp(-0.2
*k));

}
/* Determination of optimal control vector */

Pll[30]=10.0;
P12[30]=0.0;
P21[30]=0.0;
P22[30]=10.0;

for(k=29;k>=0;k--)
{DEL=1+P22[k+1];
K1 l[k]=(alphal[k3*P21[k+l])/DEL;
K12[k]=(P21 [k+1]+alpha2[k]*P22[k+1])/DEL;
PI 1 [k]=l+alphal [k]*alphal [k]*Pl 1 [k+l]-alphal[k]*P21[k+l]

*K11 [k];
P12[k]=alphal [k]*(Pl 1 [k+l]+alpha2[k]*P12[k+l]-P21 [k+1]*

26

K12[k]);
P21 [k]=alphal [k]*(Pl 1 [k+l]+alpha2[k]*P21 [k+l])-(P21 [k+1]

+alpha2[k]*P22[k+1])*K11 [k];
P22[k]=l+Pll[k+l]+alpha2[k]*P12[k+l]+alpha2[k]*(P21[k+l]

+alpha2[k]*P22[k+l])-(P21[k+l]+alpha2[k]*P22[k+l])
*K12[k];

}
i* Determination of observer parameters */

for(k=l ;k<=30;k++)
{ FI 1 [k]=-alphal[k]*alpha2[k]+Dl l*alphal[k]+Dl l*alpha2[k-l]

-D11*D11;
Gll[k]=K12[k];
HI 1 [k]=Kl 1 [k]-K12[k]*(Dl l-alpha2[k-l]);

}
/* Estimation of states with noiseless observer output */

Zl[l]=0.3;
Xl[l]=1.0;
X2[l]=1.0;
for(k= 1 ;k<=29;k++)

{ XI [k+1]=alphal [k]*Xl [k]+X2[k];
X2[k+l]=-Kll[k]*Xl[k]+(alpha2[k]-K12[k])*X2[k]+l;
Z1 [k+l]=Dll*Zl [k]+Fl 1 [k]*Xl[k]-Kl 1 [k]*Xl [k]-K12[k]*X2[k]

+1;
XlE[k+l]=Xl[k+l];
X2E[k+l]=Zl[k+l]+(alpha2[k]-Dll)*Xl[k+l];

}
/* Estimation of states when output of observer is corrupted by noise */

O[l]=1.0;
ZlO[l]=1.0;
for(k=2;k<=30;k++)

{ N[k]=0.2*sin(k*pi/12)+0.1 *cos(k*pi/9);
L[k]=Dll*Dll*0[k-l];
0[k]=L[k]/(l+2*L[k]*Gl 1 [k]*Gl 1 [k]);
Z1 A[k]=Dl l*Z10[k-l]+Fl 1 [k-l]*Xl [k-lj-Kll [k-l]*Xl [k-1]

-K12[k-l]*X2[k-l]+l;
WN1 [k]=Gl 1 [k]*Zl [k]+Hl 1 [k]*Xl [k]+N[k];
Z10[k]=ZlA[k]+2*0[k]*Gl 1 [k] *(WN1 [k]-Gl 1 [k]*ZlA[k]-Hl 1 [k]

*Xl[k]);
X10E[k]=Xl[k];
X20E[k]=Z10[k]+(alpha2[k-l]-Dl 1)*X1 [k];

}
/* Output results and Creation of results files */

fdl=fopen(filel,"w");//output will be printed in out.cpp file//
if(A==l && B==0)

{ printf(" Sinusoidal variation of alpha\n");
fprintf(fdl,"Sinusoidal variation of alphaVn");

27

printf("alphal [k] =-0.2-0.010*sin(k*pi/6)\n");
fprintf(fdl,"alphal[k] =-0,2-0.010*sin(k*pi/6)\n");
printf("alpha2[k] =-0.3-0.015*sin(k*pi/4)\n");
fprintf(fdl ,"alpha2[k] =-0.3-0.015*sin(k*pi/4)\n");

}
else

{ printf("Exponential variation of alpha\n");
' fprintf(fdl,"Exponential variation of alpha\n");

printf("alphal [k] =-0.2-0. l*exp(-0.1*k)\n");
fprintf(fdl ,”alphal [k] =-0.2-0.1 *exp(-0.1 *k)\n");
printf("alpha2[k] =-0.3-0.2*exp(-0.2*k)\n");
fprintf(fd 1, "alpha2[k] =-0.3-0.2*exp(-0.2*k)\n");

}
fpprintf("A=%d B=%d Dll=%.lAn",A,B,Dll);
fJ)rintf(fdl,"A=%d B=%d Dll=%.lf\n",A,B,Dll);

printf("-- \n");
fprintf(fdl,"--- An");
printf("Kll[k] K12[k] X2[k] X2E[k] X20E[k] \n");
fprintf(fdl ,"K11 [k] K12[k] X2[k] X2E[k] X20E[k] \n");
printf("-- An");
fprintf(fdl,"--- An");
printf("\n");
fprintf(fdl,"\n");

for(k=2 ;k<=30;k++)
{
printf("%.4f %.4f %.4f %.4f %.4f \n" ,K11 [k], K12[k], X2[k],X2E[k],

X20E[k]);
fprintf(fdl," %.4f %.4f %.4f%.4f %.4f\n ”,Kll[k], K12[k], X2[k],

X2E[k],X20E[k]);
}

printf("-- \n");
fprintf(fd 1-- \n");
getch();
fclose(fdl);

}

2.6.1.2 Optimum reduced order observer-estimator for Third Order
LTVS with single output

/* Sinusoidal variation of alpha if A=1, B=0 */
/* Exponential variation of alpha if A=0 ,B=d */

#include <stdio.h>
#include<conio.h>
#include<math.h>
#define pi 3.14
FILE *fdl;

28

void main ()
{int A,B,k;
char file 1 [9];
float D11,D22,DEL[30],DEL1 [30],DEL2[30],DEL3[30],alphal[30],

alpha2[30],alpha3[30],Pll[30],P12[30],P13[30],P21[30],
P22[30],P23[30],P31 [30],P32[30],P33[30],K11[30],K12[30],
K13[30],F11 [30],F21[30],G11 [30],G12[30],H11 [30],'T11 [30],
T12[30],T21[30],T22[30],Z1[30],Z2[30],WN1[30],WN2[30],
X1[30],X2[30],X3[30],X1E[30],X2E[30],X3E[30],N[30],
LI 1 [30],L12[30],L21 [30],L22[30],OA11 [30],OA12[30],
OA21[30],OA22[30],011[30],012[30],021[30],022[30],
ZlA[30],Z2A[30],Z10[30],Z^O[30]rX10E[30],X20E[30],
X3OE[30];

clrscrQ;
printf("enter o/p file name\n");
scanf("%s",filel);
clrscrQ;
printf("enter the values of A,B,D1 l,D22\n");

scanf(”%d %d %f %f’,&A,&B,&Dll,&D22);
for(k=0;k<=30;k++)

{ alphal [k]=A*(-0.2~0.010*sin(k*pi/6))+B*(-0.2-0.1
*exp(-0.1 *k));

alpha2[k]=A*(-0.3-0.015*sin(k*pi/4))+B*(-0.3-0.2
*exp(-0.2*k));

alpha3[k]=A*(-0.4-0.012*sin(k*pi/5))H-B*(-0.4-0.3
*exp(-0.3*k));

}

/* Determination of optimal control vector */
Pll[30]=10.0;
P12[30]=0.0;
P13[30]=0.0;
P21[30]=0.0;
P22[30]=10.0;
P23[30]=0.0;
P31[30]=0.0;
P32[30]=0.0;
P33[30]=10.0;
for(k=29;k>=0;k-)

{ DEL[k]=1+P33 [k+1];
K11 [k]=-P33 [k+1]/DEL[k];
K12[k]=(alphal [k]*P31 [k+l]-P33[k+l])/DEL[k];
K13 [k]=(alpha2[k] *P32[k+ l]-alpha3 [k]*P33 [k+1])/DEL[k];
PI l[k]=l+(l+Kl 1 [k])*P33[k+l];
P12[k]=-alphal[k]*P31[k+l]+(l+K12[k])*P33[k+l];

P13[k]=-alpha2[k]*P32[k+l]+(alpha3[k]+K13[k])*P33[k+l];
P21 [k]=-alphal [k]*P13[k+l]+P33[k+l]-Kl 1 [k]*(alphal [k]

*P31 [k+1]-P33 [k+1]);
P22[k]=l+alphal [k]*(alphal [kJ*Pl 1 [k+l]-P13[k+l]-P31 [k+1])

+P33[k+1]-Kl 2[k]*(alphal [k]*P31 [k+l]-P33[k+l]);
P23[k]=alphal [k]*(a]pha2[k]*P12[k+l]-alpha3 [k]*P13[k+l])

-alpha2 [k] *P32 [k+1]+alpha3 [k] *P33 [k+1]-K 13 [k]
*(alphal [k]*P31[k'+l]-P33[k+l]);

P31 [k]=-alpha2[k]*P23 [k+1]+alpha3 [k] *P33 [k+1]-K 11 [k]
*(alpha2[k]*P32[k+l]-alpha3[k]*P33[k+l]);

P32 [k]=alpha2 [k] * (alpha 1 [k]*P21 [k+l]-P23[k+l])-alpha3[k]
*(alphal [k]*P31 [k+1 J-P33[k+1])-K12[k]*(alpha2[k]
*P32[k+l]-a]pha3[k]*P33[k+l]);

P33[k]=l+alpha2[k]*(alpha2[k]*P22[k+l]-alpha3[k]*P23[k+l])
-alpha3[k]*(alpha2[k]*P32[k+l]-alpha3[k]*P33[k+l])
-K13[k]*(alpha2[k]*P32[k+l]-alpha3[k]*P33[k+l]);

}
/* Determination of observer parameters */

for(k=2;k<=30;k++)
{ TJ1 [k]=(l+Dll*(alpha3[k-2]+Dll)/alpha2[k-2])/alphal[k-1];
T12[k]=(alpha3[k-l]+Dll)/alpha2[k-l];
T21 [k]=(1 +D22*(alpha3 [k-2]+D22)/alpha2[k-2])/alphal [k-1];
T22[k]=(alpha3 fk-1]+D22)/alpha2[k-l];
FI 1 [k]=-l-Dl 1 *T11 [kj;
F21[k]=-l-D22*T21[k];
G11 [k]=(Kl 2[k]-K13[k]*T22[k])/(T12[k]-T22[k]);
G12 [k]=Kl 3 [k]-G 11 [k];
HI 1 [k]=Kl 1 [k]-Gl 1 [k]*Tl 1 [k]-G12[k]*T21 [k];

}

/* Estimation of states with noiseless observer output */
Zl[2]=0.3;
Z2[2]=0.2;
Xl[2]=1.0;
X2[2]=1.0;
X3[2]=1.0;
for(k=2;k<=29;k++)

{ X1 [k+1]=alpha 1 [k]*X2[k];
X2[k+1]=alpha2[k]*X3 [k];
X3 [k+1]=-(1+K11 [k])*Xl [k]-(1+K12[k])*X2[k]-(alpha3 [k]

+K13 [k])*X3 [k]+1;
Z1 [k+1]=D11 *Z1 [k]+(Fl 1 [k]-Kl 1 [k])*Xl [k]-K12[k]*X2[k]

-K13[k]*X3[k]+l;
Z2[k+1]=D22*Z2[k]+(F21 [k]~Kl 1 [k])*Xl [k]-K12[k]*X2[k]

-K13[k]*X3[k]+l;
DELI [k]=T12[k+l]-T22[k+l];

XlE[k+l]=Xl[k+lJ;
X2E[k+1]=(Z1 [k+l]-Z2[k+1]+(T21 [k+l]-Tl 1 [k+1])*X1 [k+1])

/DELlfk];
X3E[k+l]=(-T22[k+l]*Zl[k+l]+T12[k+l]*Z2[k+l]+(Tll[k+l]

*T22[k+l]-T12[k+l]*T21[k+l])*Xl[k+l])/DELl[k];
}

/* Estimation of states with noisy observer output */
Oll[2]=1.0;
O12[2]=1.0;
O21[2]=1.0;
O22[2]=1.0;
ZlO[2]=1.0;
Z2O[2]=1.0;
for(k=3;k<=30,k++)

{ N[k]=0.2*sin(k*pi/12)+0.1 *cos(k*pi/9);
LI 1 [k]=011 [k-l]*Dl 1 *D11;
L12[k]=012[k-1]*D11*D22;
L21 [k]=021[k-l]*Dl 1*D22;
L22 [k]=022[k-1] *D22*D22;
DEL2[k]^(l+2*Gl l[k]*Gl 1(Y]*L1 l[k]+2*Gl l[k]*G12[k]*L12[k])

*(1+2*G11 [k]*G12[k]*L21[k]+2*G12[k]*Gi2[k]*L22[k])
-4*(Gll[k]*G12[k]*Lll[k]+G12[k]*G12[k]*L12[k])
*(G11 [k]*Gl 1 [k]*L21 [k]+Gl 1 [k]*Gl 2[k]*L22[k]));

OA11 [k]=(l+2*G11 [k]*G12[k]* L21 [k]+2*G12[k]*G12[k]*L22[k])
/DEL2[k];

OA12[k]=-2*(Gll[k]*G12[k]*Lll[k]+G12[k]*G12[k]!i:L12[k])
/DEL2[k];

OA21[k]=-2*(Gl 1 [k]*Gl 1 [k]*L21 [k]+Gl 1 [k]*G12[k]*L12[k])
/DEL2[k];

OA22[k]=(l42*Gl l[k]*Gl 1 [k]*Ll 1 [k]+2*Gll[k]*G12[k]*L12[k])
/DEL2[k];

Ol 1 [k]=OAl 1 [k]*Ll 1 [k]+OA12[k]*L21 [k];
012[k]=0Al 1 [k] * L12 fk]+0 A12 [k] * L22 [k];
021 [k]=OA21 [kJ^Ll 1 [k]+OA22[k]*L21 [k];
022[k]=OA21[k]*L12[k]+OA22[k]*L22[k];
WN1 [k]=Gl 1 [k]*Zl [k]+G12[k]*Z2[k]+Hl 1 [k]*Xl [k]+N[k];
ZlAPc]=Dll*Z10[k-l]+(Fl l[k-l]-Kl l[k-l])*Xl[k-l]-K12[k-l]

*X2tk-l]-K13[k-l]*X3[k-l]+l;
Z2A[k]=D22*Z20[k-l]+(F21[k-l]-Kll[k-l])*Xl[k-l]-K12[k-l]

*X2[k-l]
-K13[k-l]*X3[k-l]+l;

Z10[k]=Zl A[k]+2*(011 [k]*Gl 1 [k]+012[k]*G12[k])*(WNl [k]
-G11 [k] *Z 1 A[k]-G12 [k] *Z2 A [k]-111 1 [k]*Xl [k]);

Z20[k]=Z2A[k]+2*(021 [k]*Gl 1 [k]+022[k]*G]2[k])*(WNl [k]
-G11 [k] *Z 1A [k]-G12 [k] *Z2 A [k] -H11 [k]*Xl [k]);

31

DEL3 [k]=(T 12 [k]-T22 [k]);
X10E[k]=Xl[k];
X20E[k]=(Z10[k]-Z20[k]+(T21 [k]-Tl l[k])*Xl [k])/(DEL3[k]);
X30E[k]=(-T22[k]*Z10[k]+T12[k]*Z20[k]+(Tl 1 [k]*T22[k]

-T12[k]*T21 [k])*Xl [k])/(DEL3[k]);
1

/* Output results and Creation of results files */

fdl=fopen(filel,"w’’);/*Output will be printed in outcpp file*/
if(A==l && B==0)

{ printf("Sinusoidal variation of alpha \n");
fprintf(fdl,"Sinusoidal variation of alpha \n");
printf("alphal [k]=-0.2-0.010*sin(k*pi/6) \n");
fprintf(fdl ,”alphal [k]=-0.2-0.010*sin(k*pi/6) \n");
printf("alpha2[k]=-0.3-0.015*sin(k*pi/4)\n");
lprintf(fdl,"alpha2[k]=-0.3-0.015*sin(k*pi/4)\n");
printf("alpha3 [k]=-0.4-0.012*sin(k*pi/5) \n");
fprintf(fdl,"alpha3[k]=-0.4-0.012*sin(k*pi/5) \n");

}
else

{ printf("Exponential variation of alpha \n");
fprintf(fdl,"Exponential variation of alpha \n”);
printf("alphal [k]=-0.2-0.1*exp(-0.1*k) \n”);
fprintf(fdl ,"alphal [kJ=-0.2-0.1 *exp(-0.1 *k) \n");
printf("alpha2[k]=-0.3-0.2*exp(-0.2*k)\n”);
fprintf(fdl,"alpha2[k]=-0.3-0.2*exp(-0.2*k)\n");
printf("alpha3 [k]=-0.4-0.3*exp(-0.3*k) \n");
fprintf(fd 1 ,"alpha3 [k]=-0.4-0.3*exp(-0.3*k) \n");

}
printf("A=%d B=%d Dll=%.lf D22=%.lf\n\n", A,B,D11,D22);
fprintf(fd 1A=%d B=%d Dll=%.lf D22=%.lf\n\n”,A,B,D11

,D22);
printf("--- \n");
fprintf(fdl,”--- An");

printf("k XI[k] X2[k] X3[k] XlE[k] X2E[k] X3E[k] X01E[k] X20E[k] X30E[k]\n");
fprintf(fdl,"k XI[k] X2[k] X3[kJ XlE[k] X2E[k] X3E[k] X01E[k] X20E[k] X30E[k]\n");
printf{"--- An\n”);
fprintf(fdl,"-- An\n");

for(k=3 ;k<=30;k++)
{

printf(”%d %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f %.4f
\n",k,Xl[k]rX2[k],X3[k]^XlEik],X2EDc],X3E[k],X10E[k]rX20E[k]^X30E[k]);

fprintf(fdl,"%d %.3f %.4f %.4f %.3f %.4f %.4f %.3f %.4f %.4f
\n",k,Xl[k],X2[k],X3[k],XlE[k),X2E[k3,X3Etk],X10E[k],X20E[k),X30E[k]);
}

printf("--- \n");

32

fprintf(fdl,"---An");
getch();
fclose(fdl);
}

2.6.23 Optimum reduced order observer-estimator for Third Order
LTVS with Two outputs

Consider a Third order system with Two outputs as,

X(k+1) = a,(k) 1
__ 0 a2(k)__

X(k) + 0
__1

U(k

Y(k+1) = [1 0] X(k). With initial condition XT(0) = [1 1] and Uco(k) = I .The
performance index: J30= 1/2 [10 X2(30» + 1/2 d [X2(k) + U2(k)]
Design an optimum reduced order observer for two different sets of eigen
values observer system matrix D. Assume sinusoidal variation of a(k). Study for
the exponential variation of a(k).
Let us assume: aj(k) = - 0.2 - 0.10 Sin (k II /6)

et2(k) = - 0.3 - 0.15 Sin (k FI /6)... for sinusoidal Variation
and

ai(k) = -0.2-0.10 exp (-0.1 k)
«2(k) = - 0.3 - 0.15 exp (-0.2 k) ... for exponential Variation

/* Sinusoidal variation of alpha if A=1, B=0 */
/* Exponential variation of alpha if A=0, B=1 */

#include <stdio.h>
#include<conio.h>
#include <math.h>
#define pi 3.14
FILE *fdl;
void main()
{ char filel[9];
int A,B,k;
float D11 ,DEL,alphal [30],alpha2[30],alpha3[30],Pl 1[30),P12[3G]

,P13[30],P21 [30],P22[30],P23[30],P31 [30],P32[30],P33[30]
,K11[30],K12[30],K13[30],F11[30],F21[30],G11[30],H11[30]
,H 12[30] ,Z 1 [30] ,WN 1 [3 0] ,X 1 [30] ,X2[30] ,X3 [3 0] ,X 1 E[30],
X2E[30],X3E[30],N[30],L[30],0[30],Z1A[30],Z10[30],
X10E[30],X20E[30],X30E[30];

clrscrQ;
printf("enter o/p filenarneXn");
scanf("%s",filel);
clrscrO;
printf("enter the values of A,B,Dll\n");
scanf("%d %d %f’,&A,&B,&Dl 1);

for(k=0;k<=30;k++)
{ alphal[k]=A*(-0.2-0.010*sin(k*pi/6))+B*(-0.2-0.1*exp(-0.1

*k));
alpha2[k]=A*(-0.3-0.015*sin(k*pi/4))+B*(-0.3-0.2*exp(-0.2

*k));
alpha3[k]=A*(~0.4-0.012*sin(k*pi/5))+B*(-0.4-0.3*exp(-0.3

*k));
}

/* Determination of optimal control vector */
Pll[30]=10.0;
P12[30]=0.0;
P13[30]=0.0;
P21[30]=0.0;
P22[30]=10.0;
P23[30]=0.0;
P31[30]=0.0;
P32[30]=0.0;
P33[30]=10.0;
for(k=29;k>=0;k—)

{ DEL= 1+P33 [k+1];
K11 [k]=-P33[k+l]/DEL;
K12[k]=(alphal [k] *P31 [k+1]-P3 3 [k+1])/DEL;
K13[k]=(P31[k+l]+alpha2[k]*P32[k+l]-alpha3[k]*P33[k+l])/

DEL;
Pll[k]=l+(l+Kll[k])*P33[k+l];
P12[k]=-alphal[k]*P31[k+l]+(l+K12[k])*P33[k+l];
P13[k]=-P31[k+l]-alpha2[k]*P32[k+l]+(alpha3[k]+K13[k])

*P33[k+l];
P21 [k]=-alphal [k]*P13[k+l]+P33[k+l]-Kl 1 [k]*(alphal [k]

*P31 [k+1]-P33 [k+1]);
P22[k]=l+alphal [k]*(alphal [k]*Pl 1 [k+1]-Pl 3 [k+1]-P31 [k+1])

+P33[k+l]-K12[k]*(alphal[k]*P31[k+l]-P33[k+l]);
P23[k]=alphal [k]*(Pl 1 [k+l]+alpha2[k]*P12[k+l]-alpha3[k]

*P13[k+l])-P31[k+l]-alpha2[k]*P32[k+l]+alpha3[k]
P33[k+l]-K13[k](alphal [k]*P31[k+l]-P33[k+l]);

P31 [k] =-P 13 [k+1]-alpha2 [k] *P23 [k+1]+alpha3 [k] *P33 [k+1]
-K1 l[k]*(P31 [k+l]+alpha2[k]*P32[k+l]-alpha3[k]
*P33[k+l]);

P32[k]=alphal [k]*Pl 1 [k+l]-P13[k+l]+alpha2[k]*(alphal [k]
P21[k+1]-P23[k+l])-alpha3 [k] (alpha 1 [k]*P31 [k+1]
-P33[k+l])-K12[k]*(P31[k+l]+alpha2[k]*P32[k+l]
-alpha3[k]*P33[k+l]);

P33[k]=l+Pll[k+l]+alpha2[k]*P12[k+l]-alpha3[k]*P13[k+l]
+alpha2[k]*(P21 [k+1]+alpha2[k]*P22[k+l]-alpha3 [k]
*P23 [k+1])-alpha3 [k] *(P31 [k+1]+alpha2 [k] *P32 [k+1]
-alpha3 [k]*P33 [k+1])-K13 [k]*(P31 [k+1]+alpha2[k]

*P32[k+l]-alpha3[k]*P33[k+l]);
}

/* Determination of observer parameter */
for(k=l ;k<=30;k++)

{ Fll[k]=-l-DU;
F21 [k]=alphal[k]-l-Dl 1*(D1 l+alpha3[k-l]-l)/alpha2[k-l];
Gll[k]=K13[k];
HI 1 [k]=Kl 1 [k]-Kl 3 [k];
H12[k]=K12[k]-K13[k]*(Dll+alpha2[k-l]-l)/alpha2[k];

}
/* Estimation of states with noiseless observer output */

Zl[l]=0.3;
Xl[l]=1.0;
X2[l]=1.0;
X3[l]=1.0;
for(k=l ;k<=29;k++)

{ XI [k+l]=alphal[k]*X2[k]+X3[k];
X2[k+l]=aIpha2[k]*X3[k];
X3[k+1]=-(1+Kl 1 [k])*Xl [k]-(1+K12[k])*X2[k]-(alpha3 [k]

+K13[k])*X3[k]+l;
Z1 [k+l]=Dl 1*Z1 [k]+(Fll[k]-Kl 1 [k])*Xl [k]+(F21[k]-K12[k])

*X2[k]-K13[k]*X3[k]+l;
XlE[k+l]=Xl [k+1];
X2E[k+l]=X2[k+l];
X3E[k+1]=Z1 [k+1]-X 1 [k+1]-((D 11 +alpha3 [k]-l)/alpha2[k])

*X2[k+l];
}

/* Estimation of states with noisy observer output */
O[l]=1.0;
ZlO[l]=1.0;
for(k=2 ;k<=30;k++)

{ N[k]=0.2*sin(k*pi/12)+0.1 *cos(k*pi/9);
L[k]=D 11 *D11 *0 [k-1];
0[k]=L[k]/(l+2*L[k]*Gl 1 [k]*Gl 1 [k]);
ZlA[k]=Dll*Z10[k-l]+(Fl 1 [k-l]-Kl 1 [k-lJ^Xl [k-l]+(F21 [k-1]

-K12[k-l])*X2[k-l]-K13[k-l]*X3[k-l]+l;
WN1 [k]=Gl 1 [k]*Zl [k]+Hl 1 [k]*Xl [k]+H12[k]*X2[k]+N[k];
Z10[k]=ZlA[k]+2*0[k]*Gl 1 [k]*(WNl[k]-Gl 1 [k]*ZlA[k]-Hl l[k]

*X1 [k]-H12[k]*X2[k]);
X10E[k]=Xl[k];
X20E[k]=X2[k];
X30E[k]=Zl 0[k]-X 1 [k]-((D 1 l+alpha3[k-l]-l)/alpha2[k-l])'

*X2[k];
}

/* Output results and Creation of results files */
fdl=fopen(filel,"w");/*Output will be stored in out.cpp file*/

35

if(A==l && B—0)
{ printf(" Sinusoidal variation of alpha \n");
fprintf(fdl," Sinusoidal variation of alpha \n");
printf("alphal[k]=-0.2-0.010*sin(k*pi/6)\n");
fprintf(fdl,"alphal[k]=-0.2-0.010*sin(k*pi/6)\n");
printf(”alpha2[k]=-0.3-0.015*sin(k*pi/4)\n");
fprintf(fdl,"alpha2[k]=-0.3-0.015*sin(k*pi/4)\n");
printf("alpha3[k]=-0.4-0.012*sin(k*pi/5)\n");
fprintf(fdl,"alpha3[k]=-0.4-0.012*sin(k*pi/5)\n");

}
else

{ printf("Exponential variation of alpha \n");
fprintf(fdl /'Exponential variation of alpha \n’’);
printf("alphal [k]=-0.2-0.1 *exp(-0.1 *k) \n");
fprintf(fdl,"alphal [k]=-0.2-0.1 *exp(-0.1 *k) \n");
printf("alpha2[k]=-0.3-0.2*exp(-0.2*k)\n");
fprintf(fdl ,"alpha2[k]=-0.3-0.2*exp(-0.2*k) \n");
printf("alpha3[k]=-0.4-0.3*exp(~0.3*k) \n");
fprintf(fdl,"aIpha3[k]=-0.4-0.3*exp(-0.3*k) \n");

}
printf(”A=%d B=%d Dll=%.lf \n'',A,B,Dll);
fprintfffd 1," A=%d B=%d Dll=%.lf\ri",A3J)n);
printf("—---\n");
fprintf(fdl,"-- -Nn");
printf("KXl[k] X2[k] X3[k] XlE[k] X2E[k] X3E[k] X10E[k] X20E[k] X30E[k]\n");
fprintf(fdl,"K XI[k] X2[k] X3[k] XlE[k] X2E[k] X3E[k] X10E[k] X20E[k] X30E[k]\n");
printff--- An");
fprintf(fdl,"--- An");
printf("\n");
fprintf(fdl,"\n");

for(k=2;k<=30;k++)
{
printf("%d %.3f %.3f %.4f %.3f %.3f %.4f %.3f %.3f %.4f \n"

,k,Xllk],X2[k],X3[k|,XlE[k],X2E[k],X3E[k],X10E[k],X20E[k],X30E[k]);
fprintf(fdl,"%d %.3f %.3f %.4f %.3f %.3f %.4f %.3f %.3f %.4f\n”

,k,Xl[k],X2[k],X3[k],XlE[k],X2E[k],X3E[k],X10E[k],X20E|kj,X30E[k|);
}

printf("-- An");
fprintf(fdl,”-- An");
getcheQ;
fclose(fdl);
}

2.7 Software Development Tools

36

MATLAB/SIMULINK [85-86] is a software package for high performance
numerical computation and visualization. It provides an interactive environment with
hundreds of built-in functions for technical computation, graphics, and animation Best of
all, it also provides easy extensibility with its own high-level programming language.
2.7.1 MATLAB

The basic building block of MATLAB [85] is the matrix. The fundamental data­
type is the array. Vectors, scalars, real matrices and complex matrices are all
automatically handled as special cases of the basic data-type. Also it never requires
declaring the dimensions of a matrix. MATLAB simply loves matrices and matrix
operations. The built-in functions are optimized for vector operations. Consequently,
vectorized commands or codes run much faster in MATLAB than in C. MATLAB
engines incorporate the LAPACK and BLAS libraries, embedding the state of the art in
software for matrix computation.

In university environments, it is the standard instructional tool for introductory and
advanced courses in mathematics, engineering, and science. In industry, MATLAB is the
tool of choice for high-productivity research, development, and analysis. Fig 2.3 depicts
MATLAB desktop containing tools (graphical user interfaces) for managing files,
variables, and applications associated with MATLAB.

Get View or change Enter Click to move Close
hejp. Current MATLAB window outside Window,

directory. functions. of desktop.

Fie tdt view Web Window

D c£

,-t 4, MATLAB

* 4^ Toolboxes

31 mil Ink

'4) "ZJ Block sets

Using Toolbox Path Cache. Type "help toolbox pt

To get started, select "HATLAB Help" from the He

[a,b,c,d]*tC2s8(nua. ***
33_h-ak3y3 (a,b,c, d) .
wl-[2.Se-S l.e-2 1;
w2-[]; »3«[1 O O;0 f
TSS-augtf (ss h,»l ,t
[s»_f,ss_cl]-hint (T7
mm=400

den-[1 2 400]
[a,b,c,dl-tf2ss(mm.
Lo,b, c,d]*4l233 (mm.

L h r ill ,V

1-^ Start

D:\work •Qfio *
HATLAB Tiles File Type

^paperS.a H-file *
^progiaal. fig FTG-flle
[jpiogiaal.B H-fiW
4^. untitled. fig riG-niW

[nb untitled, m H-flie \
4^. untltledl - fig no-fiie \ 1
llfr untxtledl■a H-flie \

>

Drag tmSseparator bar
to resize the
windows.

Fig 2.3 MATLAB Desktop

Expand to view
documentation, demos &
tools for your product.

37

2.7.1.1 MATLAB Implementation
This section describes a sample MATLAB code for optimal reduced order observer
design
% Sample MATLAB code
k=2:l:30;
alphal(k)=-0.2-.010*sin(k*pi/6);
alpha2(k)=-0.3-.015*sin(k*pi/4);
Pll(31)=10; P12(31)=0; P21(31)=0;
P22(31)=10;
D1 l=input('Enter the Value of D11 =');
A=input('Enter the Value of A =');
B=input('Enter the Value of B =');

k—30:-l: 1;
for i=30:-l:l

DEL(i)= 1 +P22(i+1);
end
DEL(31)=1;
K11 (k)=(alphal(k).*P21(k+l))./DEL(k);
K12(k)=P21 (k+1)+alpha2(k). *P22(k+1)./DEL(k);
PI 1 (k)=l+alphal (k) *alphal(k) *P11 (k+1)-alphal (k).*P21 (k+1) *K11 (k);
P12(k)=alphal(k).*Pll(k+l)-alpha2(k).*P12(k+l)-P21(k+l).*K12(k);
P21 (k)=alphal (k).*(Pl 1 (k+1)+alpha2(k).*P21 (k+1))-
(P21(k+l)+alpha2(k).*P22(k+l)).*Kll(k);
P22(k)= 1+P11 (k+1)+alpha2(k).*Pl 2(k+1) + alpha2 (k) *
(P21 (k+1))+alpha2(k),*P22(k+1)-(P21 (k+1) + alpha2(k) .*P22(k+])).:i:K12(k);

k=2:l:30;
FIl(k)=-alphal(k).*alpha2(k)+Dll*alphal(k)+Dl 1* alpha2(k-l)-Dl 1*D11;
G11=K12;
HI 1 (k)=Kl l(k)-K12(k).*(Dl l-alpha2(k-l»;
Zl=zeros(l,30);
Xl=zeros(L30);
X2=zeros(l,30);
Zl(2)=0.3;
Xl(2)=l;
X2(2)=l;

k=2:l:30;
XI(k+l)=alphal(k) *X1 (k)+X2(k);
X2(k+1)=-Kl 1 (k). *X 1 (k)+(alpha2(k)-Kl 2(k) .*X2(k))+1;
Zl(k+1)=D1 l*Zl(k)+Fl l(k).*Xl(k)-Kl l(k) *Xl(k)-K12(k) *X2(k)+l;
X1 E(k+1)=X 1 (k+1);
X2E(k+1)=Z1 (k+1)+(alpha2(k)-D 11). *X 1 (k+1);

38

O=zeros(l,30);
Z10=zeros(l,30);

0(2)=1;
Z10(2)=l;

k=3:l 30;
N(k)=0.2*sin(k*pi/12)+0.1 *cos(k*pi/9);
L(k)=Dl 1 *D11 *0(k-l);
0(k)=L(k). /(1 +2* L(k). *G 1 l(k).*Gl 1 (k));
Z1 A(k)=D 11 *Z 10(k-1)+F 11 (k -1). *X 1 (k-1)-K 11 (k-1). *X 1 (k -1)-K 12(k-1) *X2(k-1)+1;
WN1 (k)=G 11 (k). *Z 1 (k)+H 11 (k). *X 1 (k)+N(k);
Z10(k)=Zl A(k)+2*0(k).*Gl l(k).*(WNl(k)-Gl 1 (k).*Zl A(k)-Hl l(k).*Xl(k));
X10E(k)=Xl(k);
X20E(k)=Z 10(k)+(alpha2(k-1)-Dl 1) *X1 (k);

plot(k,X2(k),'y')
hold on
plot(k,X2E(k),'r')
plot(k,X20E(k),'b')
grid on
title('Sinusoidal variation of Alpha, D11=0.5')
xlabel('—> k')
ylabel('—> X2')
print -dpsc

Fig 2.4 shows typical observer estimate for D11 = 0.5, A = 1 and B = 0.

Fig 2.4 Observer-Estimator Output

39

2.7.2 SIMULINK

Simulink [86] is a software package for modeling, simulating, and analyzing

dynamic systems. It supports linear and nonlinear systems, modeled in continuous time,

sampled time, or a hybrid of the two. Systems can also be multirate, i.e., have different

parts that are sampled or updated at different rates. Simulink is built on top of MATLAB.

As an extension of MATLAB, Simulink adds many features specific to dynamic systems

while retaining all of generl purpose functionality of MATLAB. So using Simulink we

can direct access the wide range of MATLAB based tools for generating, analyzing, and

optimizing system implemented in Simulink

Most of the natural systems and man made systems like the speed control system

of car, a signal processing filter enabling telephone communication, can be considered as

dynamic systems - that is a system which is characterized by change. Dynamic systems

can often be viewed as comprising many elementary dynamic systems and can be

considered as an object or block Fig 2.5 which is excited by external inputs and produces

response i.e. outputs.

inputs

u(t)
► System

outputs
—►-
y(t)

Fig 2.5 Block Diagram Representation of Dynamic System

A Simulink block diagram model is a graphical representation of a mathematical

model of a dynamic system. A mathematical model of a dynamic system is described by

a set of equations. The mathematical equations described by a block diagram model are

known as algebraic, differential, and/or difference equations. At any given instant of

time, these equations may be viewed as relationships between the system's output

response, the system's inputs at that time, the current state of the system, the system

parameters, and time. The state of the system may be thought of as a numerical

representation of the dynamically changing configuration of the system.

40

Simulink provides a graphical editor that allows us to create and connect instances

of block types selected from libraries of block types via a library browser. Simulink

provides libraries of blocks representing elementary systems that can be used as building

blocks. The blocks supplied with Simulink are called built-in blocks. We can also create

our own block types and use the Simulink editor to create instances of them in a diagram.

Blocks that we create are called custom blocks.

Simulink's primary design goal is to enable the modeling, analysis, and

implementation of dynamics systems. Simulink provides many high-level abstractions

which facilitate the design of such systems. In addition, Simulink has an open interface

which allows easy customization (e.g., the addition of new blocks) and interoperability

with other tools. Simulink provides a high-degree of interoperability with MathWorks

provided products and other 3rd party products, further simplifying the task of working

with dynamic systems.

matlabN

and
Toolboxes

Design
aid

Analysis J

Simulink
Stateflow, SimMechanics, Blocksets

and other
Modeling and Simulation Tods

"t—\

f Real-Time Workshop \
I and other J
V Code Generation and Real-Time Took j

Real-Time System “Target
WothWoiks provides sevetol tcipts
or you tnn treote your own forget

Fig 2.6 Facilities : SIMULINK

41

Fig 2.6 illustrates facilities and tools provided by the MathWorks that may help
in the design, analysis, and implementation of dynamic systems. Simulink provides a
richest of modeling capabilities for dynamic systems, which can further be extended by
domain specific products such as Stateflow for event driven systems, SimMechanics for
modeling physical systems, and many Blocksets such as the DSP Blockset for signal
processing. If we are modeling a system that will be deployed outside of the simulation
environment on, we can use the Real-Time Workshop and related products to
automatically generate highly optimized code for the block diagram.

2.8 Robust Optimal Observer

The section describes design, development and implementation of optimal and Robust
observer using SIMULINK.

2.8.1 Optimal observer

Consider the system model is given by,
x(t) = A x(t) + B u(t) + w(t)

y(t) = C x(t) + v(t) ----------2.26
where, w(t) = nxl plant noise.

v(t) = mxl measurement noise.

The Observer equation will be,

x(t) = A x(t) + B u(t) + G [y(t) - C x(t)] ----------2.27
x. • xX = X - X

= A x(t) + B u(t) + w(t) - A x(t) - B u(t) - G[y - Cx(t)]

= A [x(t) - x(t)] + w(t) - G [C x(t) + v(t) - C x(t)]

= A [x(t) - x(t)] - GC [x(t)- x(t)] + w(t) - Gv(t)

/. x = (A - GC) [x(t) - x(t)] + w(t) - Gv(t) ----------2.28
Let us consider the estimate of a scalar function,

z = kTx ----------2.29
The estimation error is,

z = z - z
= kTx - kTx

= kTX ----------2.30

The zero state response zw(t) to an input w(t) = w0u0(t) is,

zw(t) = kT e(A_GC)t w0, t>0 ---------- 2.31

42

similarly, zero state response zv(t) to v(t) = v0u0(t) is,

zv(t) = - kT e(A'GQt G v0 , t>0 -----------2.32

From equation 2.31, zw(t) will be driven rapidly to zero if eigen values of A-GC are large

and stable. So G must have large elements. From equation 2.32, large G will give large

value of zv(t) for small t, which is not desirable. So a compromise between speed of

response and initial value is done by minimizing the following norm as performance

index:

J= f[z2w(t) + z2v(t) j dt --------- -2.33

J = J[kT e(A-GC)t w0w0VA-GC)T,k+ kV^'GvoVoG V^'k] dt

— /[kT e(A'GC>t WoWoV^71 k + kT e(A'GQt G v02 GTe(A'GC)Tt k] dt ------- 2.34

(v zw is a scalar hence zwT= zw)

= J kT- [e(AT-CTGT)Tt (W + GVGt) e (A'rcTGT)t] dt 'k

[where, W=w0w0T and V=v02]

= kTl [e^™’* (W + GVGt) e] dt -k
-------- 2.35

Define Linear Quadratic system as,
& = AT0 + CTf -------- 2.36

A control law y = - GT0 applied to this system results in

0 = (Ar - CtGt)0 ------- 2.37

The response for an imtial state 0(0) = k is 0(t) = eCAT-CTG'f>t]c Thus equation 2.35 will be,

J = j0T(t) [W + (Gt)t V (Gt)] 0(t) dt ------- 2.38

Minimization of J, with 0(t) is an LQ problem. The matrix W replaces Q, V replaces R
and Gt stands for k.

The solution of LQ problem is

43

Gt = V1 (CT)T P --------2.39

where, P represents the solution of Riccati equation,
(At)t P + P (At) - P (Ct)Va (CY P + W = 0 ------ 2.40

Transposition of equation 2.39 yields
G = P CT V1 (P and V are symmetric.)

Equation 2.40 can be written as

AP + PAt-PCtV4CP + W = 0 ----- 2.41

44

2.8.2 Robust Optimal Observer

In addition to minimizing above Performance Index (equation 2.33), we can
obtain robustness with H2 or H® controller. Consider the Fig 2.7 which is stable/optimal

when LQR controller is used along with Kalman filter to estimate the states of the

system.

Fig 2.7 Mechanization: Optimal observer

The plant equations are
x(t) = A x(t) + B u(t) + w(t)
y(t) = C x(t) + v(t) ----------2.42

Controller equation is u = - k x(t) --------- 2.43

where, k= R_1BP
where P is solution of Riccati equation,

AtP + PA + PBR-’B'1? + Q = 0

The filter dynamics are

x = A x(t) + B u(t) + L[y - C x(t)] ----- 2.44
= XCTR1

where X is the solution of Riccati equation,

45

AX + SAt + Q0 - EC'Ro'CI = 0 ------- 2.45

Solution of LQG will be

H(s) = K (si - A + BK + LC)’1 L ------- 2.46

From the experience it is found that this system may have drawbacks like

• System may fail to work in real environment.

• • Solution has lack of robustness.

• System becomes more unstable if more realism is added.

This is because stress is given on optimality, rater than uncertainty. This can be

overcome by using H00 solution.

Fig 2.8: H00 problem formulation.

So in H°° controller design the problem formulation will be like find an internally

stabilizing controller [K(s)] for the plant [P(s>], such that H" norm is below a given level.

i.e. Find J*" such that ||Twz||<X)<y

K(s) stabilizing

In IT° controller, the exogenous inputs (disturbances, command inputs, sensor

noise) are collected into one vector; the regulated outputs (control signals, errors) are

collected into another vector. The objective is to maintain the peak in the closed loop

frequency response of the system below a specified value y. The optimal solution can be

obtained by iterating on y. The solution involves selecting weights and solving Riccati

equations.. Assumptions made in designing this controller are:

46

1. The system is represented in augmented form 2.47 Hence the plant
equations will be

x = A x(t) + Bi w(t) + B2 u(t)
z = Ci x(t) + Di 1 w(t) + D12 u(t) ----------2.47
y = C2 x(t) + D2s w(t) + D22 u(t)

In packed matrix form it can be represented by

A ! B, b2
P(s) = C,| Dn D12

c2j
_ 1

D21 D22

2. (A,B2) and (C2,A) are detectable.(which is necessary condition for existence

of controller.)

3. If dim x = n, dim w = m, dim u = m2, dim z = pi, dim y = P2

9i(Di2) = m2 and 91(D2i) = P2

Ensures that controllers are proper and transfer function from (w -> y) is
non-zero at high frequencies.

4. 9? A-jwI B2
Cl D,2

= n + m2 for all frequencies.

= n + P2 for all frequencies.

5. Du = D22 = 0 ; simplifies solution.

91 A-jwI Bi
C2 D2!

Fig 2.8 depicts the flow chart for operation of H°° controller

47

Fig 2.8(a): Flow chart of execution of IF controller.

Fig 2.9 and Fig 2.10 depicts the block diagrams of system in augmented form and H“
controller.

48

-i

Fig 2.9: System in augmented form with H00 Controller.

Fig 2.10: Block diagram of H00 Controller.

Control law u = -KcX ------- 2.48

x = Ax + B2u +B,w +ZJK* (y - y) ------- 2.49
where, w = -y 2Bj 'X«x

49

y = C2x + y2D2iB1'X0oX ------- 2.50

Controller gain : K* = D,2 (B2' D12'C,) --------2.51
where, Dw = OVDis)’1

Estimator gain : Ke = (YoC2' + BiD2i 0 D2j ------ 2.52
where, D2i = (D21D21)'1

The Xoo and Ym are solution of RICCAH equations for controller and estimator
respectively.

A-B2B,2Di2'Ci

-Ci'Ci

y ’2BiBi '-B2D12D12'

-(A-B2fti2D12'C,)T

Y«=
A-BiD2i'D2iw y 2C,'C,-C21)2iC2

-B,Br -(A-BiDz^iQt)

where, Ci = (I - Di2Di2Di2')C,

BI = [Bi(I-D2iT»aiD2i)]

And Zoo = (I-y'2 Y00X00)'1

K(s) = A - B2Kc - ZooKeCz + y2 (B1B1 - ZJCX^B,')X» Z* Ke

-Kc 0

■2.53

2.54

■2.55

■2.56

2.57

2.58

50

2.8.3 SIMULINK Implementation: Robust Adaptive Observer
Fig 2.11 and 2.12 depicts simulation models of augmented space and the If0 controller,
represented by block diagrams of fig 2.B and fig 2.9.

Fig 2.11: Implementation of system in augmented space.

B2

2.5.4 Application

V
■
■

The simulation study of speed control of Induction motor was carried out. Two files ware

FILE NAME STORED DATA PURPOSE

motorparameter. m Performance parameters of

motor like Rs, Rr, L,s, Lk,

P, J, Xlr, X|S, wb, Tr, Lr, a,

b, c, d matrices of state

space representation of

motor model.

When we execute this file all the

parameters will be stored at

workspace.

rhzeros.m Program for H“° controller

with zero padding.

After executing this file we will

get optimal value of gamma, xinf,

yinf, Kc, Kg, motor model in

augmented space and all these

values will be stored at

workspace.

hinfcontroller.mdl Simulink model for H"

controller.

Simulating this model we will get

robust adaptive observer and

during simulation it will use the

stored data in workspace.

Table 2.1: Summary of MATLAB/SIMULINK files.

The simulation steps are:

1. motorparameter.m file: To initialize the following motor parameters:

Rr=0.39;
Rs=0.19;
Lls=0.21e-3;
Llr=0.6e-3; .
Lm=4e-3;
Fb=100;
P=4;
J=0.0226;
Lr=Llr+Lm;

52

Tr=Lr/Rr;33
Wb=2*pi*Fb;
Xls=Wb*Lls;
Xlr=Wb*Llr;
Xm=Wb*Lm;
Xmstar=l/(1/Xls+1/Xlr+1/Xm);
Vd=2*179.629/pi;

We=[4*pi*Fb]/P
Wr=0.95*We

%calculate a:
al l=tRs*Wb*[[Xmstar/Xls]-l]]/Xls;
al2=-We;
al 3=[[Rs* Wb*Xmstar]/[Xls*Xlr]];
a!4=0;
a21=We;
a22=al1;
a23=0;
a24=al3;
a3 l=[[Rr*Wb*Xmstar]/[Xls*X]r]];
a32=0;
a33=[Rr* Wb* [[Xmstar/Xlr]-1]]/Xlr;
a34=-[We-Wr];
a41=0;
a42=a31;
a43=-a34;
a44=a33;
a=[al 1 al2 al3 al4;a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44]

%calculate b:
b=[Wb 0;0 Wb;0 0; 0 0]

%calculate c and d:
c=[l 0 0 0; 0 1 0 0]
d=[0 0;0 0]
wl=zeros(4,4);
w2=ones(4,4);
w3=ones(4,4);
%wl=[2.5e-5*[0.01 0 02 0.03 0.04];4e-6*[0.01 0.2 0.3 0.4];0.1 0.2 0.3 0.4 ; 10 20 30 40
];

%w2=[le-3*[l 0.1 0.2 0.3]; 5e-4*[0.01 0.02 0.03 0.04]; 2e-l*[0.1 0.2 0.3 0.4]; 0.001
0.009 0.008 0.007];
%w3=[l 000;00040;1234; 0.09 0.08 0.07 0.06];

2. rhzeros.ni file: To generate H00 Controller parameters

%num=input('The co-eff of numerator are:');
%den=input('The co-eff of denominator are :');
%printsys(num,den);
%[a, b, c, d]=tf2ss(num,den)
sys=mksys(a,b,c,d);
%%% input different noises:

%wl-input(The value of wl is :');
%w2=dnput(The value of w2 is :');
%w3=input(The value of w3 is : ’);

%%% get system in augmented form:
[A,B 1 ,B2, C1 ,C2,D 11 ,D12,D21 ,D22]=augtf(a,b,c,d, wl ,w2,w3);

TSS=au gtf(sys, w 1 ,w2,w3);

%%% obtain optimal value of gamma.
[optigamma,ss_f,ss_cl]=hinfopt(TSS, 1);

%%% get values of xinf and yinf = solution of
%%% controller and estimator riccati equations:
xinf=branch(ssjf)
yinf=branch(ss_cl)

%%% calculate controller gain kc:
x=inv(D12’*D12);
xl=B2’*xinf;
x2=D12’*Cl;
Kc=x*(xl+x2);

%%% calculate estimator gain ke:
y=inv(D21*D21')
y3=[C2' zeros(10,8); zeros(10,10)]
yl=yinf*y3
y2=Bl*D21'
y4=[y2 zeros(10,8); zeros(10,10)]
Ke=(yl+y4)*[y zeros(2,18);zeros(8,20)];

%%% calculate zinf:
%yinfl=[yinf zeros(20,10)];
xinf 1=[xinf zeros(10,10);zeros(10,20)]
z=optigammaA-2*yinf*xinfl;
zl=eye(20,20)-z;
zinf=inv(zl);

• The partial results are listed below:
« H-Infinity Optimal Control Synthesis »

No Gamma D11<=1 P-Exist P>=0 S-Exist S>=0 lam(PS)<l C.L.

1 1.0000e+000 OK FAIL FAIL OK OK OK STAB
2 5.0000e-001 OK FAIL OK OK OK OK UNST
3 2.5000e-001 OK FAIL FAIL OK OK OK STAB
4 1.2500e-001 OK FAIL FAIL OK OK OK 'UNST
5 6.2500e-002 OK FAIL FAIL OK OK OK UNST
6 3.1250e-002 OK FAIL FAIL OK OK OK UNST
7 1.5625e-002 OK FAIL FAIL OK OK OK UNST
8 7,8125e-003 OK OK FAIL OK ok' OK UNST
9 3.9063e-003 OK FAIL OK OK OK OK STAB
10 1.953 le-003 OK FAIL FAIL OK OK OK UNST
11 9.7656e-004 OK OK FAIL OK OK OK UNST
12 4.88328e-004 OK FAIL FAIL OK OK OK UNST
13 2.4414e-004 OK FAIL FAIL OK OK OK UNST
14 1.2207e-004 OK OK FAIL OK OK OK UNST
15 6.1035e-005 OK FAIL OK OK OK OK STAB
16 3.0518e-005 OK FAIL FAIL OK OK OK STAB
17 1.5259e-005 OK FAIL FAIL OK OK OK UNST
18 7.6294e-006 OK FAIL FAIL OK OK OK STAB
19 3.8147e-006 OK FAIL FAIL OK OK OK UNST
20 1.9073e-006 OK OK FAIL OK OK OK UNST
21 9.5367e-007 OK FAIL FAIL OK OK OK STAB
22 4.7684e-007 OK FAIL FAIL OK OK OK UNST
23 2.3842e-007 OK OK FAIL OK OK OK UNST
24 1.1921e-007 OK FAIL FAIL OK OK OK STAB
25 5.9605e-008 OK FAIL FAIL OK OK OK UNST
26 2.9802e-008 OK FAIL FAIL OK OK OK UNST
27 1.4901e-008 OK FAIL FAIL OK OK OK UNST
28 7.4506e-009 OK FAIL FAIL OK OK OK UNST
29 3.7253e-009 OK OK FAIL OK OK OK STAB
30 1.8626e-009 OK FAIL FAIL OK OK OK UNST
31 9.3132e-010 OK FAIL FAIL OK OK OK UNST
32 4.6566e-010 OK FAIL FAIL OK OK OK UNST
33 2.3283e-010 OK FAIL OK OK OK OK UNST
34 1.1642e-010 OK FAIL OK OK OK OK STAB
35 5.8208e-011 OK FAIL FAIL OK OK OK UNST
36 2.9104e-011 OK FAIL OK OK OK OK UNST
37 1.4552e-011 OK FAIL FAIL OK OK OK UNST
38 7.2760e-012 OK FAIL FAIL OK OK OK UNST
39 3.6380e-012 OK FAIL FAIL OK OK OK UNST
40 1.8190e-012 OK FAIL FAIL OK OK OK STAB
41 9.0949e-013 OK FAIL OK OK OK OK UNST
42 4.5475e-013 OK FAIL OK OK OK OK STAB

55

43 2.2737e-013 OK OK OK OK OK OK STAB
44 3.4106e-013 OK FAIL FAIL OK OK OK STAB
45 2.8422e-013 OK FAIL FAIL OK OK OK UNST
46 2.5580e-013 OK FAIL OK OK OK OK UNST
47 2.4158e-013 OK OK OK OK OK OK UNST
48 2.3448e-013 OK FAIL OK OK OK OK UNST
49 2.3093e-013 OK FAIL FAIL OK OK OK STAB
50 2.2915e-013 OK OK FAIL OK OK OK UNST

Iteration no. 43 is your best answer under the tolerance: 0.0100

3. hinficontroller.mdl: Fig 2.14 depicts estimated output of FT controller (y-hat)
on execution of the SIMULINK model Fig 2.13.

The design, development and Implementation of an observer-estimator for a time varying
system is discussed. The design and simulation of robust estimator using FT° Controller
using SIMULINK is also attempted.

