
Chapter 3

Soft computing:
Techniques and

Development Tools

56

Chapter 3
Soft computing: Techniques and Development Tools___________

Chapter gives a brief overview of the computing techniques such as Fuzzy logic,
Neural network and Neuro-fuzzy networks. The most popular tools used by the
researchers for development and simulation study of the system under test such as
MATLAB, SIMULINK and associated tool boxes for development of control
applications are also described.

Use of tools has been illustrated by an application related to electrical drives. An
FLC for the AC and DC drives has been developed. The response of the designed system
is simulated using SIMULINK and compared with conventional PID controller.. Single
Layer Fuzzy compensator for Non-linearity compensation and Two layer for pre­
compensation are also developed. SIMULINK is used for testing the performance of the
compensator.

3.1 Introduction
Correct model of process may not be available or mode may be, complex with to

many unacceptable assumptions The classical modeling algorithm may not respond well
to the measurement noise in sensors or performance through classical algorithms may not
be adequate.

The FUZZY LOGIC based systems may be developed to overcome classical
algorithm problems. The fuzzy logic frees us from the true/false reasoning of logical
system of type that are used in symbolic languages.

Fuzzy linguistic models [1] hold the promise of providing a finite qualitative
partition of a quantitative dynamic system while being applicable to any system that can
be described in linguistic terms. Fuzzy models provide a succinct and robust
representation of systems that lack a complete quantitative model or have uncertain
system perturbations. Consistency in reasoning, however, has not yet been proven for a
frizzy linguistic representation of a quantitative system.

Fuzzy linguistic models use fuzzy sets to create a finite number of partitions MBF
of the inputs, outputs and states of a quantitative system. Currently most fuzzy models are
implemented as a set of if-then rules, where the system input is used to evaluate the
rules’ antecedents and the model’s output is the combined output of all the rules
evaluated in parallel. This simple logical system, a Fuzzy Inference System (FIS), does
not implement inference chaining and can only evaluate a simplified qualitative model of
a plant. Recent work has expanded the usefulness of this structure by providing machine
learning methodologies to adapt and tune fuzzy linguistic models and to automatically
generate new models through self-organization.

Input output relations (mapping) in the form of traditional mathematical modeling

57

is replaced by ANN learning the synaptic weights by undergoing a training process. ANN
has built in adaptability or can be trained to modify the weights with the change in
environment. The ANN can deal naturally with contextual information. Since knowledge
is represented by the regular structure and activation state of network. Every neuron is
potentially affected by the global activity of all other neurons. ANN can be trained to
make decisions and they are also fault tolerant in the sense that if a neuron or connecting
link is damaged, recalling a pattern will be impaired in quality but due to distribution of
information in the network damage has to be extensive for overall degradation. Since
neurons are the common ingredients for all ANN, it is possible to Share the algorithm and
structures in different applications. So it is possible to have a seamless integration of
modules. The ANN is suitable in the following situation....

Learning or tuning allows the initial linguistic fuzzy model developed from
heuristic domain knowledge to be optimized. Learning is achieved by using a neuro-
fuzzy structure and exploiting the supervised learning strategies originally developed for
neural networks.

These strategies include gradient descent back-propagation, least-mean-squares,
and a hybrid methodology that combines least-squares to optimize linear parameters and
back-propagation to optimize the nonlinear parameters. These same supervised learning
methodologies can automatically learn any arbitrary nonlinear mapping between input
and output without an initial linguistic fuzzy model. The resulting self-organized fuzzy
models do not necessarily have a linguistic interpretation that would be recognized by a
human expert. Often systems developed through self-organization are never interpreted
linguistically, but are utilized effectively for pattern matching and curve fitting. Fuzzy
networks are often preferred for curve fitting because the fuzzy rules used by the network
have only a local effect, in effect providing an adaptive mechanism for implementing B-
splines.

It is possible to integrate the fuzzy logic controller with ANN so that the
expression for the knowledge used in the systems is understood by humans. This reduces
difficulties in describing the ANN. Fuzzy controller learns to improve its performance
using ANN structure & thus learns by Experience. Neuro-computing is fast compared to
conventional computing because of massive parallel computation. Besides, it has the
properties of fault tolerance and noise filtering. Here neural network is used as if
estimator. Neural network-based control strictly does not need a mathematical model of a
plant like a conventional control method does with the required precision.

3.2 Fuzzy Logic

Fuzzy logic has rapidly become one of the most successful of today's
technologies for developing sophisticated control system. Fuzzy logic is nothing but
the extension of binary logic. The main difference between the Fuzzy logic and binary
logic is that in binary logic we take only two cases, either 0 or 1, that means low or high
states. In Fuzzy Logic we take each & every state into consideration. Fuzzy logic is a
method for represent ting information in a way that resembles natural human

58

communication. It then manipulates that information similar to human reasoning.
Fuzzy logic has been applied to problems that are either difficult to tackle mathematically
or where the use of fuzzy logic provides improved performance. The development of
fuzzy logic traces back to 1965 when Dr. Lotfi Zadeh presented a paper on Fuzzy
sets. Since, then this Fuzzy logic as a tool has come in long way [2]. Considering
industrial application using fuzzy logic controls, is going to be the most important data
bank. This is termed as ‘Knowledge Base'. Recently, methods of automatically
identifying parameters for a fuzzy system has enabled application of fuzzy controls even
to those processes where human heuristics are not easily available.

3.2.1 KEYWORDS, TERMINOLOGY

• DEFINITION
Fuzzy Logic is the logic using fuzzy set defined by membership functions in the logical
expression corresponding to the rule base.

• FUZZY CONTROL
It can be defined as a way of defining non- linear table based control where the
definition of non-linear transition function can be made without the need to specify
each entry of the table individually. It can also be viewed as a knowledge based
interpolation technique.

• LINGUISTIC VARIABLES
The primary building block of any fuzzy system is linguistic variable while the
linguistic term indicate / represent possible values of a linguistic variable. The linguistic
variables translate crisp value into a linguistic description.

• MEMBERSHIP FUNCTION
A relation between a variable and linguistic variable in terms of a value in the range
(0,1) is called membership function.

• FUZZY SET
A set obtained by assigning fuzzy values to the linguistic variable using membership
function.

• PREMISE
It is the fuzzy specification of linguistic variable.

• CONCLUSION:
Fuzzy output in terms of linguistic variable is called conclusion.

• FUZZY RULE
A linguistic rule derived from the expert’s behavior to control process under study. It
contains premise as first part and conclusion as second part.

• FUZZIFICATION
It is a process of assigning the fuzzy values to linguistic variable using fuzzy set.

• DEFUZZIFICATION
A process of obtaining crisp value for fuzzy output is called defuzzification.

• UNIVERSE OF DISCOURSE
Universe of discourse is defined as the total range of all available information in a
given problem. Once this universe of discourse is known, we can define certain events
on this information space.

• CRISP and FUZZYSETS

59

Crisp sets or classical sets contain information whether it belongs to the set or not. It is
very much same as digital logic or Boolean logic. Fuzzy sets on the other hand
contain information for which belongings varies from [0,l].This is therefore multi­
valued logic.

• MEMBERSHIP FUNCTIONS
A membership function (MBF) is a curve that defines how each point in input space is
mapped to a membership value (or degree of membership) between 0 and 1. The
simplest MF is formed using straight lines. Simplest is the triangular MBF, a collection
of three points forming a triangle. Other types include the Trapezoidal, Sigmoidal, pi,
Bell shape. MBF.

• FUZZIFICATION
It is the process of assigning fuzzy values to linguistic variables using fuzzy set.
In the real world, hardware such as a digital voltmeter generates crisp data, but these
data are subjected to experimental error. We want to compare a crisp voltage reading
to fuzzy sets say as 'low voltage' or 'high voltage'. The range of the output voltage
becomes the universe of discourse and the process of identifying a crisp quantity as a
fuzzy is called Fuzzification. Assigning of range of membership to the transferred fuzzy
quantity in this way is termed as "Fuzzy Measures’. The assignment process can be
intuitive, heuristic or it can be based upon the algorithms or logical operations.
Fuzzification is the first step where a crisp input is fuzzified.

• RULE BASE and DECISION MAKING
Perhaps the most common way to represent knowledge is to form it into natural
language expression of the type :

If premise (antecedent), Then conclusion (consequent)

This form of expression is referred to as IF-THEN rule base format. It typically
expresses
An inference such that if we know a fact (premise, hypothesis, and antecedent) then we
can either infer or derive another fact called conclusion (consequent). This form of
knowledge is quite appropriate in the content of linguistics as it expresses human
empirical and heuristic knowledge in our own language of communication. Collection of
such rules forms a rule base. The dimensions of rule base are dependent upon the
fuzzification level of inputs. It is important to note that all the inputs need not condition
the output. One input may have an influence on the output independent of other input.
The formation of rule is a copyright process of the designer. The process of combining
the effect of these rules to produce an output is called as the process of inference.

• FUZZY INFERENCE
The fuzzy inference process consists of two phases:

1. The composition of rules applied.
2. Obtaining crisp output from fuzzy inference.

Task of meaningful combination of control actions prescribed by different rules
activation or firing is called as composition.

• DEFUZZIFICATION
It is a process of rounding off from multi-valued output to a single value output. The
output of a fuzzy process can be the logical union of two or more fuzzy

60

Membership function defined on the universe of discourse of output variable. The
Choice of methods is again context dependent. The general criteria are that the
method must have continuity, unambiguity and computational simplicity. The
centroid method correctly fits into these requirements and almost invariably used.

3.2.2 ARCHITECTURE OF FUZZY CONTROL
The architecture of fuzzy control is shown in Fig 3.1.

Fig 3.1: THE ARCHITECTURE OF FUZZY CONTROL.

The knowledge base contains information about the boundaries of the linguistic
variables data base. Fuzzification interface receives the current I/P value,maps it to a
suitable domain i.e it converts the value to a linguistic term /Fuzzy set. Decision logic
determines the O/P value from the measured I/P according to the knowledge base. De­
fuzzification interface has the task of determining the crisp value. The design steps [3]
are as follows:

I. Create linguistic variables and vocabulary for the IZP-O/P variables in
which the rules of operation are specified.

II. With reference to the I/P-O/P and control variables, define the structure of
the system to represent the flow within a system.

III. Formulate the strategy as fuzzy rules, based on sound Egg. Judgment.
IV. Evaluate rule for current situation to obtain fuzzy output.
V. Use any of the defuzzification technique to obtain crisp value.

3.3 ARTIFICIAL NEURAL NETWORK
Almost all information-processing needs of today are met by digital computers.

So we can consider their possibility of information processing techniques that are
different from those used in conventional digital computers. Research is being
vigorously pursued concerns the possibility of building information processing devices
that mimic the structures and operation principles commonly found in humans and other
living creatures, which has produced a new breed of computers called neuro-computers.

61

Neural computing is a new approach to information processing. It is the fast, vital
alternative to normal sequential processing. The large computing power lies in parallel
processing architecture. It is capable of imitating brain’s ability to make decisions and
draw conclusions when presented with complex, noisy, irrelevant or partial information.
Thus it is the domain in which an attempt is made to make compute think, react and
compute.

Neurons are nerve cells and neural networks are networks of these cells. Thus
they are one of a group of intelligent technologies for data analysis that differ from other
classical analysis techniques by learning about user’s chosen subject from the data user
provides them, rather than being programmed by the user in a traditional sense. Neural
networks gather their knowledge by detecting the patterns and relationships in user’s
data, learning from relationships and adapting to change.

“A neural network is a massively parallel distributed processor that has a natural
propensity for storing experiential knowledge and making it available for use. It
resembles the brain in two respects:

• Knowledge is acquired by the network through a learning process.
• Intemeuron connections strengths known as synaptic weights are used to store

knowledge.

The interconnection architecture can be very different for different networks.

Architectures can vary from feed forward and recurrent structures to latticed structures.

3.3.1 The Basie Artificial Model
An artificial neuron is defined as follows:

It receives a number of inputs either from original data, or from the output of
other neurons in the neural network. Each input comes via a connection that has
strength (weight); these weights correspond to synaptic efficacy in a biological neuron.
Each neuron also has a single threshold value. The weighted sum of the inputs is formed,
and the threshold subtracted, to compose the activation of the neuron (also known as the
post-synaptic potential, or PSP, of the neuron).

The activation signal is passed through an activation function (also known as a
transfer function) to produce the output of the neuron. Inputs and outputs correspond to
sensory and motor nerves such as those coming from the eyes and leading to the hands.

62

There can be hidden neurons that play an internal role in the network. The input, hidden
and output neurons need to be connected together.

wi

Hg 3.2: Simple model of an Artificial Neuron
A simple network has a feedforward structure; signals flow from inputs, forwards

through any hidden units, eventually reaching the output units. Such a structure has stable
behavior. However, if the network is recurrent (contains connections back from later to
earlier neurons) it can be unstable, and has very complex dynamics.

When the network is executed (used), the input variable values are placed in the
input units, and then the hidden and output layer units are progressively executed. Each
of them calculates its activation value by taking the weighted sum of the outputs of the
units in the preceding layer, and subtracting the threshold. The activation value is passed
through the activation function to produce the output of the neuron. When the entire
network has been executed, the outputs of the output layer act as the output of the entire
network.

3.3.2 Implementation of Artificial Neural Network:
The specification and design of an ANN application should aim to produce the

best system and performance overall. This means that conventional methods should be
used if and where possible and ANNs are used to supplement them or only if they can
add some benefit. A neural network design involves at least five main tasks:

S Data collection.
S Raw data preprocessing.
■S Feature extraction from preprocessed data.
v' Selection of an ANN type and topology (architecture).
■S ANN training, testing and validation.

3.3.3 Single layer and multi-layer networks:
For single layer neural network, the output signals of the neurons in the first layer

are the output signals of the network. Here each neuron adjusts its weights according to
what output was expected of it, and the output it gave. The Perception Delta Rule can
mathematically express this:

63

AW, = x,8
where, 8 = (desired output) - (actual output).

This is of no use though when you extend the network to multiple layers to
account for non-linearly separable problems. When adjusting a weight anywhere in the
network, we have to be able to tell what effect this will have on the overall effect of the
network. To do this, we have to look at the derivative of the error function with respect to
that weight.

Multi layer perceptions are feed forward nets with one or more layers of nodes
between the input and output nodes. Multilayer feed forward networks normally consist
of three or four layers; there is always one input layer and one output layer and usually
one or more hidden layers. The term input layer neurons are a misnomer; no sigmoid unit
is applied to the value of each of these neurons. Their raw values are fed into the layer
downstream the input layer (the hidden layer). Once the neurons for the hidden layer are
computed, their activations are then fed downstream to the next layer, until all the
activations eventually reach the output layer, in which each output layer neuron is
associated with a specific classification category. In a fully connected multilayer feed
forward network, each neuron in one layer is connected by a weight to every neuron in
the layer downstream it. Thus in computing the value of each neuron in the hidden and
output layers one must first take the sum of the weighted sums and the bias(if any) and
then apply f(sum)(the sigmoid function) to calculate the neuron’s activation.

The capabilities of multi layer perceptions stem from the nonlinearities used
within nodes. The number of nodes must be large enough to form a decision region that is
as complex as is required by a given problem. It must not, however, be so large that the
many weights required cannot be reliably estimated from the available training data. For
example, two nodes are sufficient to solve the exclusive OR problem.

Input layer First Second Output
hidden hidden layer
layer layer

Fig 3.3: Multi-layer Network.

64

There should be no more than three layers in perception like feed forward nets
because a three-layer perceptron can form arbitrarily complex decision regions and can
separate the meshed classes. There should typically be more than three times as many
nodes in the second as in the first layer. The behavior of these nets is more complex
because decision regions are typically bounded by smooth curves instead of by straight-
line segments and analysis is thus more difficult. These nets, however, can be trained
with the new back-propagation training algorithm,

3.3.4 Types of Neural Network Learning

The Artificial Neural Network (ANN) [4] produces response, based on the information
encoded in its structure. Usually weights on interconnections between the neurons, store
the information. They are adjusted to produce desired response. “The algorithmic process

. of weight adjustments is called learning rule”. The goal of any rule is to adjust weights so
as to minimize the difference between the desired and expected response.

The method of setting the value for the weights enables the process of learning or
training. The process of modifying the weights in the connections between network
layers with the objective of achieving the expected output is called training a network.
The internal process that takes place when a network is trained is called learning.

• Supervised learning: Supervised learning is a process of training a neural
network by giving it examples of the task we want it to learn, i.e. it is a learning
33with a teacher. The way this is done is by providing a set of pairs of vectors
(patterns), where the first pattern of each pair is an example of an input pattern
that the network might have to process and the second pattern is the output pattern
that the network should produce for that input which is known as a target output
pattern for whatever input pattern.

Supervised leaning means “a learning process in which changes in a network's
weights and biases are due to the intervention of any external teacher. The teacher
typically provides output targets.” This technique is mostly applied to feed
forward type of neural networks.

During each learning or training iteration the magnitude of the error between the
desired and actual network response is computed and used to make adjustments to
the internal network parameters or weights according to some learning algorithm.
As the learning proceeds, the error is gradually reduced until it achieves a
minimum or at least and acceptably small value.

Sometimes if it is not require computing exact error between the desired and the
actual network response, and for each training example the network is given a
pass/fail signal by the teacher, then it is called Reinforcement learning which is a
special type of supervised learning. If a fail is assigned, the network continues to
readjust its parameters until it achieves a pass or continues for a predetermined
number of tries, whichever comes first.

65

• Unsupervised learning:

It is the learning process in which changes in a network's weights and biases are
not due to the intervention of any external teacher. Commonly changes are a
function of the current network input vectors, output vectors, and previous
weights and biases.

The network is able to discover statistical regularities in its input space and
automatically develops different modes of behavior to represent different classes

of inputs (in practical applications some labeling is required after training, since it is
not known at the outset which mode of behavior will be associated with a given
input class). In this type of learning due to absence of desired output it is difficult
to predict what type of features network will extract. Although learning in these
nets can be slow, running the trained net is very fast - even on a computer
simulation of a neural net. Table gives comprehensive summary of techniques.

Supervised learning Unsupervised learning

1 ADALINE. 1. Hamming Networks.

1 MAD ALINE. 2. Kohonen’s self-organizing maps.

1 Perceptron. 3. Adaptive Resonance Theory (ART).

1 Multilayer perceptron (MLP). 4. Counter propagations networks(CPN).

1 Radial Basis Function Network 5. Neo-cognitions.

(RBFN). 6. Adaptive Bidirectional Associative

1 Probabilistic Neural Network (PNN). Memory.

1 General Regression Neural Network

(GRNN).

Table 3.1: Networks following supervised and unsupervised learning.

3.3.5 BACK PROPAGATION NETWORK (BPN)

Back propagation is a systematic method for training multi -layer artificial

networks. It has a mathematical foundation that is strong if not highly practical. It is a

multi-layer forward network using extend gradient descent based delta learning rule,

commonly known as back propagation (of errors) rule. Back propagation provides a

computationally efficient method for changing the weights in a feed forward network,

66

with differentiable activation function units, to learn training a set of input-output

examples. Being a gradient descent method it minimizes the total error of the output

computed by the net. The network is trained by supervised learning method. The aim of

this network is to be train the net to achieve a balance between the ability to respond

correctly to the input patterns that are used for training and the ability to provide good

response to the input that are similar.

The training algorithm of back propagation involves four stages , viz.

1. Initialize of weights

2. Feed forward

3. Back propagation

4. Updating of the weights and biases.

During first stage which is the initialization of weights, some small random

values are assigned. During feed forward stage each input unit (xi) receives an input

signal and transmits this signal to each hidden units zl...zp. Each hidden unit then

calculates the activation function and sends its signal zj to each output unit. The

output unit calculates the activation function to form the response of the net for the

given input pattern.

During back propagation of errors, each output unit compares its computed

activation yk with its target value tk to determine the associated error for that pattern

with that unit. Based on the error, the factor 5k (k= l,...m) is computed and is used to

distribute the error at output unit yk back to all units in the previous layer. Similarly,

the factor 5j(j=l,..p) is computed for each hidden unit zj. During the final stage, the

weight and biases are updated using the 5 factor and the activation. During final

stage, the weight and biases are updated using 8 factor and the activation.

PARAMAETER

x: Input training vector.

8k: error at output unit yk 8j : error at hidden unit zj

Voj = bias on hidden unit j

wok = bias output unit k

t: output target vector

a = learning rule

zj= hidden unit j

y = output unit k.

Initialization of weights

67

Step: 1 Initialize weight to small random values.

Step: 2 While stopping condition is false, do steps 3-10

Step: 3 For each training pair do steps 4-9

• Feed forward

Step 4: Each input unit receives the input signal xi and transmits this signals to all

units in the layer above i.e. hidden units.

Step 5: Each hidden unit (zj, j = l,..p) sums its weighted input signals
• n

Z - ,„J = voj + £ xivij (3.1)
i—i

Applying activation function

Zj = f(z„) (3.2)

And sends this signal to all units in the layer above i.e. output units.

Step 6 : Each output unit (yk, k = l,..m) sums its weighted input signals
p

y-a* = wok + 2 zjwjk (3.3)

And applies its activation function to calculate the output signals

Yk - f(y_,nk) (3.4)

• Back propagation of errors

Step 7: Each output (yk, k=l,..m) receives.a target pattern corresponding to an input

pattern, error information term is calculated as

8k = (tk - yk)f (y _injc) (3.5)

Step 8: Each hidden unit (zj, j = l,...n) sums its delta inputs from units in the layer

above
m

8-mj=SSkwjk (3.6)

The error information term is calculated as

8j = 8_,njf(z_inj)

Updation of the weights and biases.

Step: 9 Each output unit (y, k =1,.. .m) updates its bias and weights (j=0,.. .p)

68

The weight correction term is given by

AWjk = ocSkzj

And the bias correction term is given by

AWok = a8k

Therefore, Wjk(new) = Wjk(old) + AWjk, Wok(new) = Wok(old) + AWok

(3.9)

(3-7)

(3.8)

The weight correction term

AVij = a8jxi

The bias correction term

AVoj = a8j

Therefore, Vij(new) = Vij(old) + Avij, Voj(new) = Voj(old) + AYoj

(3.10)

(3.11)

Step 10: Test the stopping condition. The stopping condition may be to the

minimization of the errors, number of epochs etc

3.4 Software Development Tools
The developments tools such as MATLAB, SIMULINK, and tools boxes are described in
the section. Their use is illustrated by applications.

3.4.1 MATLAB 7

MATLAB [5] is a high-performance language for technical computing. The name
MATLAB stands for matrix laboratory. A numerical analyst called Cleve Moler wrote
the first version of MATLAB in the 1970s. It has since evolved into a successful
commercial software package. The MATLAB system consists of five main parts:

Development Environment: - This is the set of tools and facilities that help to
use MATLAB functions and files. Many of these tools are graphical user interfaces. It
includes the MATLAB desktop and Command Window, a command history, an editor
and debugger, and browsers for viewing help, the workspace, files, and the search path.
Main window of MATLAB is as shown in figure 3.4

69

Fig 3.4(A): A schematic diagram of Main features: MATLAB

70

ETlSfftFKTTMMMMM——miiiMMItrail,fc- «Jfl| x|
F*» Et* Debug Desktop Wmirw Melp
D 12£ (?* 3" 7* Current Directory: C: 'MATLAB7>woftc ^

Shortcuts W How to Aoa wbar * Hew

4 Xert

Fig 3.4: MATLAB command window

The MATLAB Mathematical Function Library: - This is a vast collection of

computational algorithms ranging from elementary functions, like sum, sine, cosine, and

complex arithmetic.

The MATLAB Language: - This is a high-level matrix/array language with

control flow statements, functions, data structures, input/output, and object-oriented

programming features.

The MATLAB Application Program Interface (API): - This is a library that

allows you to write C and Fortran programs that interact with MATLAB. It includes

facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a

computational engine, and for reading and writing MAT-files. Toolboxes available in

MATLAB 7.0 and used in the thesis are listed in table 3.2

Control System Toolbox Model Predictive Control Toolbox

Optimization Toolbox Robust Control

Neural Network Fuzzy Logic

TABLE 3.2: TOOL BOXES used from MATLAB 7

72

Functions description

Addmf Add a membership function to an HS

Addrule Add a rule to an HS

Addvar
/

Add a variable to an HS

Evalfis Perform fuzzy inference calculations

Newfis Create new HS

Trimf Triangular membership function

Table 3.4 functions used to create fuzzy system

3.4.4 Neural Network Toolbox
The MATLAB neural network toolbox provides a complete set of functions and a
graphical user interface for the design, implementation, visualization, and simulation of
neural networks. It supports the most commonly used supervised and unsupervised
network architectures and a comprehensive set of training and learning functions. The
neural network toolbox extends the MATLAB computing environment to provide tools
for the design, implementation, visualization, and simulation of neural network. Table
3.5 lists MATLAB functions used for training and learning of the ANN controller [8].

Functions description

newff: Create a Feed forward back propagation network.

purelin Linear transfer function

tansig hyperbolic tangent sigmoid transfer function.

Traingd Gradient descent back propagation.

sim Simulation of simulink model

gensim Gnerate simulink block simulate a neural network.

Train trains a network NET according to

NET.trainFcn and NET.trainParam.

Table 3.5: Functions used from ANN Toolbox

73

3.5 Application: Electrical Drives

An electnc drive [9] is a well established industrial drive as it has several
advantages and special features. AC/DC drives are widely used in the applications
requiring adjustable speed, good speed regulation and frequent starting, braking and
reversing. Some important applications of the DC motor is in the rolling mills, machine
tools, printing press, cranes, It is being predicted that the AC drives will replace DC
drives. But variable speed applications are dominated by DC drives, because of lower
cost, reliability and simple control.

The electric drive system employs closed loop controls and principles of feedback
control theory. The conventional feedback control theory can be applied to determine the
time domain and frequency domain behavior of the system. The stability of the drive,
which is necessaiy but not sufficient conditions, may be analyzed using the conventional
Routh-Hurwitz and Nyquist stability criteria. Based on these methods the design of
controllers for stabilization of the system is possible both in time domain using root
locus techniques and frequency domain using Bode plots.

The AC drive system utilizing induction and synchronous motors may be
considered to be multivariable systems. These can be analyzed using state space
techniques to determine the drive behavior. Conventionally AC and DC variable speed
drive incorporate a number of separate controllers. They are used for input variable
controls of the machine. The closed loop control for AC motors is discussed in the
following section.

Conventional controllers are based on the mathematical model of the linear
process. Conventional controllers will be effective if the speed and accuracy requirements
of control systems are not critical under varying environment of the systems. PID
controllers can be used but it can not cope with the varying control environments
resulting due to the load disturbances, non-linearity of the systems and also change of
plant parameters.

All the physical systems have some kind of non-linearity. Sometimes it may even
be desirable to introduce a non-linearity in order to improve the performance of the
system and make its operation safer. In most of the control system we cannot avoid the
presence of certain types of non-linearities. Some common non-linearities are saturation,
dead-zone, friction etc. The nonlinear system may be highly sensitive to input amplitude.
The stability of the nonlinear systems is dependent on the input and also the initial state.
The stability study of the non-linear systems infact requires the information about the
type and amplitude of anticipated inputs, initial conditions, in addition to the usual
requirements of the physical and mathematical models of the systems. There are two
methods from which the information about transient behavior and stability is easily
obtained. One is the Phase plane method and another is the Describing Function method,
based on the harmonic linearization. The input to the non-linear component is sinusoidal
and depending on the filtering property of the linear part of the overall system. The
output is represented by the fundamental frequency term in the Fourier series.

74

Fuzzy Logic Controller (FLC) [10-11] is used for the application of the non-linear
industrial application process. FLC yields superior results to those obtained by the
conventional controllers. FLC's have common feature of not requiring a detailed
mathematical model and lead to much faster and accurate results. The robustness of FLC
is a commendable feature in motor drive applications, where the system parameters are
widely varying during plant operation. FLC design is made easier by tools of Fuzzy
Logic.

Due to the nonlinear structure of the FLC, the main design problem lies in the
determination of the consistent and complete rule ser and the shape of the membership
functions. A lot of modifications and trial and error has to be done in order to obtain the
desired response which is time consuming. Another powerful technique which is the most
accurate and faster is Neuro-Fuzzy Controller (NFC) [12] design. It helps to generate and
optimise membership functions as well as the rale base from the simple data provided.
Combining the learning power of the neural network with the Fuzzy Logic gives the
Neuro-Fuzzy system. Neuro-Fuzzy controller design is done by using ANFIS (Adaptive
Neuro Fuzzy Interface System).

1 The simulation is carried out using the fuzzy logic toolbox and SIMULINK in
MATLAB. The plant response without any controller for step input shows
oscillations. In order to get the accurate speed control of the DC motor, the response
is improved incorporating FLC design. Fuzzy logic compensator compensates the
effects of the non-linearity. The dead-zone ANFIS is incorporated to eliminate
tedious procedure of the modifications in the membership functions and rale base in
FLC and obtain desired response, quickly and easily. The results in the SIMULINK
shows the comparative responses of the controllers with the original response of the
plant, when step input is applied.

2 The dead-zone (non-linearity) is added to the system. The Fuzzy Logic Compensator
effects are also seen after adding dead-zone. The SIMULINK shows the comparative
responses of the controllers, when sinusoidal input is applied to the system. .

The electric drive system employs closed loop controls and principles of feedback
control theory. The conventional feedback control theoiy can be applied to determine the
time domain and frequency domain behavior of the system. The stability of the drive,
which is necessary but not sufficient conditions, may be analyzed using the conventional
Routh-Hurwitz and Nyquist stability criteria. Based on these methods the design of
controllers for stabilization of the system is possible both in time domain using root
locus techniques and frequency domain using Bode plots.

The AC drive system utilizing induction and synchronous motors may be
considered to be multivariable systems. These can be analyzed using state space
techniques to determine the drive behavior. Conventionally AC and DC variable speed
drive incorporate a number of separate controllers. They are used for input variable
controls of the machine. The closed loop control for AC motors is discussed in the
following section.

75

3.5.1 MOTOR CONTROL: (Conventional Controller)

The AC drive [9] chosen for the system is three phase induction motor. The
specifications of induction motor (IM) are given in Appendix - 1. In IM, speed control
can be obtained by various conventional techniques. Due to their inherent limitations on
overall performance, a new inverter fed IM controls are used for variable speed drives.
For a constant air gap flux in the motor, the ratio of voltage to frequency (V/f) is to be
kept constant in all the operating region. A simple and popular closed loop V/f speed
control method is shown in Fig 3.6

AC line

Fig 3.6: Constant volts/hertz. Speed Control with slip regulation

The scheme is defined as V/f control because voltage and frequency command are
obtained by speed feedback through a controller. In steady state operation, the machine
(M/C) air gap flux (Tm) is approximately related to ratio of V/f. Therefore maintaining
the rated air gap flux will provide the maximum torque sensitivity with stator current
which is similar to that of DC machine. This slip regulating scheme is shown in Figure-1,
where error of speed control loop generates the slip command (cosi*) through a
proportional integral controller & limiter.

The slip is added with speed -signal (tDr) to generate frequency command (coc*).
The frequency command also generates the voltage command (Vs) through a V/f
function generator which incorporates the low frequency stator drop compensation.
Since the slip is proportional to the developed torque, the scheme can be considered as
torque control within a speed control.

76

The block diagram Fig 3.7 consists of the controller block, inverter block & the
machine dynamics block with the feedback loop. The representation of these blocks is in
the form of simple transfer function.

The machine dynamics can be taken of higher order but since the response is
dominated by the dominant roots, a simple representation is taken into account. A
tachogenerator feedback is taken for closed loop performance.

TACHOGENERATOR

Fig 3.7: BLOCK DIAGRAM REPRESENTATION OF THE SYSTEM

• LIST OF SYMBOLS: The symbols used in Fig 3.6 and Fig 3.7 are as
under:

* (Or = command speed
* (Or = actual speed
* G]= controller
* (Os!* = command slip
* Vs* = rectifier command voltage
* (oe - command frequency
* R = Rectifier
* I = Inverter
* M/C = Induction motor
* T = Tachometer
* Kc = controller gain constant
* Ke = inverter gain constant
* Kra = motor gain constant
* Kn = tachometer gain constant
* Tc = controller time constant
* Te = inverter time constant
* Tra = motor time constant
* ©ref = reference angular speed
* ©act = actual angular speed

77

• MATHEMATICAL MODELLING: The values of the time constants, amplifier
gain and motor gain constants and tachometer feedback gain are given below:

I. M.: 3 <j>, 2W, 415 V, 4 pole
Kc = 1.4
Ke = 3
Km = 10
Tc = 0.02
Te = 0.05
Tm =3 0.15
Kt = 1

The value of Kc is determined with the help of Nyquist criteria to obtain the desired
performance i.e stable operation.

The open loop transfer function of the motor is given by:

G(s) — ©act / ©ref

G(s) = Kc*Ke*Km / (1+sTc) (1+sTe) (l+sTm)

G(jw) = Kc*Ke*Km / [l-wA2 (Tc*Tm+Tc*Te +Te*Tm)]- jw[wA2*Tc
*t t t nr i e a m-1 c-1 e"1 mj

G(jw) = Kc*Ke*Km*{ 1 -wA2[Tc*Tm+Tc*Te+Te*Tm] + jw[wA2*Tc*Te*Tm-Tc-Te-Tm]}/{1-
wA2 (Tc*Tm+Tc*Te+Te*Tm) A2 + wA2(wA2*Tc*Te*TirrTc-Te-TmA2)}

The locus of G (jw) as w changes from zero to infinity is drawn which is known as
Nyquist plot. The Nyquist plot as shown in Fig 3.8 represents the stability frequency
response of a closed loop system. If the frequency response of open loop transfer
function encloses critical point (-1,0), the closed loop system becomes unstable. The
value of Kc is found out when it crosses (-1,0). Therefore,

Kc* Ke* Kra *w (wA2*Tc*Te*Tnj-Tc - Te-Tm)=0-------- (3.12)

Since: real part should be -1:

Kc*Ka*Km/ {l-wA2[Tc*Tm+Tc*Te+ Te*Tm]} = -1------- (3.13)

Using 1 & 2:
|0.429 *Kc|=1 -»Kc = 2.33

Hence for stable operation Kc should never exceed beyond 2.33. The value of Kc
should be 0.6 to 0.8 times this value. For our system we have taken it as 0.6 times the
critical value of Kc i.e Kc = 0.6 * 2.33 = 1.4. With Kn = IV / rad / sec reduces to the
one as shown in Fig 3

78

Fig 3.8: BLOCK DIAGRAM WITH Kn = 1 V/rad/sec.

OObcMef = Kc*Ke*Km/(l+sTc)*(l+sTe)*(l+ sTm)

1 + Kc*Ke*Km

(l+sTc)*(l+sTe)*(l+sTm)

= Kc*Ke*Km

(l+sTc)*(l+sTe)*(l+sTm)+Kc*Ke*Km

= Kc*Ke*Km/Tc*Te*Tm

sA3 + (Te*Tm+Tc*Tm+Tc*Te)*sA2

Tc*Te*Tm

+ (Tm+Tc+Te)*s + (l+Kc*Ke*Km)

Tc*Te*Tm Tc*Te*Tm

Substituting the values of Kc, Ke, Km, Tc, Te and Tm the transfer function is:

©ac / ©ref = 2800000 / (sA3+526.67*sA2+13466.667*s+2866666.7) (3.14)

The conventional controller is based on plant dynamics and rigorous
mathematical models with linear or straightforward relationships between just few
variables. The control action is to tune the controller parameters, but this cannot cope
with the varying control environment or system non-linearities.

Facing these problems, the investigators realize that incorporating human
intelligence into automatic control system would be more efficient solution and this
leads to the development of Fuzzy Logic Controller.

79

3.5.2 Modeling and Simulation of FLC

The modeling and simulation of fuzzy control is carried out in MATLAB. The
MATLAB is an interactive programmed for scientific and engineering calculations. The
MATLAB family of programmed includes the base programmed plus variety of
Toolboxes such as fuzzy, control, semolina etc.

The simulation of induction motor is done using transfer function analysis in
MATLAB. The fuzzy logic controller is designed with the help of fuzzy logic toolbox.
What makes the fuzzy logic toolbox so powerful is the fact that most of human reasoning
and concept formulation is linked to the use of fuzzy rules.

There are five primary Graphic User Interface (GUI) tools for building, editing
and observing fuzzy inference system in fuzzy logic toolbox. These are the fuzzy
inference system or FIS Editor, the Membership Function Editor, the Rule Editor, the
Rule Viewer and the Surface Viewer. These different GUI's are all effective siblings in
that we can have any or all of them open for any given system. Standard blocks available
in the SIMULINK Library the combined block diagram of Fig 3.9 is created for the plant,
plant with PID & plant with FLC.

Fig 3.9: Combined Block Diagram; Plant, with PID and with FLC

3.5.3 FLC ALGORITHM & Pseudo code
include < stdio.h>
include < math.h>
include < dos.h>
include < conio.h>
include < graphics.h>

80

define port 0x300
define base 0x2c0
mainQ
{
float tab [11] [11] = {{ -1,-1,-0.7,-0.7,-0.7,-0.6,-0.4,-0.3,-0.2,0,0},

{-1 ,-l,-0.7,-0.7,-0.7,-0.6,-0.5,-0.4,0.2,0.2},
{-1,-1 ,-0.7,-0.7,-0.7,-0.3,-0.2,-0.2,0.1,0.3,0.3},
{ -1 ,-l ,-0.7,-0.7,-0.7,-0.15,0.09,0.1,0.2,0.4,0.4},
{-1,-1,-0.6,-0.5,-0.5,-0.3,-0.1,0.1,0.2,0.4,0.4},
{-0.7,-0.7,-0.56,-0.5,-0.2,0,0.15,0.15,0.4,0.5,0.5},
{-0.5,-0.5,-0.3,0,0.05,0.09,0.2,03,0.5,0.8,0.8},
{-0.5,-0.5,-0.3,0,0.08,0.1,03,0.4,0.7,0.9,0.9},
{-0.2,-0.2,0.01,0.2,0.3,0.5,0.5,0.55,0.85,1,1},
{0.1,0.1,0.3,0.5,0.55,0.7,0.7,0.75,0.9,1,1},
{0.1,0.1,0.3,0.5,0.55,0.7,0.7,0.75,0.9,1,1},

};
unsigned hbl, lbl, lb2, Ib3,lb4,sts, al, a2;
unsigned hibyte = 0, lobyte = 0;
unsigned cntr, ccc, rrr,
float r,c, rl,c 1 ,lbt,lbtl,ibt2,lbt3,AD[2], 1, lbtl, lbt2;
int start = 0, stop=l, ch,rr,cc,ll,t2;
clrscr();
outport b (port + 9,0x70);
while(l)
{

for (ch = start; ch < = stop; ch++)
{

outport b (port + 8 ,0); /*clear the interrupt *1
outport b (port + 2 ,0);/*mux channel selection on pc 1770 */
outport b (port + 3 ,ch); /*select the ch 0-7 */
outport b (port + 0,0); /* start A/D conversion */
start: sts = inportb (port + 8); /* Read A/D status */
if (sts > 127) goto start;
lobyte = inport b (port + 0); I* input A/D lo-wbyte */
lbl = (lobyte | OxfO) / 16; / * separate channel no & low byte data */
hibyte = inport b (port + 1); /* HIBYTE READ */
lb 2 = (hibyte | Oxf) / 16; /*Shift the hibyte data*/
Ibt=lbl + lb2;
if (ch= =0)
{ -

lbtl = lbt;
AD[0]=lbtl;
rl=((AD[0] - 2048) / 4096) /10
}
else
{
lbt 2 = lbt;

81

AD[1] = lb2;
c 1 = ((AD[1] - 2048) / 4096) /10;
}
/*printf(“%f/n”,cl);*/
r = rl-cl;
/* printf (“%f In”, rl); */
t2 = r;
al = r2/256;
a2 = t2 % 256;
outport b (base + 0, al); /*ch #1*/
outport b (base + 1 ,a2);
outport b (port + 8,0); /*clear the interrupt */
outport b (port + 2 ,0);/*mux channel selection on pc 1770 */
outport b (port + 3 ,2); /*select the ch 0-7 */
outport b (port + 0 ,0); /* start A/D conversion */

start 1: sts = inportb (port + 8); /* Read A/D status */
if (sts > 127) goto startl;
lobyte = inport b (port + 0); I* input A/D lowbyte */
lb3 = (lobyte] OxfO) / 16; / * separate channel no & low byte data *1
hibyte = inport b (port + 1); /* HIBYTE READ */
lb 4 = (hibyte | Oxf) / 16; /*Shift the hibyte data*/
Ibt3=lb3 + lb4;
AD[2]=lbt3;
c=((AD2[0] - 2048) / 4096) /10
if (r = = 0)
rr = 0;
else
{if (r > = 0 && r < = 0.5)
rr=l;
else
{if (r> = 0.5 &&r< = 1)
rr = 2;
else
{if (r>= 1 &&r<= 1.5)
rr = 3;
else
{if(r>= 1.5 &&r< = 2)
rr = 4;
else
{ if (r > = 2 && r < = 2.5)
rr = 5;
else
{ if (r> = 2.5 && r < = 3)
rr - 6;
else
{if (r > = 3 && r < = 3.5)
rr = 7;

82

else
{if (r > = 3.5 && r < = 4)
rr = 8;
else
{if (r > = 4 && r < = 4.5)
rr = 9;
else
{if (r > = 4.5 && r < = 5)
rr = 10;
}
}
}
}
}
}
}
}
}
}
if (c = = 0)
cc = 0;
else
{if (c > = 0 && c < = 0.5)
cc = 1;
else
{if (c> = 0.5 &&c<=l)
cc = 2;
else
{if (c > = 1 && c< = 1.5)
ce = 3;
else
{if (c> = 1.5 && c < = 2)
cc = 4;
else
{if (c > = 2 && c < = 2.5)
cc = 5;
else
{if (c > = 2.5 && c < = 3)
cc = 6;
else
{if (c > = 3 && c < = 3.5)
cc = 7;
else
{if (c> = 3.5 &&c< = 4)
cc = 8;
else
{if (c > = 4 && c < = 4.5)
cc = 9;

83

else
{if (c > = 4.5 && c < = 5)
cc = 10;
}
}

}
}
}
}
}
}
}
}
rrr = rr;
ccc=cc;
I = ((tab [rrr][ccc] 15) * 2048) + 2048;
II = (1 * 5);
printf (“%d %d \n”,rrr,ccc);
al—11 /256;

a2 = 11 % 256;
outport b (base + 0,al); /*ch#l) */
outport b (base + l,a2);
}
if (kbhit()) break;
}
}

3.5.4 Simulation Setup

The parameters for these fuzzy sets are as under:
NVL = [-1.2 -1 -0.784]
NL = [-1 -0.784 -0.568]
NM = [-0.784 -0.568 -0.316]
NS = [-0.568 -0.316-0.1]
NVS = [-0.316 -0.10]
ZE = [-0.1 0 0.1]
PVS = [0 0.1035 0.345]
PS = [0.1035 0.345 0.552]
PM = [0.345 0.552 0.7935]
PL = [0.552 0.7935 1]

PVL = [0.7935 1 1.2]

Table 3.6 depicts the Rule Base

84

e
ce

NVL NL NM NS NVS ZE PVS PS PM PL PV
L

NVL NVL NVL NM NVL NVL NVL NM NM NS ZE ZE
NL NVL NVL NM NVL NVL NL NM NM NS ZE ZE
NM NVL NVL NVL NL NL NM NS NS ZE PS PS
NS NVL NVL NVL NM NM NS ZE ZE PS PM PM
NVS NL NL NL NM NM NVS ZE ZE PS PM PM
ZE NVL NL NM NS NVS ZE PVS PS PM PL PV

L
PVS NM NM NS ZE ZE PVS PS PS PL PVL PV

L
PS NM NM NS ZE ZE PS PM PM PL PVL PV

L
PM NS NS ZE PS PS PM PL PL PVL PVL PV

L
PL ZE ZE PS PM PM PL PVL PVL PVL PVL PV

L
PVL ZE ZE PS PM PM PL PVL PVL PVL PVL PV

L
Table3.6: RULE BASE!FOR FUZZY LOGIC CONTROLLER

• Simulation Steps
1. From the source library, step input (with step time 0, initial value, final valuel)

is selected which is input to the plant.

2. Linear block library the blocks sum, derivative, gain, transfer function and state
space are selected. In gain block, we can adjust the desired gain in forward as
well as feedback path. The transfer function block allows us to modify the
transfer function according to our system. The state space block reads the
ABCD parameters for the IM model developed.

3. FLC block is selected from semolina. While running simulation, make sure
that the MS matrix corresponding to the fuzzy system used, is saved in both
MATLAB workspace and referred to by name in the dialog box associated with
The fuzzy logic controller block. Also a PDD controller block is selected for the
Design of PID controller.

4. Connection library allows choosing the block such as OUT, MUX. The MUX
block is selected in which the inputs can be varied according to the
requirement.

5. Sink Library: From this library Auto scale graph is selected for observing
simulation results. The Auto scale graph has initial time range of 5, initial y-
min of -10, initial Y-max of 10 and storage points of 200.The Simulation
results forfeedback gain of 0.1 are as shown in Fig 3.10 The effect of variation
of gain is shown studied. Results are shown in Fig 3.11, 3,12 & 3.13
respectively. It may be concluded that FLC improves the dynamic performance
of the plant.

85

(6). The simulation is also earned out using the look-up table (Table 3.7(a),)b)
prepared on the basis of Rule Base, for the block diagram shown in Fig 3.14.

s ss
-0.2500 -0.2500
-0.2000 -0.2000
-0.1500 -0.1500
-0.1000 -0.1000
-0.0500 -0.0500

0 0
+0.0500 +0.0500
+0.1000 +0.1000
+0.1500 +0.1500
+0.2000 +0.2000
+0.2500 +0.2500

Table 3.7(a): Lookup Table for FLC

86

-1 0000
-1 0000
-1.0000
-1.0000
-1 0000
-0 7000
-0.5000
-0 5000
-0 2000
0.1000
0.1000

-1.0000
-1.0000
-1.0000
-1.0000
-1.0000
-0.7000
-0 5000
-0.5000
-0.2000
0.1000
0.1000

-0 7000
-0.7000
-0.7000
-0.7000
-0 6000
-0.5600
-0 3000
-0 3000
0.0100
0 3000
0 3000

-0.7000
-0.7000
-0.7000
-07000
-0 5000
-0.5000

0
0

0 2000
0.5000
0.5000

-0 7000
-0.7000
-0.7000
-0 7000
-0.5000
0.2000
0.0500
00800
0 3000
0.5500
0.5500

-0.6000 -0.5000
-0.6000 -0 5000
-0 3000 -0 2000
-0 1500 -0.0900
-0 3000 -0.1000

0 01500
0 0900 0.2000
0.1000 0.3000
0.5000 0 5000
0.7000 07000
07000 0.7000

-0 5000
-0 5000
-0.2000
01000
0.1000
0.1500
0.3000
0.4000
0.5500
0.7500
0.7500

-0.4000
-0.4000
0.1000
0.2000
0.2000
0.4000
0 5000
0.7000
0.8500
0 9000
0.9000

0.2000
0.2000
0.3000
0 4000
0.4000
0 5000
0.8000
0 9000
1.0000
1.0000
10000

0 2000
0.2000
0.3000
0.4000
0.4000
0.5000
0.8000
0.9000
1.0000
1.0000
1.0000

Table 3.7(b); Lookup Table for FLC

Fig 3.14: SIMULINK setup for Lookup Table based FCL

The output response for step input is shown in Fig 3.15. The controller surface is
presented in Fig 3.16.

87

3.6 NEURO-FUZZY CONTROLLER

Combining the learning power of neural network with knowledge representation
of fuzzy-logic gives Neuro-Fuzzy (NF) systems. Neuro-Fuzzy software tools work as an
intelligent assistant to design. It helps to generate and optimize membership function as
well as rule base from the simple data.Neuro-Fuzzy controller (NFC) design is done
using ANHS (Adaptive Neuro-Fuzzy Inference System). ANFIS is about taking a
fuzzy inference system (FIS) and tuning it with a back propagation algorithm based
on some collection of I/P-O/P data. This allows the fuzzy systems to learn. ANHS
supports only Sugeno systems subject to the following constraints:

* Hrst order Sugeno type Systems
* Single O/P derived by weighted average defuzzification
* Unity weight for each rule

An error occurs if HS matrix for ANHS learning does not comply with these
constraints. Moreover, ANHS is highly specialized for speed and cannot accept all
the customization options that basic fuzzy inference allows, i.e. one cannot make his
own MF and defuzzification functions.

• ANFIS LEARNING NFC design is imparted using ANHS. To start ANHS
learning, training data set that contains desired I/P-O/P data pairs of the target
system to be modeled. The target is decided based on the ideal response of the
system under unit step input. When the IM is in running condition, parameter
variation causes drift in the system response. This may be due to the changing
rotor/stator resistance due to load change. A damped response in O/P for any step
change in me fP is required. In ideal condition, the O/P response for step I/P is (1-
eA-a*t).Thus damped response is obtained by optimizing the value of ‘a’. The O/P
response for the system is taken as:

y = [l-eA-5.67*x]

• Program in MATLAB for ANHS training is given below:
» mumps =51;

x = linspace (0,l,numPts)’;
z = linspace (0,l,numPts)’;
y = [l-(exp(-5.67*x))j;

plot(z,y);
pause
plot(z,y);
pause
data=[x z yj;
tmDatal=data(l :3:numPts,:);
chkData 1 =data(3:3: numPts,:);
plot(trnDatal(:,l),tmDatal(:,3), ‘O’, chkDatal(:,l),chkDatal(:,3), ‘x’);
pause;

88

tmData2=data(2:3:numPts,:);
chkData2=data(8:3:numPts,:);
plot(trnData2(:,2),chkData2(:,3),’o’,....

(chkData2(:,2),chkData2(:,3),’ x ’)
numMFs=[7,7];

mfType=str2mat(‘trimf);
fismat=genfis 1 (data,numMFs,mfType);
[x,mfl]=plotmf(fismat,’input’,1);
plot(x,mfl);
pause
[x,mf2]=plotmf(fismat,’input’ ,2);
plot(x,mf2);
pause
numEpochs=20;
[fismatl,tmErrl,ss,fismat2,chkErrl] =...
anfis(tmDatal,fismat,numEpochs,NaN,chkDatal);
[fismat2,tmErr2,ss,fismat2,chkErr2] =...
anfis(tmData2,fismat,numEpochs,NaN,chkData2);
tmOutl =evalfis(tmDatal (:, l),fismatl);
tmRMSEl=nonn(tmOutl - tmDatal(:,3)) / sqrt(length(tmOutl));
tmOut2=evalfis(tmData2(:,2),fismatl);
tmRMSE2=norm(tmOut2 - tmData2(:,3)) / sqrt(length(txnOut2));
epoch = 1 rnumEpochs;
plot(epoch,trnErrl, ‘o’,epoch,chkErrl, ‘x’)
pause
plot(epoch,tmErr2, ‘o’,epoch,chkErr2, ‘x’)
pause
hold on;
plot(epoch,[tmErrl chkErrl]);
pause
plot(epoch,[tmErr2 chkErr2]);
pause
hold off
pause
plot(epoch,ss,’ *’ .epoch,ss,’x’)
pause
[x mf]=plotmf(fismatl,’input’,l);
plot(x,mf)
pause
[x,mf]=plotmf(fismatl,’input’,2);
plot (x,mf)
pause
anfis_y = evalfis(x,fismatl);
plot(tmDatal(:,l),tmDatal(:,3), ‘o’,....

chkDatal(:, 1),chkDatal(:,3), ‘x’,....
x,anfis_y,

pause

89

anfis_y = evalfis(x,fismatl);
plot(tmData2(:,2),tmData2(:,3), ‘o’,....

chkData2(:,2),chkData2(:,3), ‘x’,....
x,anfis_y,

The design parameters of ANHS are as follows:

" 1. Number of total data pairs are decided. (51)

2. Training data set and checking data set are defined

3. Fuzzy inference system for training is specified. (For our system MF= 7 and
MF type = triangular)

4. Number of epochs are chosen to be 20 to start the training.

5. Learning results are verified and Root Mean Square Error (RMSE) is obtained.

6. Step size is mentioned.

7. Final MF are plotted

8. FIS O/P is plotted.

• SIMULATION RESULTS: Fig 3.17 depicts complete ANEIS learning and

90

Fig 3.18:Oiitput Response of NFC for Input 1 & 2

The simulation results and ANFIS information are given below. ANFIS training
completed after 20 epochs for error gives:

* Minimal training RMSE = 0.000002
* Minimal checking RMSE = 0.000164696
For change of error it is:

* Minimal training RMSE = 0.000001
* Minimal checking RMSE = 0.000222164

• EXPERIMENTAL SET-UP
The proposed PC based experimental set-up is shown in Fig 3.19 The details of
the experimental set-up are as follows:

+

Fig 3.19: EXPERIMENTAL SET-UP

91

1. Reference signal for speed: 0-5V DC reference signal corresponding to zero to
rated speed is generated from regulated power supply. This voltage is varied by
using preset (10KQ).

2. Feedback Signal: Feedback signal from tacho-generator (AC Tacho) is converted
to DC signal by rectifier. This is scaled to 5V DC corresponding to rated speed
(1500 rpm). This is achieved through the proper resistance divider.

3. Interfacing Circuit: These analogue signals are fed to PC. Before connecting
them to PC they are isolated and normalized by using interfacing card. This is
shown in Figure-18.

4. A/D and D/add-on cards: A/D conversion is obtained by using PCL 812 card.
D/A conversion are obtained by using PCL 726 card. These are add-on cards
placed inside the PC.

5. Control Algorithm: An algorithm for FLC is build up as given in Appendix-3.
The inputs error (e) and change of error (ce) is given through this algorithm. A
look up table is prepared which is scanning error & change of error and according
to the rules; output is obtained in the form of crisp value.

6. Control Circuit: The output of the controller through PCL 726 is interfaced to
control circuit. This consists of PWM control circuit. This generates the PWM
signals for the inverter.

7. Base Drive: Base drive for IGBT inverter is used to interface the control signals
to inverter. This is based on opto- isolation technique. This circuit is hardwired
to main IGBT’s used for inverter.

8. Inverter : Bridge type IGBT inverter is built for AC motor drive. Output of
the inverter is varied so as to achieve the speed control. A V/f technique as
mentioned in the Figure-1 is used.

This complete scheme may be tested with the fuzzy logic based speed controller.

3.7 Compensation of Dead-zone Non-linearity

The conventional controller [13] is based on plant dynamics and rigorous
mathematical models with linear as well as non-linear variables. The control action is to
tune the controller parameters, but this cannot cope with the varying control environment
or system non-linearities. Facing these problems, the investigators realize that
incorporating human intelligence into automatic control system would be more
efficient solution and this leads to the development of Fuzzy Logic Controller. Due
to the non-linear component added in the system Fuzzy Logic Pre compensator is also
made which leads to the better response of the system.

The pre compensator [14] is made in order to reduce the effects of the non-linearity
like dead-zone, backlash, hysterisis. The Fuzzy logic pre compensator is designed for the
dead-zone. The model for this is shown in the following section. The power pf Fuzzy logic
systems is that they allow one to use intuition based on experience to assign control
systems, then provide the mathematical machinery for rigorous analysis and modification
of the intuitive knowledge, through learning or adaptation to give guaranteed performance.
The FL pre compensator [15] effectively provides a pre inverse of the dead-zone. FL
techniques are in terms of membership functions, which are needed for compensation of
the non-linear mechanical systems.

92

The fuzzy logic [16] pre compensator is designed in order to tune the error such that
the error will be as small as possible. This tunes the dead-zone pre compensator into an
adaptive fuzzy logic compensator. To create a new fuzzy inference system start the FIS
Editor by entering » fuzzy at MATLAB prompt Two inputs are defined as error (e) and
change of error (ce).The output is the control input(u) to the motor. The output which is
the control input can be represented as: u = f(e, ce) for a non-linear function f.

To define the membership functions associated open MBF editor (Fig 3.20) by
pulling down the View Menu item and selecting Edit Membership Functions. The MBF
for error(e), change of error(ce) and output(u) are all defined within the range [-1,1].
The ranges are nothing but normalized domains [universe of Discourse] which is
required for scale transformation which maps the physical values of process state
variables into normalized domain. The choice of membership function is done taking
into account the output response of the system.

The characteristics of a good response is low setting time, less overshoot, low
steady state error etc. Thus different types of membership functions are tried & the best
suitable response if found to be of triangular membership function. The shape of the
membership functions for both inputs and single output is chosen as triangular.

The number of MF’s for both input and output variables are chosen to be eleven.
We choose eleven fuzzy sets that are specified on the domains of‘e’ and 'ce'. These are
NVL, NL, NM, NS, NVS, ZE, PVS, PS, PM, PL and PVL corresponding respectively
to negative very large, negative large, negative medium, negative small, negative
very small, zero error, positive very small, positive small, positive medium, positive
large and positive very large. In the same manner, the eleven fuzzy sets are defined on the
domain of definition of the output u.

AA

H»l| ^LlMUICa] B«M» m. la—-«-l mm,*,. 30 >vm

Fig 3.20(a) Membership FunctionEditor

93

The parameters for these fuzzy sets are as under:

3.7.1

NVL = [-1.2-1 -0.784]

NL = [-1 -0.784 -0.568]

NM = [-0.784-0.568-0.316]

NS = [-0.568 -0.316-0.1]

NVS = [-0.316-0.10]

ZE = [-0.10 0.1]

PVS = [0 0.1035 0.345]

PS = [0.1035 0.345 0.552]

PM = [0.345 0.552 0.7935]

PL = [0.552 0.7935 1]

PVL = [0.7935 1 1.2]

FLC DESIGN

DC MOTOR SPECIFICATIONS

Kc 1.57
Ke 2
Km = 5
Tc 0.01
Te 0.06
Tm = 0.15
Kt 1

The values of K^, Ke, Km, Tc, Te and Tm leads to the transfer function of the motor as:

94

©act / ©ref = 174444.44 / (sA3+122.22*sA2+2444.44*s+l 1111.11)

To activate the Rule Editor, go to the view menu and select Edit rules. Rule editor

contains a large editable text for displaying and editing rules. Since, there are eleven

membership functions for error and change of error, the maximum possible rules can

be written are 121 .A total number of 119 rules are formed to give robust performance

of the controller. A portion of rule base is shown in fig 3 .21

J|S»a.« | MATLAB Com | BPS Edito. Un | gnSEdla «c [■IMbomHPow | ■ FIS EAa ac. || g Rule 1 40AM

Fig: 3.21 Rule Base Editor for Creation of a Rule Base

The linguistic rules of error with negative sign mean that the current process

output has a value below the steady state value. On the other hand linguistic values of

error with a positive sign means that current output is above the steady state value. The

linguistic values of change of error with negative sign means that the output has increased

when compared to its previous value. The magnitude of such a negative value is given by

the magnitude of this increase. Linguistic values of Ce with a positive sign mean the

output has decreased its value when compared with its previous value. The magnitude of

such a value is the magnitude of decrease.

A linguistic value of zero for error means that the current process output is at

steady state. A zero for change of error means that the current process output has not

changed from its previous value. The rule can be entered in verbose or symbolic or index

fashion. The rules written are shown in Rule Editor, which can be parsed by pressing Ctrl-

95

enter. To view the rules in Rule Viewer, select View from the View Menu. Select the

blocks from the semolina library, the block diagram for study is created. Fig-3.22

indicates the combined block diagram of plant, plant with PE) & plant with ELC.
>

BLOCK DIAGRAM OF FUZZY COMPENSATOR

Fig: 3.22 Combined SIMULINK set up including dead-zone for Plant,
Plant with PID and Plant with FLC

3.8.2 RUNNING the SIMULATION

1. From the source library, step input (with step time 0, initial value 0, final
value 1) is selected which is input to the plant. From the source library,
sinusoidal input is taken whose amplitude is 0.5 and frequency 2Hertz/sec and
sample time 0 phase 0 is selected and is given to input of the plant with pre
compensator and dead-zone nonlinearity.

2. Linear block library has various blocks such as sum, product, derivative,
integration, gain, and transfer function, zero-pole and state space. For our
study the blocks selected are sum, derivative, gain, transfer function and state
space. In gain block, we can adjust the desired gain in forward as well as
feedback path. The transfer function block allows us to modify the transfer
function according to our wish.

3. Dead-zone is selected from the nonlinearity from the main library of the
simulink.

4. FLC block is selected from simulink.While running simulation, make
sure that the FIS matrix corresponding to the fuzzy system used, is saved in

96

both MATLAB workspace and referred to by name in the dialog box
associated with the fuzzy logic controller block. Also a PID controller block
is selected for the design of PID controller.

5. Connection library allows choosing the block such as OUT, MUX. The MUX
block is selected in which the inputs can be varied according to the
requirement. Also the signs are changed as per the need.

6. Sink Library: From this library Auto scale graph is selected for observing the
simulation results. The Auto scale graph has initial time range of 5,initial y-
min of-10,initial y-max of 10 and storage points of 200.The Simulation
results are as shown in Fig 3.23(i) for a feedback gain equal to 0.01. Also
results are added for different gains as shown in Fig 3.23(ii), (iii) and (iv)
respectively.

Comparative Response
Plant, Plant with PID, Plant with FLC

Fig 3-23 (i)

FFG of FLC=I.57 , FBG=.l
FFG of PID=1.2, FBG =.l

Fig 3.23 (ii)

Comparative Response
Plant with dead zone, PID with dead zone
_____ Adaptive fuzzy compensator_____

ig 3.23 (iii)

Comparative response
FBG of fuzzy compensator =0.1

Dead zone=-0.4 ,0.4

ig 3.23 (iv

97

It may be concluded from figure that FLC improves the dynamic performance of
the plant.

The conventional controller is based on plant dynamics and rigorous
mathematical models with linear as well as non-linear variables. The control action is to
tune the controller parameters, but this cannot cope with the varying control environment
or system non-linearities. Facing these problems, the investigators realise that
incorporating human intelligence into automatic control system would be more
efficient solution and this leads to the development of Fuzzy Logic Controller. Due
to the non-linear component added in the system Fuzzy Logic Pre compensator is also
made which leads to the better response of the system.

3.8 Adaptive Fuzzy Logic Compensator for Backlash

Fuzzy Logic (FL) systems have several major properties that make them useful in
feedback control, including the function approximation property, the classification
property, ability to select initial parameter values based on sound control engineering
experience and ability to tune the parameters adaptively to yield guaranteed closed-loop
performance.

• Function approximation property of fuzzy system: For the fuzzy system it has been
shown in various research papers that the fuzzy system functions provides a basis
for continuous function if the membership function and rule are properly chosen.
This justifies their usual name of fuzzy basis function (FBF), and implies a
universal approximation result for FL system. The uniformly spaced triangular
MBF suffice for any smooth f (w) if the number of MF Nj for each component w, is
selected large enough.

• Classification property of fuzzy system: Implicit in the definition and the
philosophy of FL systems is a classification property. Each component Wj of the
input is classified as belonging to some MBF X1IJ, depending on the region within
which Wj fallswith in the region of support of Xj,j(Wj).

In feedback control application, this allows a very convenient technique
for defining different control methods actions depending on different regions of
w. No analytic actuator nonlinearities such as the backlash have different effects
depending on the region within which the argument lies, so that FL systems seem
very natural in compensating for them. The FL approach thus subsumes other
approaches based on switching logic and indicator functions.

In this section, a fuzzy pre compensator [16] is designed for symmetric backlash non
linearities in actuation of system in the class.

98

3.8.1 Backlash non linearities

If u and x are scalars, the symmetric backlash non linearity may be described as:

x = Bb (u)=

u -b/2 u<b_
U -b/2 b.<u < b_/2
u -f b/2 bV2<u<-b+
U + b/2 -b+/2<u<-b.
u -b/2 u = -b+

(3.15)

The parameter vector b = [b_/2 b+/2] characterizes the width of the motion backlash.
In practical motion control system, since the width of backlash is unknown, the
compensation is difficult. Most compensation techniques covers the case of
symmetric backlash where bJ2 = b+/2.

• FL compensation of multi-input systems with output backlash

To offset the deleterious effect of backlash, one may place a pre compensator there
the desired function of the pre compensator is to composite throughout from to to x to
be unity. The power of fuzzy logic is that to allow one to use intuition, based on
experience to design control system and then provide the mathematical machinery for
rigorous analysis and modification of the intuitive knowledge, for the example
through learning or adoption, to give the guaranteed performance due to classification
property of FL, they are very powerful particularly when the non linearity depends
on the region in which the argument u of the non linearity is located, as in the non
symmetric backlash.

In most practical motion control systems, there are several control inputs so that
co, u , x are generally u vectors. There may be different backlash characteristics in each
channel so that for i = l,2,....,n for each components CDi, Uj, xj one has a symmetric
backlash.

x, = Bb,(u,)= u, - Sat b,(u,) (3.16)

with b, = [bV2 b+/2]T, one can write this in a vector form as

?i = Bb (u)= u - Sat b(u) (3.17)

where the block diagonal matrix diag(bj/2 b?/2 .. . } € R2n x", the vector
saturation function is defined as

Sat B (u) = [Sat B, (u,)] (3.18)

where [z,] denotes the vector with component z,. Then one must use a
fuzzy logic (FL) compensator for each channel.

The backlash pre compensator, designed using engineering experience would be
discontinuous and depend on the region with in which © occurs. It would naturally be
described only the rules

99

If (w, G X+ (w,)) then (wr = B,+)
If (w,€ X. (w,)) then (wFl = -B,-) (3.19)

to accomplish this, define
Ui = w, + Wr (3.20)

with MFs X+(.), X (.) defined for each component according to the following :
0 , w, < 0

X+(w,) = 1,0 = w,

1, w; < 0
X.(w,) = 0,0 = w; (3.21)

which are shown in fig-3.

Define the estimate vector B, = [B,+/2 B,V2]x.The fuzzy logic pre compensator may be
conveniently expressed in vector form as follows.

Define the vector WF = [WFi, Wr, ... Wr* f so that

U = w + Wf
u = w + BT x (w) . (3.22)

where the block diagonal matrix of estimated backlash width is
B = diag [bi b2 b3... bn] and
the vector fuzzy logic based function is given by

X (w) =[X+(wO -X- (wj) X+ (w2) -XL(w2)X+(wn)-X.(w„)f (3.23]
The throughput of the compensator plus backlash for vector <d, u, xG R" is

x=w -Btx(w) + Bt8 (3.24)
~ A

where the matrix backlash width estimation is B = B - B
= diag[bib2b3.. .bn).

The vector mismatch 5 has a component 8, and satisfies
H 5 1 = vn (3.25)

Tuning or learning of backlash width estimation B(k) is done on line. So that the tracking
error is guaranteed minimum and all internal states are bounded. This will make discrete
time adaptive EL backlash compensator. In this estimation it is assumed that the actuator
output x(k) is not measurable. It is important to note here that the discrete time FL
backlash compensation signal w(k) is injected exactly at the same instant at which
standard dithering, signals are injected. Thus, this backlash compensation scheme could
be considered as adaptive dithering.

3.8.2 RUNNING the SIMULATION

The adaptive EL compensator for output backlash compensation is simulated on a
digital computer using MATLAB Simulink toolbox. It is proved to be very efficient
in nullifying the effect of output backlash.

100

We simulate the response for the known transfer function model of DC motor with
output backlash, with and without FL compensator. The result taken are comparative
for the same plant with uniform output backlash, using PID controller, with no
controller and with FL controller. The DC motor transfer function considered in this
particular case study is

0.2481 [z/(z-e130IT) - z/(z-e6 98T)] (3.26)
Taking sampling time T=0.1 sec, the system transfer function reduces to,

0.41 z/z -5.68 z +7.38 (3.27)

KjPRECOM -isizsl

Fie Edit View Simulation Format Tools Help

I

► ■ jio.o j Normal _dl ® IsM 0 ^ 4

G«in1

Two I j ye red Fuzzy logic compensator for Bjckljih nonlinearity

__ IjJ
| lOmb odc45

Fig 3.24 FLC Based Compensator

L8.3 Two-Layered Adaptive Fuzzy Logic Controller

The direct use of FLC to a system having Backlash nonlineanties results in poor transient
and steady state performance. Paper presents a fuzzy logic based scheme
which eliminates above listed problem. Our control scheme consists of two
layers: a fuzzy pre compensator and a usual fuzzy logic controller.
Proposed system shows better performance as compared to normal one
layer approach. Two layer fuzzy logic controllers consist of two fuzzy logic
compensator:

l Conventional Fuzzy Logic Controller
2. Fuzzy pre compensator

• Conventional Fuzzy Logic Controller: The fuzzy logic controller is usually
designed on fuzzy lgic control law. In this paper the FL law taken is
F[e(k),Ae(k)]. In that e(k) and Ae(k) are two input given to the controller and
F[e(k),Ae(k)] is one output of the FLC. The two inputs considered are output
error e(k) = ym(k)-yp(k) and second input is change in output error Ae(k)= e(k)-
e(k-l). In the design of the FLC set of linguistic variable values and

LlL_
Ready

101

membership functions are considered. In this FLC set of linguistic values L is
considered and are

L= { NB,NM,NS,ZO,PS,PM,PB} and set of membership function (MBF) is
considered as : M= { MNb,MNm,Mns MZoMpS Mpm Mpb j and is a real line
to the interval [0,1]. The meaning of the linguistic variable values are clear

from their mnemonic and is taken as

First character
N - Negative
ZO- Zero
P - Positive

Second Character
B- Big
M- Medium
S- Small

In standard fuzzy logic controller it consists of three stages i.e
fuzzification,
decision making fuzzy logic and defuzzification.
Fuzzification: It transforms the inputs e(k) and Ae(k) into the setting of the

linguistic values. For each linguistic value 1 6 L, a pair of Mf values ne(l) and
Ane(l) to the inputs e(k) and Ae(k) using associated MF. The association is
given as

ne(l) =M1(Cee(k))
Ane(l) = M,(CAeAe(k)) (3.28)

where: Ce and CAe are scale factor and ne(l) and Ane(l) are used in fuzzy logic
decision process.

Decision making Fuzzy Logic: Using linguistic variable values and MF numbers
of rules can be associated with the fuzzy logic controller. The expertise and available
knowledge is utilized to build these rules. Trial and error method is also implemented. In
our case fuzzy rales R= f Ri,R2,R3 ... Rr}.

Each rule in rule base set R is a triplet { le, lAe, lw } where le> lAe, lw e L.The rales
are often written as “if error (input 1) is le and change in error (inpu2) lAe then output is
lw”. On the bases of set of 7 linguistic values 49 rales in the rale set can be taken. Here
experience, practical knowledge and trial and error method will help us to prepare
appropriate rule base. In our design of controller 21 rules are taken as a rale base and are
listed in table:3.8.

e(K)
Ae (k) NB NM NS ZO PS PM PB

NB NB NS
NM NM NS’
NS NS ZO PM
ZO NB NM NS ZO PS PM PB
PS NM NS ZO PS
PM PM
PB PM PB

TAI iLE 3.8: FUZZY LO>GIC RULES FOR FLC

102

Rule Ri= (le, W, lw) takes e(k) and Ae(k) as inputs mid assigns it to a function
Pi(e(k), Ae(k),w), we [-1,1] and is given as

Nmin = min(ne(le), n^W))
Pi(e(k),Ae(k),w)=min(Nmin,Miw(w)) we [-1,1] (3.29)

Corresponding to each rule one pi function is associated and if we combine all 21
function in this case we get an overall function q as,

q(e(k),Ae(k),w) = max(pi(e(k),Ae(k),w),.. pr(e(k),Ae(k),w)), w e [-1,1]
(3.30)

Defuzzification: This stage in FLC leads us to the real number output. In ELC
design the FL rales are mapped to get real number output F[e(k), Ae(k)] and is
given as

71 wq(e(k),Ae(k),w)dw
F[e(k),Ae(k)] = CF ------------------------------

71 q(e(k),Ae(k),w)dw ' (3.31)

Cf is a scale factor. As the ratio of RHS of the above equation is center of area or
centroid of the function q(e(k),Ae(k),w), the defuzzification is called center of
Area or centroid method.

• Fuzzy Pre compensator

Fuzzy pre compensator as in the usual FLC also contains three stages. It contains
set of linguistic values L’ and set of Membership Functions (MF) M’. The linguistic
values U are used for the input to the pre compensator and linguistic values L are used
for the output. The pre compensator uses linguistic values set:

L’= {NE, ZE, PO] and

Associated MF M’ = {Mne,Mze,Mpo}. : The mnemonic in L stands for negative, zero
and positive respectively. It is also consisting three stages as usual FLC compensator:
Fuzzification, decision making fuzzy logic and defuzzification.

Fuzzification: The three inputs of the fuzzy compensator e(k), Ae(k) and p(k-l)
are assigned with numbers me(l’), Ame(l’)» and i%(r) respectively through,

me(l’) = M]>(C’ee(k))
Ame(F) = Mr(C’AeAe(k))
m(l(r) = M,.(CVli(k-l)) (3.32)
where C’e, C’Ae and C’^are scale factor

Decision making fuzzy logic of pre compensator consists of 27 rule (R’i,... ,R’27] as
per table 3.9

103

IF THEN
e(k) Ae(k) H(k-l) H(k)

NE NS
NE NE ZE zo

PO zo
NE PS

ZE ZE zo
PO NS
NE PM

PO ZE PS
PO ZO
NE ZO

NE ZE NS
ZE PO NS

NE ZO
ZE ZE zo

PO ZE
NE PS

PO ZE , PS
PO ZO
NE PM

NE ZE PS
PO PO ZO

NE PM
ZE ZE PS

PO ZO
NE PB

PO ZE PS
PO ZO

TABLE 3.9: RULES FOR FUZZY PRECOMPENSATOR

Here each rule R\ is a quadruplet (l’e, l’Ae. l’n, V) where Pe, 1’Ae, l’ns L’ and 1^ e
L(The linguistic values set of FLC). As in usual FLC, we had calculated function P’,’s
using experience and practical knowledge and 27 P’, related with each rule in rule set
are combined to get similar function q’ as in FLC. By defuzzification of the above
function q we get single value output of the pre compensator and is given as

X1 pq’(e(k)Ae(k), |i(k-l), jx)dp
G[e(k), Ae(k), p(k-l)] =CG ---------------------------------------+p(k-l) (3.32)

X1 q’(e(k),Ae(k), |i(k-l), p)dp
CG is a scale factor.

The adaptive two layer FL controller for output backlash compensation is
simulated on a digital computer using MATLAB Simulink and fuzzy logic toolbox. It is
proved to be very efficient in nullifying the effect of output backlash. We have carried
out simulation for the known transfer function model of DC motor with output backlash,
with single layer (usual FLC) and two layer compensator approach. The results are

104

compared for the same plant with uniform output backlash with single layer(Fig 3.25)
and (ii) with two layer approach.

Fig 3.25: Single Layer FLC

rormat Tools Help

L
f\r*

Sine

> "F"[Henri j

t>du/dt

Mux ■Ml
Odin

,41 z

(z-3.461)(z-2219)

Fuzzy Logic
precomp«nsator

Discrete
Zero-Pole

Baddash
Fuzzy Logic

Controller

Derivative 2 «■

□
Scope

6ain1

Fig 3.26: Two Layer FLC

The DC motor transfer function considered in this case study is

0.2481 [z/(z-eI301T) - z/(z-e6 981)] (3.33)

Taking sampling time T=0.1 sec, the system transfer function reduces to,
0.41 z/z2-5.68 z + 7.38 (3.34)

105

Fig 3.27 shows the response and Fig 3.28 shows the effect of variation of width of
backlash. The response indicates that the performance is independent of the width

£«• £d» ^indcw• U«*P

Tim* (second)

| MAT LAB Com | J^Lfetaty »«mufcTfc| pid_tz4| m IMkaosoft Po»m || M p>4_»»4/6«... ?3G 257AM

Fig: 3.27: Output Red - with FL Pre compensation; Blue - without FL
compensation; Green - with PID

Backlash Width= 0.4
ftp»* a

•'Jtf’s JsJii.

Backlash Width =0.6
PfiP ABO •

Backlash Width=0.5
ftp»s: a

SO.™** ^
Fig 3.28 Response of two layer FLC with Backlash

The effect of variation of width of backlash is shown in the figure. The response
indicates that the performance is independent of the width.

The basic fuzzy controller application which replaces the PID controller for
variable speed controlled EM is presented. The comparison of this controller with
conventional PID controller shows improvement in the output response (Low settling
time and less overshoot).

This controller is modified further to tune the desired performance by tuning the
fuzzy inference system. The training data generation is based on the required response

106

from the plant Training of FLC modifies the membership function so as to adopt the
change in input for a fixed tracking of O/P. This improves the insensitivity of the
controller to plant parameter variation. Neuro-Fuzzy Controller design using ANMS
reduces the number of rules/membership functions and improves the speed of response in
comparison to that of FLC.This improved controller makes the system robust. The system
is easily implemented using crisp value (Sugeno type) on PC.A dedicated hardware can
be used.

The Fuzzy Logic Controller and Fuzzy Logic Pre compensator is designed here.
The fuzzy controller application replaces the PID controller for the variable speed
controlled motor. From the responses obtained we can see that the Fuzzy Logic controller
and FL compensator shows the improvement in the output response. The use of Fuzzy
Logic compensator compensates the effects of the nonlinearity. This improved controller
makes the system robust.

A discrete time two layered fuzzy logic controller (FLC) has been proposed for
compensation of backlash non linearity in a control system. It consists of two layers i.e
fuzzy pre compensator and a conventional fuzzy logic controller. The proposed scheme
shows superior steady state and transient state performance, compared to usual single
layer FLC.

The fuzzy pre compensator in this scheme can easily be added without affecting
the existing system and retuning of system variables is also not required. It is a robust
controller to the variation of backlash non linearity. The performance is verified through
simulation result

