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Chapter 3
Soft computing: Techniques and Development Tools___________

Chapter gives a brief overview of the computing techniques such as Fuzzy logic, 
Neural network and Neuro-fuzzy networks. The most popular tools used by the 
researchers for development and simulation study of the system under test such as 
MATLAB, SIMULINK and associated tool boxes for development of control 
applications are also described.

Use of tools has been illustrated by an application related to electrical drives. An 
FLC for the AC and DC drives has been developed. The response of the designed system 
is simulated using SIMULINK and compared with conventional PID controller.. Single 
Layer Fuzzy compensator for Non-linearity compensation and Two layer for pre­
compensation are also developed. SIMULINK is used for testing the performance of the 
compensator.

3.1 Introduction
Correct model of process may not be available or mode may be, complex with to 

many unacceptable assumptions The classical modeling algorithm may not respond well 
to the measurement noise in sensors or performance through classical algorithms may not 
be adequate.

The FUZZY LOGIC based systems may be developed to overcome classical 
algorithm problems. The fuzzy logic frees us from the true/false reasoning of logical 
system of type that are used in symbolic languages.

Fuzzy linguistic models [1] hold the promise of providing a finite qualitative 
partition of a quantitative dynamic system while being applicable to any system that can 
be described in linguistic terms. Fuzzy models provide a succinct and robust 
representation of systems that lack a complete quantitative model or have uncertain 
system perturbations. Consistency in reasoning, however, has not yet been proven for a 
frizzy linguistic representation of a quantitative system.

Fuzzy linguistic models use fuzzy sets to create a finite number of partitions MBF 
of the inputs, outputs and states of a quantitative system. Currently most fuzzy models are 
implemented as a set of if-then rules, where the system input is used to evaluate the 
rules’ antecedents and the model’s output is the combined output of all the rules 
evaluated in parallel. This simple logical system, a Fuzzy Inference System (FIS), does 
not implement inference chaining and can only evaluate a simplified qualitative model of 
a plant. Recent work has expanded the usefulness of this structure by providing machine 
learning methodologies to adapt and tune fuzzy linguistic models and to automatically 
generate new models through self-organization.

Input output relations (mapping) in the form of traditional mathematical modeling
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is replaced by ANN learning the synaptic weights by undergoing a training process. ANN 
has built in adaptability or can be trained to modify the weights with the change in 
environment. The ANN can deal naturally with contextual information. Since knowledge 
is represented by the regular structure and activation state of network. Every neuron is 
potentially affected by the global activity of all other neurons. ANN can be trained to 
make decisions and they are also fault tolerant in the sense that if a neuron or connecting 
link is damaged, recalling a pattern will be impaired in quality but due to distribution of 
information in the network damage has to be extensive for overall degradation. Since 
neurons are the common ingredients for all ANN, it is possible to Share the algorithm and 
structures in different applications. So it is possible to have a seamless integration of 
modules. The ANN is suitable in the following situation....

Learning or tuning allows the initial linguistic fuzzy model developed from 
heuristic domain knowledge to be optimized. Learning is achieved by using a neuro- 
fuzzy structure and exploiting the supervised learning strategies originally developed for 
neural networks.

These strategies include gradient descent back-propagation, least-mean-squares, 
and a hybrid methodology that combines least-squares to optimize linear parameters and 
back-propagation to optimize the nonlinear parameters. These same supervised learning 
methodologies can automatically learn any arbitrary nonlinear mapping between input 
and output without an initial linguistic fuzzy model. The resulting self-organized fuzzy 
models do not necessarily have a linguistic interpretation that would be recognized by a 
human expert. Often systems developed through self-organization are never interpreted 
linguistically, but are utilized effectively for pattern matching and curve fitting. Fuzzy 
networks are often preferred for curve fitting because the fuzzy rules used by the network 
have only a local effect, in effect providing an adaptive mechanism for implementing B- 
splines.

It is possible to integrate the fuzzy logic controller with ANN so that the 
expression for the knowledge used in the systems is understood by humans. This reduces 
difficulties in describing the ANN. Fuzzy controller learns to improve its performance 
using ANN structure & thus learns by Experience. Neuro-computing is fast compared to 
conventional computing because of massive parallel computation. Besides, it has the 
properties of fault tolerance and noise filtering. Here neural network is used as if 
estimator. Neural network-based control strictly does not need a mathematical model of a 
plant like a conventional control method does with the required precision.

3.2 Fuzzy Logic

Fuzzy logic has rapidly become one of the most successful of today's 
technologies for developing sophisticated control system. Fuzzy logic is nothing but 
the extension of binary logic. The main difference between the Fuzzy logic and binary 
logic is that in binary logic we take only two cases, either 0 or 1, that means low or high 
states. In Fuzzy Logic we take each & every state into consideration. Fuzzy logic is a 
method for represent ting information in a way that resembles natural human
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communication. It then manipulates that information similar to human reasoning. 
Fuzzy logic has been applied to problems that are either difficult to tackle mathematically 
or where the use of fuzzy logic provides improved performance. The development of 
fuzzy logic traces back to 1965 when Dr. Lotfi Zadeh presented a paper on Fuzzy 
sets. Since, then this Fuzzy logic as a tool has come in long way [2]. Considering 
industrial application using fuzzy logic controls, is going to be the most important data 
bank. This is termed as ‘Knowledge Base'. Recently, methods of automatically 
identifying parameters for a fuzzy system has enabled application of fuzzy controls even 
to those processes where human heuristics are not easily available.

3.2.1 KEYWORDS, TERMINOLOGY

• DEFINITION
Fuzzy Logic is the logic using fuzzy set defined by membership functions in the logical 
expression corresponding to the rule base.

• FUZZY CONTROL
It can be defined as a way of defining non- linear table based control where the 
definition of non-linear transition function can be made without the need to specify 
each entry of the table individually. It can also be viewed as a knowledge based 
interpolation technique.

• LINGUISTIC VARIABLES
The primary building block of any fuzzy system is linguistic variable while the 
linguistic term indicate / represent possible values of a linguistic variable. The linguistic 
variables translate crisp value into a linguistic description.

• MEMBERSHIP FUNCTION
A relation between a variable and linguistic variable in terms of a value in the range 
(0,1) is called membership function.

• FUZZY SET
A set obtained by assigning fuzzy values to the linguistic variable using membership 
function.

• PREMISE
It is the fuzzy specification of linguistic variable.

• CONCLUSION:
Fuzzy output in terms of linguistic variable is called conclusion.

• FUZZY RULE
A linguistic rule derived from the expert’s behavior to control process under study. It 
contains premise as first part and conclusion as second part.

• FUZZIFICATION
It is a process of assigning the fuzzy values to linguistic variable using fuzzy set.

• DEFUZZIFICATION
A process of obtaining crisp value for fuzzy output is called defuzzification.

• UNIVERSE OF DISCOURSE
Universe of discourse is defined as the total range of all available information in a 
given problem. Once this universe of discourse is known, we can define certain events 
on this information space.

• CRISP and FUZZYSETS
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Crisp sets or classical sets contain information whether it belongs to the set or not. It is 
very much same as digital logic or Boolean logic. Fuzzy sets on the other hand 
contain information for which belongings varies from [0,l].This is therefore multi­
valued logic.

• MEMBERSHIP FUNCTIONS
A membership function (MBF) is a curve that defines how each point in input space is 
mapped to a membership value (or degree of membership) between 0 and 1. The 
simplest MF is formed using straight lines. Simplest is the triangular MBF, a collection 
of three points forming a triangle. Other types include the Trapezoidal, Sigmoidal, pi, 
Bell shape. MBF.

• FUZZIFICATION
It is the process of assigning fuzzy values to linguistic variables using fuzzy set. 
In the real world, hardware such as a digital voltmeter generates crisp data, but these 
data are subjected to experimental error. We want to compare a crisp voltage reading 
to fuzzy sets say as 'low voltage' or 'high voltage'. The range of the output voltage 
becomes the universe of discourse and the process of identifying a crisp quantity as a 
fuzzy is called Fuzzification. Assigning of range of membership to the transferred fuzzy 
quantity in this way is termed as "Fuzzy Measures’. The assignment process can be 
intuitive, heuristic or it can be based upon the algorithms or logical operations. 
Fuzzification is the first step where a crisp input is fuzzified.

• RULE BASE and DECISION MAKING
Perhaps the most common way to represent knowledge is to form it into natural 
language expression of the type :

If premise (antecedent), Then conclusion (consequent)

This form of expression is referred to as IF-THEN rule base format. It typically 
expresses
An inference such that if we know a fact (premise, hypothesis, and antecedent) then we 
can either infer or derive another fact called conclusion (consequent). This form of 
knowledge is quite appropriate in the content of linguistics as it expresses human 
empirical and heuristic knowledge in our own language of communication. Collection of 
such rules forms a rule base. The dimensions of rule base are dependent upon the 
fuzzification level of inputs. It is important to note that all the inputs need not condition 
the output. One input may have an influence on the output independent of other input. 
The formation of rule is a copyright process of the designer. The process of combining 
the effect of these rules to produce an output is called as the process of inference.

• FUZZY INFERENCE
The fuzzy inference process consists of two phases:

1. The composition of rules applied.
2. Obtaining crisp output from fuzzy inference.

Task of meaningful combination of control actions prescribed by different rules 
activation or firing is called as composition.

• DEFUZZIFICATION
It is a process of rounding off from multi-valued output to a single value output. The 
output of a fuzzy process can be the logical union of two or more fuzzy
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Membership function defined on the universe of discourse of output variable. The 
Choice of methods is again context dependent. The general criteria are that the 
method must have continuity, unambiguity and computational simplicity. The 
centroid method correctly fits into these requirements and almost invariably used.

3.2.2 ARCHITECTURE OF FUZZY CONTROL
The architecture of fuzzy control is shown in Fig 3.1.

Fig 3.1: THE ARCHITECTURE OF FUZZY CONTROL.

The knowledge base contains information about the boundaries of the linguistic 
variables data base. Fuzzification interface receives the current I/P value,maps it to a 
suitable domain i.e it converts the value to a linguistic term /Fuzzy set. Decision logic 
determines the O/P value from the measured I/P according to the knowledge base. De­
fuzzification interface has the task of determining the crisp value. The design steps [3] 
are as follows:

I. Create linguistic variables and vocabulary for the IZP-O/P variables in 
which the rules of operation are specified.

II. With reference to the I/P-O/P and control variables, define the structure of 
the system to represent the flow within a system.

III. Formulate the strategy as fuzzy rules, based on sound Egg. Judgment.
IV. Evaluate rule for current situation to obtain fuzzy output.
V. Use any of the defuzzification technique to obtain crisp value.

3.3 ARTIFICIAL NEURAL NETWORK
Almost all information-processing needs of today are met by digital computers.

So we can consider their possibility of information processing techniques that are 
different from those used in conventional digital computers. Research is being 
vigorously pursued concerns the possibility of building information processing devices 
that mimic the structures and operation principles commonly found in humans and other 
living creatures, which has produced a new breed of computers called neuro-computers.
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Neural computing is a new approach to information processing. It is the fast, vital 
alternative to normal sequential processing. The large computing power lies in parallel 
processing architecture. It is capable of imitating brain’s ability to make decisions and 
draw conclusions when presented with complex, noisy, irrelevant or partial information. 
Thus it is the domain in which an attempt is made to make compute think, react and 
compute.

Neurons are nerve cells and neural networks are networks of these cells. Thus 
they are one of a group of intelligent technologies for data analysis that differ from other 
classical analysis techniques by learning about user’s chosen subject from the data user 
provides them, rather than being programmed by the user in a traditional sense. Neural 
networks gather their knowledge by detecting the patterns and relationships in user’s 
data, learning from relationships and adapting to change.

“A neural network is a massively parallel distributed processor that has a natural 
propensity for storing experiential knowledge and making it available for use. It 
resembles the brain in two respects:

• Knowledge is acquired by the network through a learning process.
• Intemeuron connections strengths known as synaptic weights are used to store 

knowledge.

The interconnection architecture can be very different for different networks. 

Architectures can vary from feed forward and recurrent structures to latticed structures.

3.3.1 The Basie Artificial Model
An artificial neuron is defined as follows:

It receives a number of inputs either from original data, or from the output of 
other neurons in the neural network. Each input comes via a connection that has 
strength (weight); these weights correspond to synaptic efficacy in a biological neuron. 
Each neuron also has a single threshold value. The weighted sum of the inputs is formed, 
and the threshold subtracted, to compose the activation of the neuron (also known as the 
post-synaptic potential, or PSP, of the neuron).

The activation signal is passed through an activation function (also known as a 
transfer function) to produce the output of the neuron. Inputs and outputs correspond to 
sensory and motor nerves such as those coming from the eyes and leading to the hands.



62

There can be hidden neurons that play an internal role in the network. The input, hidden 
and output neurons need to be connected together.

wi

Hg 3.2: Simple model of an Artificial Neuron
A simple network has a feedforward structure; signals flow from inputs, forwards 

through any hidden units, eventually reaching the output units. Such a structure has stable 
behavior. However, if the network is recurrent (contains connections back from later to 
earlier neurons) it can be unstable, and has very complex dynamics.

When the network is executed (used), the input variable values are placed in the 
input units, and then the hidden and output layer units are progressively executed. Each 
of them calculates its activation value by taking the weighted sum of the outputs of the 
units in the preceding layer, and subtracting the threshold. The activation value is passed 
through the activation function to produce the output of the neuron. When the entire 
network has been executed, the outputs of the output layer act as the output of the entire 
network.

3.3.2 Implementation of Artificial Neural Network:
The specification and design of an ANN application should aim to produce the 

best system and performance overall. This means that conventional methods should be 
used if and where possible and ANNs are used to supplement them or only if they can 
add some benefit. A neural network design involves at least five main tasks:

S Data collection.
S Raw data preprocessing.
■S Feature extraction from preprocessed data.
v' Selection of an ANN type and topology (architecture).
■S ANN training, testing and validation.

3.3.3 Single layer and multi-layer networks:
For single layer neural network, the output signals of the neurons in the first layer 

are the output signals of the network. Here each neuron adjusts its weights according to 
what output was expected of it, and the output it gave. The Perception Delta Rule can 
mathematically express this:
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AW, = x,8
where, 8 = (desired output) - (actual output).

This is of no use though when you extend the network to multiple layers to 
account for non-linearly separable problems. When adjusting a weight anywhere in the 
network, we have to be able to tell what effect this will have on the overall effect of the 
network. To do this, we have to look at the derivative of the error function with respect to 
that weight.

Multi layer perceptions are feed forward nets with one or more layers of nodes 
between the input and output nodes. Multilayer feed forward networks normally consist 
of three or four layers; there is always one input layer and one output layer and usually 
one or more hidden layers. The term input layer neurons are a misnomer; no sigmoid unit 
is applied to the value of each of these neurons. Their raw values are fed into the layer 
downstream the input layer (the hidden layer). Once the neurons for the hidden layer are 
computed, their activations are then fed downstream to the next layer, until all the 
activations eventually reach the output layer, in which each output layer neuron is 
associated with a specific classification category. In a fully connected multilayer feed 
forward network, each neuron in one layer is connected by a weight to every neuron in 
the layer downstream it. Thus in computing the value of each neuron in the hidden and 
output layers one must first take the sum of the weighted sums and the bias(if any) and 
then apply f(sum)(the sigmoid function) to calculate the neuron’s activation.

The capabilities of multi layer perceptions stem from the nonlinearities used 
within nodes. The number of nodes must be large enough to form a decision region that is 
as complex as is required by a given problem. It must not, however, be so large that the 
many weights required cannot be reliably estimated from the available training data. For 
example, two nodes are sufficient to solve the exclusive OR problem.

Input layer First Second Output
hidden hidden layer
layer layer

Fig 3.3: Multi-layer Network.
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There should be no more than three layers in perception like feed forward nets 
because a three-layer perceptron can form arbitrarily complex decision regions and can 
separate the meshed classes. There should typically be more than three times as many 
nodes in the second as in the first layer. The behavior of these nets is more complex 
because decision regions are typically bounded by smooth curves instead of by straight- 
line segments and analysis is thus more difficult. These nets, however, can be trained 
with the new back-propagation training algorithm,

3.3.4 Types of Neural Network Learning

The Artificial Neural Network (ANN) [4] produces response, based on the information 
encoded in its structure. Usually weights on interconnections between the neurons, store 
the information. They are adjusted to produce desired response. “The algorithmic process 

. of weight adjustments is called learning rule”. The goal of any rule is to adjust weights so 
as to minimize the difference between the desired and expected response.

The method of setting the value for the weights enables the process of learning or 
training. The process of modifying the weights in the connections between network 
layers with the objective of achieving the expected output is called training a network. 
The internal process that takes place when a network is trained is called learning.

• Supervised learning: Supervised learning is a process of training a neural 
network by giving it examples of the task we want it to learn, i.e. it is a learning 
33with a teacher. The way this is done is by providing a set of pairs of vectors 
(patterns), where the first pattern of each pair is an example of an input pattern 
that the network might have to process and the second pattern is the output pattern 
that the network should produce for that input which is known as a target output 
pattern for whatever input pattern.

Supervised leaning means “a learning process in which changes in a network's 
weights and biases are due to the intervention of any external teacher. The teacher 
typically provides output targets.” This technique is mostly applied to feed 
forward type of neural networks.

During each learning or training iteration the magnitude of the error between the 
desired and actual network response is computed and used to make adjustments to 
the internal network parameters or weights according to some learning algorithm. 
As the learning proceeds, the error is gradually reduced until it achieves a 
minimum or at least and acceptably small value.

Sometimes if it is not require computing exact error between the desired and the 
actual network response, and for each training example the network is given a 
pass/fail signal by the teacher, then it is called Reinforcement learning which is a 
special type of supervised learning. If a fail is assigned, the network continues to 
readjust its parameters until it achieves a pass or continues for a predetermined 
number of tries, whichever comes first.
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• Unsupervised learning:

It is the learning process in which changes in a network's weights and biases are 
not due to the intervention of any external teacher. Commonly changes are a 
function of the current network input vectors, output vectors, and previous 
weights and biases.

The network is able to discover statistical regularities in its input space and 
automatically develops different modes of behavior to represent different classes 

of inputs (in practical applications some labeling is required after training, since it is 
not known at the outset which mode of behavior will be associated with a given 
input class). In this type of learning due to absence of desired output it is difficult 
to predict what type of features network will extract. Although learning in these 
nets can be slow, running the trained net is very fast - even on a computer 
simulation of a neural net. Table gives comprehensive summary of techniques.

Supervised learning Unsupervised learning

1 ADALINE. 1. Hamming Networks.

1 MAD ALINE. 2. Kohonen’s self-organizing maps.

1 Perceptron. 3. Adaptive Resonance Theory (ART).

1 Multilayer perceptron (MLP). 4. Counter propagations networks(CPN).

1 Radial Basis Function Network 5. Neo-cognitions.

(RBFN). 6. Adaptive Bidirectional Associative

1 Probabilistic Neural Network (PNN). Memory.

1 General Regression Neural Network

(GRNN).

Table 3.1: Networks following supervised and unsupervised learning.

3.3.5 BACK PROPAGATION NETWORK (BPN)

Back propagation is a systematic method for training multi -layer artificial 

networks. It has a mathematical foundation that is strong if not highly practical. It is a 

multi-layer forward network using extend gradient descent based delta learning rule, 

commonly known as back propagation (of errors) rule. Back propagation provides a 

computationally efficient method for changing the weights in a feed forward network,
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with differentiable activation function units, to learn training a set of input-output 

examples. Being a gradient descent method it minimizes the total error of the output 

computed by the net. The network is trained by supervised learning method. The aim of 

this network is to be train the net to achieve a balance between the ability to respond 

correctly to the input patterns that are used for training and the ability to provide good 

response to the input that are similar.

The training algorithm of back propagation involves four stages , viz.

1. Initialize of weights

2. Feed forward

3. Back propagation

4. Updating of the weights and biases.

During first stage which is the initialization of weights, some small random 

values are assigned. During feed forward stage each input unit (xi) receives an input 

signal and transmits this signal to each hidden units zl...zp. Each hidden unit then 

calculates the activation function and sends its signal zj to each output unit. The 

output unit calculates the activation function to form the response of the net for the 

given input pattern.

During back propagation of errors, each output unit compares its computed 

activation yk with its target value tk to determine the associated error for that pattern 

with that unit. Based on the error, the factor 5k (k= l,...m) is computed and is used to 

distribute the error at output unit yk back to all units in the previous layer. Similarly, 

the factor 5j(j=l,..p) is computed for each hidden unit zj. During the final stage, the 

weight and biases are updated using the 5 factor and the activation. During final 

stage, the weight and biases are updated using 8 factor and the activation.

PARAMAETER

x: Input training vector.

8k: error at output unit yk 8j : error at hidden unit zj 

Voj = bias on hidden unit j 

wok = bias output unit k

t: output target vector

a = learning rule 

zj= hidden unit j 

y = output unit k.

Initialization of weights
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Step: 1 Initialize weight to small random values.

Step: 2 While stopping condition is false, do steps 3-10 

Step: 3 For each training pair do steps 4-9

• Feed forward

Step 4: Each input unit receives the input signal xi and transmits this signals to all 

units in the layer above i.e. hidden units.

Step 5: Each hidden unit (zj, j = l,..p) sums its weighted input signals
• n

Z - ,„J = voj + £ xivij (3.1)
i—i

Applying activation function

Zj = f(z„) (3.2)

And sends this signal to all units in the layer above i.e. output units.

Step 6 : Each output unit (yk, k = l,..m) sums its weighted input signals
p

y-a* = wok + 2 zjwjk (3.3)

And applies its activation function to calculate the output signals

Yk - f(y_,nk) (3.4)

• Back propagation of errors

Step 7: Each output (yk, k=l,..m) receives.a target pattern corresponding to an input 

pattern, error information term is calculated as

8k = (tk - yk)f (y _injc) (3.5)

Step 8: Each hidden unit (zj, j = l,...n ) sums its delta inputs from units in the layer

above
m

8-mj=SSkwjk (3.6)

The error information term is calculated as 

8j = 8_,njf(z_inj)

Updation of the weights and biases.

Step: 9 Each output unit (y, k =1,.. .m) updates its bias and weights (j=0,.. .p)
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The weight correction term is given by 

AWjk = ocSkzj

And the bias correction term is given by 

AWok = a8k

Therefore, Wjk(new) = Wjk(old) + AWjk, Wok(new) = Wok(old) + AWok

(3.9)

(3-7)

(3.8)

The weight correction term

AVij = a8jxi 

The bias correction term

AVoj = a8j

Therefore, Vij(new) = Vij(old) + Avij, Voj(new) = Voj(old) + AYoj

(3.10)

(3.11)

Step 10: Test the stopping condition. The stopping condition may be to the 

minimization of the errors, number of epochs etc

3.4 Software Development Tools
The developments tools such as MATLAB, SIMULINK, and tools boxes are described in 
the section. Their use is illustrated by applications.

3.4.1 MATLAB 7

MATLAB [5] is a high-performance language for technical computing. The name 
MATLAB stands for matrix laboratory. A numerical analyst called Cleve Moler wrote 
the first version of MATLAB in the 1970s. It has since evolved into a successful 
commercial software package. The MATLAB system consists of five main parts:

Development Environment: - This is the set of tools and facilities that help to 
use MATLAB functions and files. Many of these tools are graphical user interfaces. It 
includes the MATLAB desktop and Command Window, a command history, an editor 
and debugger, and browsers for viewing help, the workspace, files, and the search path. 
Main window of MATLAB is as shown in figure 3.4
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Fig 3.4(A): A schematic diagram of Main features: MATLAB



70

ETlSfftFKTTMMMMM——miiiMMItrail,fc- «Jfl| x|
F*» Et* Debug Desktop Wmirw Melp
D 12£ (?* 3" 7* Current Directory: C: 'MATLAB7>woftc ^

Shortcuts W How to Aoa wbar * Hew

4 Xert

Fig 3.4: MATLAB command window

The MATLAB Mathematical Function Library: - This is a vast collection of 

computational algorithms ranging from elementary functions, like sum, sine, cosine, and 

complex arithmetic.

The MATLAB Language: - This is a high-level matrix/array language with 

control flow statements, functions, data structures, input/output, and object-oriented 

programming features.

The MATLAB Application Program Interface (API): - This is a library that 

allows you to write C and Fortran programs that interact with MATLAB. It includes 

facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a 

computational engine, and for reading and writing MAT-files. Toolboxes available in 

MATLAB 7.0 and used in the thesis are listed in table 3.2

Control System Toolbox Model Predictive Control Toolbox

Optimization Toolbox Robust Control

Neural Network Fuzzy Logic

TABLE 3.2: TOOL BOXES used from MATLAB 7
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Functions description

Addmf Add a membership function to an HS

Addrule Add a rule to an HS

Addvar
/

Add a variable to an HS

Evalfis Perform fuzzy inference calculations

Newfis Create new HS

Trimf Triangular membership function

Table 3.4 functions used to create fuzzy system

3.4.4 Neural Network Toolbox
The MATLAB neural network toolbox provides a complete set of functions and a 
graphical user interface for the design, implementation, visualization, and simulation of 
neural networks. It supports the most commonly used supervised and unsupervised 
network architectures and a comprehensive set of training and learning functions. The 
neural network toolbox extends the MATLAB computing environment to provide tools 
for the design, implementation, visualization, and simulation of neural network. Table 
3.5 lists MATLAB functions used for training and learning of the ANN controller [8].

Functions description

newff: Create a Feed forward back propagation network.

purelin Linear transfer function

tansig hyperbolic tangent sigmoid transfer function.

Traingd Gradient descent back propagation.

sim Simulation of simulink model

gensim Gnerate simulink block simulate a neural network.

Train trains a network NET according to

NET.trainFcn and NET.trainParam.

Table 3.5: Functions used from ANN Toolbox
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3.5 Application: Electrical Drives

An electnc drive [9] is a well established industrial drive as it has several 
advantages and special features. AC/DC drives are widely used in the applications 
requiring adjustable speed, good speed regulation and frequent starting, braking and 
reversing. Some important applications of the DC motor is in the rolling mills, machine 
tools, printing press, cranes, It is being predicted that the AC drives will replace DC 
drives. But variable speed applications are dominated by DC drives, because of lower 
cost, reliability and simple control.

The electric drive system employs closed loop controls and principles of feedback 
control theory. The conventional feedback control theory can be applied to determine the 
time domain and frequency domain behavior of the system. The stability of the drive, 
which is necessaiy but not sufficient conditions, may be analyzed using the conventional 
Routh-Hurwitz and Nyquist stability criteria. Based on these methods the design of 
controllers for stabilization of the system is possible both in time domain using root 
locus techniques and frequency domain using Bode plots.

The AC drive system utilizing induction and synchronous motors may be 
considered to be multivariable systems. These can be analyzed using state space 
techniques to determine the drive behavior. Conventionally AC and DC variable speed 
drive incorporate a number of separate controllers. They are used for input variable 
controls of the machine. The closed loop control for AC motors is discussed in the 
following section.

Conventional controllers are based on the mathematical model of the linear 
process. Conventional controllers will be effective if the speed and accuracy requirements 
of control systems are not critical under varying environment of the systems. PID 
controllers can be used but it can not cope with the varying control environments 
resulting due to the load disturbances, non-linearity of the systems and also change of 
plant parameters.

All the physical systems have some kind of non-linearity. Sometimes it may even 
be desirable to introduce a non-linearity in order to improve the performance of the 
system and make its operation safer. In most of the control system we cannot avoid the 
presence of certain types of non-linearities. Some common non-linearities are saturation, 
dead-zone, friction etc. The nonlinear system may be highly sensitive to input amplitude. 
The stability of the nonlinear systems is dependent on the input and also the initial state. 
The stability study of the non-linear systems infact requires the information about the 
type and amplitude of anticipated inputs, initial conditions, in addition to the usual 
requirements of the physical and mathematical models of the systems. There are two 
methods from which the information about transient behavior and stability is easily 
obtained. One is the Phase plane method and another is the Describing Function method, 
based on the harmonic linearization. The input to the non-linear component is sinusoidal 
and depending on the filtering property of the linear part of the overall system. The 
output is represented by the fundamental frequency term in the Fourier series.
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Fuzzy Logic Controller (FLC) [10-11] is used for the application of the non-linear 
industrial application process. FLC yields superior results to those obtained by the 
conventional controllers. FLC's have common feature of not requiring a detailed 
mathematical model and lead to much faster and accurate results. The robustness of FLC 
is a commendable feature in motor drive applications, where the system parameters are 
widely varying during plant operation. FLC design is made easier by tools of Fuzzy 
Logic.

Due to the nonlinear structure of the FLC, the main design problem lies in the 
determination of the consistent and complete rule ser and the shape of the membership 
functions. A lot of modifications and trial and error has to be done in order to obtain the 
desired response which is time consuming. Another powerful technique which is the most 
accurate and faster is Neuro-Fuzzy Controller (NFC) [12] design. It helps to generate and 
optimise membership functions as well as the rale base from the simple data provided. 
Combining the learning power of the neural network with the Fuzzy Logic gives the 
Neuro-Fuzzy system. Neuro-Fuzzy controller design is done by using ANFIS (Adaptive 
Neuro Fuzzy Interface System).

1 The simulation is carried out using the fuzzy logic toolbox and SIMULINK in 
MATLAB. The plant response without any controller for step input shows 
oscillations. In order to get the accurate speed control of the DC motor, the response 
is improved incorporating FLC design. Fuzzy logic compensator compensates the 
effects of the non-linearity. The dead-zone ANFIS is incorporated to eliminate 
tedious procedure of the modifications in the membership functions and rale base in 
FLC and obtain desired response, quickly and easily. The results in the SIMULINK 
shows the comparative responses of the controllers with the original response of the 
plant, when step input is applied.

2 The dead-zone (non-linearity) is added to the system. The Fuzzy Logic Compensator 
effects are also seen after adding dead-zone. The SIMULINK shows the comparative 
responses of the controllers, when sinusoidal input is applied to the system. .

The electric drive system employs closed loop controls and principles of feedback 
control theory. The conventional feedback control theoiy can be applied to determine the 
time domain and frequency domain behavior of the system. The stability of the drive, 
which is necessary but not sufficient conditions, may be analyzed using the conventional 
Routh-Hurwitz and Nyquist stability criteria. Based on these methods the design of 
controllers for stabilization of the system is possible both in time domain using root 
locus techniques and frequency domain using Bode plots.

The AC drive system utilizing induction and synchronous motors may be 
considered to be multivariable systems. These can be analyzed using state space 
techniques to determine the drive behavior. Conventionally AC and DC variable speed 
drive incorporate a number of separate controllers. They are used for input variable 
controls of the machine. The closed loop control for AC motors is discussed in the 
following section.
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3.5.1 MOTOR CONTROL: (Conventional Controller)

The AC drive [9] chosen for the system is three phase induction motor. The 
specifications of induction motor (IM) are given in Appendix - 1. In IM, speed control 
can be obtained by various conventional techniques. Due to their inherent limitations on 
overall performance, a new inverter fed IM controls are used for variable speed drives. 
For a constant air gap flux in the motor, the ratio of voltage to frequency (V/f) is to be 
kept constant in all the operating region. A simple and popular closed loop V/f speed 
control method is shown in Fig 3.6

AC line

Fig 3.6: Constant volts/hertz. Speed Control with slip regulation

The scheme is defined as V/f control because voltage and frequency command are 
obtained by speed feedback through a controller. In steady state operation, the machine 
(M/C) air gap flux (Tm) is approximately related to ratio of V/f. Therefore maintaining 
the rated air gap flux will provide the maximum torque sensitivity with stator current 
which is similar to that of DC machine. This slip regulating scheme is shown in Figure-1, 
where error of speed control loop generates the slip command (cosi*) through a 
proportional integral controller & limiter.

The slip is added with speed -signal (tDr) to generate frequency command (coc*). 
The frequency command also generates the voltage command (Vs) through a V/f 
function generator which incorporates the low frequency stator drop compensation. 
Since the slip is proportional to the developed torque, the scheme can be considered as 
torque control within a speed control.
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The block diagram Fig 3.7 consists of the controller block, inverter block & the 
machine dynamics block with the feedback loop. The representation of these blocks is in 
the form of simple transfer function.

The machine dynamics can be taken of higher order but since the response is 
dominated by the dominant roots, a simple representation is taken into account. A 
tachogenerator feedback is taken for closed loop performance.

TACHOGENERATOR

Fig 3.7: BLOCK DIAGRAM REPRESENTATION OF THE SYSTEM

• LIST OF SYMBOLS: The symbols used in Fig 3.6 and Fig 3.7 are as 
under:

* (Or = command speed
* (Or = actual speed
* G]= controller
* (Os!* = command slip
* Vs* = rectifier command voltage
* (oe - command frequency
* R = Rectifier
* I = Inverter
* M/C = Induction motor
* T = Tachometer
* Kc = controller gain constant
* Ke = inverter gain constant
* Kra = motor gain constant
* Kn = tachometer gain constant
* Tc = controller time constant
* Te = inverter time constant
* Tra = motor time constant
* ©ref = reference angular speed
* ©act = actual angular speed



77

• MATHEMATICAL MODELLING: The values of the time constants, amplifier 
gain and motor gain constants and tachometer feedback gain are given below:

I. M.: 3 <j>, 2W, 415 V, 4 pole 
Kc = 1.4
Ke = 3
Km = 10
Tc = 0.02
Te = 0.05
Tm =3 0.15
Kt = 1

The value of Kc is determined with the help of Nyquist criteria to obtain the desired 
performance i.e stable operation.

The open loop transfer function of the motor is given by:

G(s) — ©act / ©ref

G(s) = Kc*Ke*Km / (1+sTc) (1+sTe) (l+sTm)

G(jw) = Kc*Ke*Km / [l-wA2 (Tc*Tm+Tc*Te +Te*Tm)]- jw[wA2*Tc
*t t t nr i e a m-1 c-1 e"1 mj

G(jw) = Kc*Ke*Km*{ 1 -wA2[Tc*Tm+Tc*Te+Te*Tm] + jw[wA2*Tc*Te*Tm-Tc-Te-Tm]}/{1- 
wA2 (Tc*Tm+Tc*Te+Te*Tm) A2 + wA2(wA2*Tc*Te*TirrTc-Te-TmA2)}

The locus of G (jw) as w changes from zero to infinity is drawn which is known as 
Nyquist plot. The Nyquist plot as shown in Fig 3.8 represents the stability frequency 
response of a closed loop system. If the frequency response of open loop transfer 
function encloses critical point (-1,0), the closed loop system becomes unstable. The 
value of Kc is found out when it crosses (-1,0). Therefore,

Kc* Ke* Kra *w (wA2*Tc*Te*Tnj-Tc - Te-Tm)=0--------  (3.12)

Since: real part should be -1:

Kc*Ka*Km/ {l-wA2[Tc*Tm+Tc*Te+ Te*Tm]} = -1------- (3.13)

Using 1 & 2:
|0.429 *Kc|=1 -»Kc = 2.33

Hence for stable operation Kc should never exceed beyond 2.33. The value of Kc 
should be 0.6 to 0.8 times this value. For our system we have taken it as 0.6 times the 
critical value of Kc i.e Kc = 0.6 * 2.33 = 1.4. With Kn = IV / rad / sec reduces to the 
one as shown in Fig 3



78

Fig 3.8: BLOCK DIAGRAM WITH Kn = 1 V/rad/sec.

OObcMef = Kc*Ke*Km/(l+sTc)*(l+sTe)*(l+ sTm)

1 + Kc*Ke*Km

(l+sTc)*(l+sTe)*(l+sTm)

= Kc*Ke*Km

(l+sTc)*(l+sTe)*(l+sTm)+Kc*Ke*Km 

= Kc*Ke*Km/Tc*Te*Tm

sA3 + (Te*Tm+Tc*Tm+Tc*Te)*sA2 

Tc*Te*Tm

+ (Tm+Tc+Te)*s + (l+Kc*Ke*Km)

Tc*Te*Tm Tc*Te*Tm

Substituting the values of Kc, Ke, Km, Tc, Te and Tm the transfer function is:

©ac / ©ref = 2800000 / (sA3+526.67*sA2+13466.667*s+2866666.7) (3.14)

The conventional controller is based on plant dynamics and rigorous 
mathematical models with linear or straightforward relationships between just few 
variables. The control action is to tune the controller parameters, but this cannot cope 
with the varying control environment or system non-linearities.

Facing these problems, the investigators realize that incorporating human 
intelligence into automatic control system would be more efficient solution and this 
leads to the development of Fuzzy Logic Controller.
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3.5.2 Modeling and Simulation of FLC

The modeling and simulation of fuzzy control is carried out in MATLAB. The 
MATLAB is an interactive programmed for scientific and engineering calculations. The 
MATLAB family of programmed includes the base programmed plus variety of 
Toolboxes such as fuzzy, control, semolina etc.

The simulation of induction motor is done using transfer function analysis in 
MATLAB. The fuzzy logic controller is designed with the help of fuzzy logic toolbox. 
What makes the fuzzy logic toolbox so powerful is the fact that most of human reasoning 
and concept formulation is linked to the use of fuzzy rules.

There are five primary Graphic User Interface (GUI) tools for building, editing 
and observing fuzzy inference system in fuzzy logic toolbox. These are the fuzzy 
inference system or FIS Editor, the Membership Function Editor, the Rule Editor, the 
Rule Viewer and the Surface Viewer. These different GUI's are all effective siblings in 
that we can have any or all of them open for any given system. Standard blocks available 
in the SIMULINK Library the combined block diagram of Fig 3.9 is created for the plant, 
plant with PID & plant with FLC.

Fig 3.9: Combined Block Diagram; Plant, with PID and with FLC 

3.5.3 FLC ALGORITHM & Pseudo code
# include < stdio.h>
# include < math.h>
# include < dos.h>
# include < conio.h>
# include < graphics.h>
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# define port 0x300
# define base 0x2c0 
mainQ
{
float tab [11] [11] = {{ -1,-1,-0.7,-0.7,-0.7,-0.6,-0.4,-0.3,-0.2,0,0},

{-1 ,-l,-0.7,-0.7,-0.7,-0.6,-0.5,-0.4,0.2,0.2},
{-1,-1 ,-0.7,-0.7,-0.7,-0.3,-0.2,-0.2,0.1,0.3,0.3},
{ -1 ,-l ,-0.7,-0.7,-0.7,-0.15,0.09,0.1,0.2,0.4,0.4}, 
{-1,-1,-0.6,-0.5,-0.5,-0.3,-0.1,0.1,0.2,0.4,0.4},
{-0.7,-0.7,-0.56,-0.5,-0.2,0,0.15,0.15,0.4,0.5,0.5}, 
{-0.5,-0.5,-0.3,0,0.05,0.09,0.2,03,0.5,0.8,0.8},
{-0.5,-0.5,-0.3,0,0.08,0.1,03,0.4,0.7,0.9,0.9}, 
{-0.2,-0.2,0.01,0.2,0.3,0.5,0.5,0.55,0.85,1,1},
{0.1,0.1,0.3,0.5,0.55,0.7,0.7,0.75,0.9,1,1}, 
{0.1,0.1,0.3,0.5,0.55,0.7,0.7,0.75,0.9,1,1},

};
unsigned hbl, lbl, lb2, Ib3,lb4,sts, al, a2; 
unsigned hibyte = 0, lobyte = 0; 
unsigned cntr, ccc, rrr,
float r,c, rl,c 1 ,lbt,lbtl,ibt2,lbt3,AD[2], 1, lbtl, lbt2; 
int start = 0, stop=l, ch,rr,cc,ll,t2; 
clrscr();
outport b (port + 9,0x70); 
while(l)
{

for (ch = start; ch < = stop; ch++)
{

outport b (port + 8 ,0); /*clear the interrupt *1
outport b (port + 2 ,0);/*mux channel selection on pc 1770 */
outport b (port + 3 ,ch); /*select the ch 0-7 */
outport b (port + 0,0); /* start A/D conversion */
start: sts = inportb (port + 8); /* Read A/D status */
if (sts > 127) goto start;
lobyte = inport b (port + 0); I* input A/D lo-wbyte */
lbl = (lobyte | OxfO) / 16; / * separate channel no & low byte data */
hibyte = inport b (port + 1); /* HIBYTE READ */
lb 2 = (hibyte | Oxf) / 16; /*Shift the hibyte data*/
Ibt=lbl + lb2; 
if (ch= =0)
{ -

lbtl = lbt;
AD[0]=lbtl;
rl=((AD[0] - 2048) / 4096) /10
}
else
{
lbt 2 = lbt;
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AD[1] = lb2;
c 1 = ((AD[1] - 2048) / 4096) /10;
}
/*printf(“%f/n”,cl);*/ 
r = rl-cl;
/* printf (“%f In”, rl); */ 
t2 = r; 
al = r2/256; 
a2 = t2 % 256;
outport b (base + 0, al); /*ch #1*/
outport b (base + 1 ,a2);
outport b (port + 8,0); /*clear the interrupt */
outport b (port + 2 ,0);/*mux channel selection on pc 1770 */
outport b (port + 3 ,2); /*select the ch 0-7 */
outport b (port + 0 ,0); /* start A/D conversion */

start 1: sts = inportb (port + 8); /* Read A/D status */ 
if (sts > 127) goto startl;
lobyte = inport b (port + 0); I* input A/D lowbyte */
lb3 = (lobyte ] OxfO) / 16; / * separate channel no & low byte data *1
hibyte = inport b (port + 1); /* HIBYTE READ */
lb 4 = (hibyte | Oxf) / 16; /*Shift the hibyte data*/
Ibt3=lb3 + lb4;
AD[2]=lbt3;
c=((AD2[0] - 2048) / 4096) /10 
if (r = = 0) 
rr = 0; 
else
{if (r > = 0 && r < = 0.5)
rr=l;
else
{if (r> = 0.5 &&r< = 1)
rr = 2;
else
{if (r>= 1 &&r<= 1.5)
rr = 3;
else
{if(r>= 1.5 &&r< = 2)
rr = 4;
else
{ if (r > = 2 && r < = 2.5)
rr = 5;
else
{ if (r> = 2.5 && r < = 3)
rr - 6;
else
{if (r > = 3 && r < = 3.5) 
rr = 7;
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else
{if (r > = 3.5 && r < = 4)
rr = 8;
else
{if (r > = 4 && r < = 4.5)
rr = 9;
else
{if (r > = 4.5 && r < = 5) 
rr = 10;
}
}
}
}
}
}
}
}
}
}
if (c = = 0) 
cc = 0; 
else
{if (c > = 0 && c < = 0.5)
cc = 1;
else
{if (c> = 0.5 &&c<=l)
cc = 2;
else
{if (c > = 1 && c< = 1.5)
ce = 3;
else
{if (c> = 1.5 && c < = 2)
cc = 4;
else
{if (c > = 2 && c < = 2.5)
cc = 5;
else
{if (c > = 2.5 && c < = 3)
cc = 6;
else
{if (c > = 3 && c < = 3.5)
cc = 7;
else
{if (c> = 3.5 &&c< = 4)
cc = 8;
else
{if (c > = 4 && c < = 4.5) 
cc = 9;
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else
{if (c > = 4.5 && c < = 5) 
cc = 10;
}
}

}
}
}
}
}
}
}
}
rrr = rr; 
ccc=cc;
I = ((tab [rrr][ccc] 15) * 2048) + 2048;
II = (1 * 5);
printf (“%d %d \n”,rrr,ccc); 
al—11 /256;

a2 = 11 % 256;
outport b (base + 0,al); /*ch#l) */ 
outport b (base + l,a2);
}
if ( kbhit()) break;
}
}

3.5.4 Simulation Setup

The parameters for these fuzzy sets are as under:
NVL = [-1.2 -1 -0.784]
NL = [-1 -0.784 -0.568]
NM = [-0.784 -0.568 -0.316]
NS = [-0.568 -0.316-0.1]
NVS = [-0.316 -0.10]
ZE = [-0.1 0 0.1]
PVS = [0 0.1035 0.345]
PS = [0.1035 0.345 0.552]
PM = [0.345 0.552 0.7935]
PL = [0.552 0.7935 1]

PVL = [0.7935 1 1.2]

Table 3.6 depicts the Rule Base
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e
ce

NVL NL NM NS NVS ZE PVS PS PM PL PV
L

NVL NVL NVL NM NVL NVL NVL NM NM NS ZE ZE
NL NVL NVL NM NVL NVL NL NM NM NS ZE ZE
NM NVL NVL NVL NL NL NM NS NS ZE PS PS
NS NVL NVL NVL NM NM NS ZE ZE PS PM PM
NVS NL NL NL NM NM NVS ZE ZE PS PM PM
ZE NVL NL NM NS NVS ZE PVS PS PM PL PV

L
PVS NM NM NS ZE ZE PVS PS PS PL PVL PV

L
PS NM NM NS ZE ZE PS PM PM PL PVL PV

L
PM NS NS ZE PS PS PM PL PL PVL PVL PV

L
PL ZE ZE PS PM PM PL PVL PVL PVL PVL PV

L
PVL ZE ZE PS PM PM PL PVL PVL PVL PVL PV

L
Table3.6: RULE BASE!FOR FUZZY LOGIC CONTROLLER

• Simulation Steps
1. From the source library, step input (with step time 0, initial value, final valuel) 

is selected which is input to the plant.

2. Linear block library the blocks sum, derivative, gain, transfer function and state 
space are selected. In gain block, we can adjust the desired gain in forward as 
well as feedback path. The transfer function block allows us to modify the 
transfer function according to our system. The state space block reads the 
ABCD parameters for the IM model developed.

3. FLC block is selected from semolina. While running simulation, make sure 
that the MS matrix corresponding to the fuzzy system used, is saved in both 
MATLAB workspace and referred to by name in the dialog box associated with 
The fuzzy logic controller block. Also a PDD controller block is selected for the 
Design of PID controller.

4. Connection library allows choosing the block such as OUT, MUX. The MUX 
block is selected in which the inputs can be varied according to the 
requirement.

5. Sink Library: From this library Auto scale graph is selected for observing 
simulation results. The Auto scale graph has initial time range of 5, initial y- 
min of -10, initial Y-max of 10 and storage points of 200.The Simulation 
results forfeedback gain of 0.1 are as shown in Fig 3.10 The effect of variation 
of gain is shown studied. Results are shown in Fig 3.11, 3,12 & 3.13 
respectively. It may be concluded that FLC improves the dynamic performance 
of the plant.
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(6). The simulation is also earned out using the look-up table (Table 3.7(a),)b) 
prepared on the basis of Rule Base, for the block diagram shown in Fig 3.14.

s ss
-0.2500 -0.2500
-0.2000 -0.2000
-0.1500 -0.1500
-0.1000 -0.1000
-0.0500 -0.0500

0 0
+0.0500 +0.0500
+0.1000 +0.1000
+0.1500 +0.1500
+0.2000 +0.2000
+0.2500 +0.2500

Table 3.7(a): Lookup Table for FLC
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-1 0000 
-1 0000 
-1.0000 
-1.0000 
-1 0000 
-0 7000 
-0.5000 
-0 5000 
-0 2000 
0.1000 
0.1000

-1.0000 
-1.0000 
-1.0000 
-1.0000 
-1.0000 
-0.7000 
-0 5000 
-0.5000 
-0.2000 
0.1000 
0.1000

-0 7000 
-0.7000 
-0.7000 
-0.7000 
-0 6000 
-0.5600 
-0 3000 
-0 3000 
0.0100 
0 3000 
0 3000

-0.7000 
-0.7000 
-0.7000 
-07000 
-0 5000 
-0.5000 

0 
0

0 2000 
0.5000 
0.5000

-0 7000 
-0.7000 
-0.7000 
-0 7000 
-0.5000 
0.2000 
0.0500 
00800 
0 3000 
0.5500 
0.5500

-0.6000 -0.5000 
-0.6000 -0 5000 
-0 3000 -0 2000 
-0 1500 -0.0900 
-0 3000 -0.1000 

0 01500 
0 0900 0.2000 
0.1000 0.3000 
0.5000 0 5000 
0.7000 07000 
07000 0.7000

-0 5000 
-0 5000 
-0.2000 
01000 
0.1000 
0.1500 
0.3000 
0.4000 
0.5500 
0.7500 
0.7500

-0.4000 
-0.4000 
0.1000 
0.2000 
0.2000 
0.4000 
0 5000 
0.7000 
0.8500 
0 9000 
0.9000

0.2000 
0.2000 
0.3000 
0 4000 
0.4000 
0 5000 
0.8000 
0 9000 
1.0000 
1.0000 
10000

0 2000 
0.2000 
0.3000 
0.4000 
0.4000 
0.5000 
0.8000 
0.9000 
1.0000 
1.0000 
1.0000

Table 3.7(b); Lookup Table for FLC

Fig 3.14: SIMULINK setup for Lookup Table based FCL

The output response for step input is shown in Fig 3.15. The controller surface is 
presented in Fig 3.16.
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3.6 NEURO-FUZZY CONTROLLER

Combining the learning power of neural network with knowledge representation 
of fuzzy-logic gives Neuro-Fuzzy (NF) systems. Neuro-Fuzzy software tools work as an 
intelligent assistant to design. It helps to generate and optimize membership function as 
well as rule base from the simple data.Neuro-Fuzzy controller (NFC) design is done 
using ANHS (Adaptive Neuro-Fuzzy Inference System). ANFIS is about taking a 
fuzzy inference system (FIS) and tuning it with a back propagation algorithm based 
on some collection of I/P-O/P data. This allows the fuzzy systems to learn. ANHS 
supports only Sugeno systems subject to the following constraints:

* Hrst order Sugeno type Systems
* Single O/P derived by weighted average defuzzification
* Unity weight for each rule

An error occurs if HS matrix for ANHS learning does not comply with these 
constraints. Moreover, ANHS is highly specialized for speed and cannot accept all 
the customization options that basic fuzzy inference allows, i.e. one cannot make his 
own MF and defuzzification functions.

• ANFIS LEARNING NFC design is imparted using ANHS. To start ANHS 
learning, training data set that contains desired I/P-O/P data pairs of the target 
system to be modeled. The target is decided based on the ideal response of the 
system under unit step input. When the IM is in running condition, parameter 
variation causes drift in the system response. This may be due to the changing 
rotor/stator resistance due to load change. A damped response in O/P for any step 
change in me fP is required. In ideal condition, the O/P response for step I/P is (1- 
eA-a*t).Thus damped response is obtained by optimizing the value of ‘a’. The O/P 
response for the system is taken as:

y = [l-eA-5.67*x]

• Program in MATLAB for ANHS training is given below:
» mumps =51;

x = linspace (0,l,numPts)’; 
z = linspace (0,l,numPts)’; 
y = [l-(exp(-5.67*x))j;

plot(z,y);
pause
plot(z,y);
pause
data=[x z yj;
tmDatal=data(l :3:numPts,:); 
chkData 1 =data(3:3: numPts,:);
plot(trnDatal(:,l),tmDatal(:,3), ‘O’, chkDatal(:,l),chkDatal(:,3), ‘x’); 
pause;
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tmData2=data(2:3:numPts,:);
chkData2=data(8:3:numPts,:);
plot(trnData2(:,2),chkData2(:,3),’o’,....

(chkData2(:,2),chkData2(:,3),’ x ’) 
numMFs=[7,7]; 

mfType=str2mat(‘trimf); 
fismat=genfis 1 (data,numMFs,mfType);
[x,mfl]=plotmf(fismat,’input’,1);
plot(x,mfl);
pause
[x,mf2]=plotmf(fismat,’input’ ,2);
plot(x,mf2);
pause
numEpochs=20;
[fismatl,tmErrl,ss,fismat2,chkErrl] =... 
anfis(tmDatal,fismat,numEpochs,NaN,chkDatal); 
[fismat2,tmErr2,ss,fismat2,chkErr2] =... 
anfis(tmData2,fismat,numEpochs,NaN,chkData2); 
tmOutl =evalfis(tmDatal (:, l),fismatl);
tmRMSEl=nonn(tmOutl - tmDatal(:,3)) / sqrt(length(tmOutl)); 
tmOut2=evalfis(tmData2(:,2),fismatl);
tmRMSE2=norm(tmOut2 - tmData2(:,3)) / sqrt(length(txnOut2)); 
epoch = 1 rnumEpochs; 
plot(epoch,trnErrl, ‘o’,epoch,chkErrl, ‘x’) 
pause
plot(epoch,tmErr2, ‘o’,epoch,chkErr2, ‘x’)
pause
hold on;
plot(epoch,[tmErrl chkErrl ]); 
pause
plot(epoch,[tmErr2 chkErr2]);
pause
hold off
pause
plot(epoch,ss,’ *’ .epoch,ss,’x’) 
pause
[x mf]=plotmf(fismatl,’input’,l);
plot(x,mf)
pause
[x,mf]=plotmf(fismatl,’input’,2);
plot (x,mf)
pause
anfis_y = evalfis(x,fismatl); 
plot(tmDatal(:,l),tmDatal(:,3), ‘o’,.... 

chkDatal(:, 1 ),chkDatal(:,3), ‘x’,.... 
x,anfis_y, 

pause
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anfis_y = evalfis(x,fismatl); 
plot(tmData2(:,2),tmData2(:,3), ‘o’,.... 

chkData2(:,2),chkData2(:,3), ‘x’,.... 
x,anfis_y,

The design parameters of ANHS are as follows:

" 1. Number of total data pairs are decided. (51)

2. Training data set and checking data set are defined

3. Fuzzy inference system for training is specified. (For our system MF= 7 and 
MF type = triangular)

4. Number of epochs are chosen to be 20 to start the training.

5. Learning results are verified and Root Mean Square Error (RMSE) is obtained.

6. Step size is mentioned.

7. Final MF are plotted

8. FIS O/P is plotted.

• SIMULATION RESULTS: Fig 3.17 depicts complete ANEIS learning and
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Fig 3.18:Oiitput Response of NFC for Input 1 & 2

The simulation results and ANFIS information are given below. ANFIS training 
completed after 20 epochs for error gives:

* Minimal training RMSE = 0.000002
* Minimal checking RMSE = 0.000164696 
For change of error it is:

* Minimal training RMSE = 0.000001
* Minimal checking RMSE = 0.000222164

• EXPERIMENTAL SET-UP
The proposed PC based experimental set-up is shown in Fig 3.19 The details of 
the experimental set-up are as follows:

+

Fig 3.19: EXPERIMENTAL SET-UP
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1. Reference signal for speed: 0-5V DC reference signal corresponding to zero to 
rated speed is generated from regulated power supply. This voltage is varied by 
using preset (10KQ).

2. Feedback Signal: Feedback signal from tacho-generator (AC Tacho) is converted 
to DC signal by rectifier. This is scaled to 5V DC corresponding to rated speed 
(1500 rpm). This is achieved through the proper resistance divider.

3. Interfacing Circuit: These analogue signals are fed to PC. Before connecting 
them to PC they are isolated and normalized by using interfacing card. This is 
shown in Figure-18.

4. A/D and D/add-on cards: A/D conversion is obtained by using PCL 812 card. 
D/A conversion are obtained by using PCL 726 card. These are add-on cards 
placed inside the PC.

5. Control Algorithm: An algorithm for FLC is build up as given in Appendix-3. 
The inputs error (e) and change of error (ce) is given through this algorithm. A 
look up table is prepared which is scanning error & change of error and according 
to the rules; output is obtained in the form of crisp value.

6. Control Circuit: The output of the controller through PCL 726 is interfaced to 
control circuit. This consists of PWM control circuit. This generates the PWM 
signals for the inverter.

7. Base Drive: Base drive for IGBT inverter is used to interface the control signals 
to inverter. This is based on opto- isolation technique. This circuit is hardwired 
to main IGBT’s used for inverter.

8. Inverter : Bridge type IGBT inverter is built for AC motor drive. Output of 
the inverter is varied so as to achieve the speed control. A V/f technique as 
mentioned in the Figure-1 is used.

This complete scheme may be tested with the fuzzy logic based speed controller.

3.7 Compensation of Dead-zone Non-linearity

The conventional controller [13] is based on plant dynamics and rigorous 
mathematical models with linear as well as non-linear variables. The control action is to 
tune the controller parameters, but this cannot cope with the varying control environment 
or system non-linearities. Facing these problems, the investigators realize that 
incorporating human intelligence into automatic control system would be more 
efficient solution and this leads to the development of Fuzzy Logic Controller. Due 
to the non-linear component added in the system Fuzzy Logic Pre compensator is also 
made which leads to the better response of the system.

The pre compensator [14] is made in order to reduce the effects of the non-linearity 
like dead-zone, backlash, hysterisis. The Fuzzy logic pre compensator is designed for the 
dead-zone. The model for this is shown in the following section. The power pf Fuzzy logic 
systems is that they allow one to use intuition based on experience to assign control 
systems, then provide the mathematical machinery for rigorous analysis and modification 
of the intuitive knowledge, through learning or adaptation to give guaranteed performance. 
The FL pre compensator [15] effectively provides a pre inverse of the dead-zone. FL 
techniques are in terms of membership functions, which are needed for compensation of 
the non-linear mechanical systems.
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The fuzzy logic [16] pre compensator is designed in order to tune the error such that 
the error will be as small as possible. This tunes the dead-zone pre compensator into an 
adaptive fuzzy logic compensator. To create a new fuzzy inference system start the FIS 
Editor by entering » fuzzy at MATLAB prompt Two inputs are defined as error (e) and 
change of error (ce).The output is the control input(u) to the motor. The output which is 
the control input can be represented as: u = f(e, ce) for a non-linear function f.

To define the membership functions associated open MBF editor (Fig 3.20) by 
pulling down the View Menu item and selecting Edit Membership Functions. The MBF 
for error(e), change of error(ce) and output(u) are all defined within the range [-1,1]. 
The ranges are nothing but normalized domains [universe of Discourse] which is 
required for scale transformation which maps the physical values of process state 
variables into normalized domain. The choice of membership function is done taking 
into account the output response of the system.

The characteristics of a good response is low setting time, less overshoot, low 
steady state error etc. Thus different types of membership functions are tried & the best 
suitable response if found to be of triangular membership function. The shape of the 
membership functions for both inputs and single output is chosen as triangular.

The number of MF’s for both input and output variables are chosen to be eleven. 
We choose eleven fuzzy sets that are specified on the domains of‘e’ and 'ce'. These are 
NVL, NL, NM, NS, NVS, ZE, PVS, PS, PM, PL and PVL corresponding respectively 
to negative very large, negative large, negative medium, negative small, negative 
very small, zero error, positive very small, positive small, positive medium, positive 
large and positive very large. In the same manner, the eleven fuzzy sets are defined on the 
domain of definition of the output u.

AA

H»l| ^LlMUICa] B«M» m. la—-«-l mm,*,. 30 >vm

Fig 3.20(a) Membership FunctionEditor
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The parameters for these fuzzy sets are as under:

3.7.1

NVL = [-1.2-1 -0.784]

NL = [-1 -0.784 -0.568]

NM = [-0.784-0.568-0.316]

NS = [-0.568 -0.316-0.1]

NVS = [-0.316-0.10]

ZE = [-0.10 0.1]

PVS = [0 0.1035 0.345]

PS = [0.1035 0.345 0.552]

PM = [0.345 0.552 0.7935]

PL = [0.552 0.7935 1]

PVL = [0.7935 1 1.2]

FLC DESIGN

DC MOTOR SPECIFICATIONS

Kc 1.57
Ke 2
Km = 5
Tc 0.01
Te 0.06
Tm = 0.15
Kt 1

The values of K^, Ke, Km, Tc, Te and Tm leads to the transfer function of the motor as:
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©act / ©ref = 174444.44 / (sA3+122.22*sA2+2444.44*s+l 1111.11)

To activate the Rule Editor, go to the view menu and select Edit rules. Rule editor 

contains a large editable text for displaying and editing rules. Since, there are eleven 

membership functions for error and change of error, the maximum possible rules can 

be written are 121 .A total number of 119 rules are formed to give robust performance 

of the controller. A portion of rule base is shown in fig 3 .21

J|S»a.« | MATLAB Com | BPS Edito. Un | gnSEdla «c [ ■IMbomHPow | ■ FIS EAa ac. || g Rule 1 40AM

Fig: 3.21 Rule Base Editor for Creation of a Rule Base

The linguistic rules of error with negative sign mean that the current process 

output has a value below the steady state value. On the other hand linguistic values of 

error with a positive sign means that current output is above the steady state value. The 

linguistic values of change of error with negative sign means that the output has increased 

when compared to its previous value. The magnitude of such a negative value is given by 

the magnitude of this increase. Linguistic values of Ce with a positive sign mean the 

output has decreased its value when compared with its previous value. The magnitude of 

such a value is the magnitude of decrease.

A linguistic value of zero for error means that the current process output is at 

steady state. A zero for change of error means that the current process output has not 

changed from its previous value. The rule can be entered in verbose or symbolic or index 

fashion. The rules written are shown in Rule Editor, which can be parsed by pressing Ctrl-
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enter. To view the rules in Rule Viewer, select View from the View Menu. Select the

blocks from the semolina library, the block diagram for study is created. Fig-3.22

indicates the combined block diagram of plant, plant with PE) & plant with ELC.
>

BLOCK DIAGRAM OF FUZZY COMPENSATOR

Fig: 3.22 Combined SIMULINK set up including dead-zone for Plant, 
Plant with PID and Plant with FLC

3.8.2 RUNNING the SIMULATION

1. From the source library, step input (with step time 0, initial value 0, final 
value 1) is selected which is input to the plant. From the source library, 
sinusoidal input is taken whose amplitude is 0.5 and frequency 2Hertz/sec and 
sample time 0 phase 0 is selected and is given to input of the plant with pre 
compensator and dead-zone nonlinearity.

2. Linear block library has various blocks such as sum, product, derivative, 
integration, gain, and transfer function, zero-pole and state space. For our 
study the blocks selected are sum, derivative, gain, transfer function and state 
space. In gain block, we can adjust the desired gain in forward as well as 
feedback path. The transfer function block allows us to modify the transfer 
function according to our wish.

3. Dead-zone is selected from the nonlinearity from the main library of the 
simulink.

4. FLC block is selected from simulink.While running simulation, make 
sure that the FIS matrix corresponding to the fuzzy system used, is saved in
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both MATLAB workspace and referred to by name in the dialog box 
associated with the fuzzy logic controller block. Also a PID controller block 
is selected for the design of PID controller.

5. Connection library allows choosing the block such as OUT, MUX. The MUX 
block is selected in which the inputs can be varied according to the 
requirement. Also the signs are changed as per the need.

6. Sink Library: From this library Auto scale graph is selected for observing the 
simulation results. The Auto scale graph has initial time range of 5,initial y- 
min of-10,initial y-max of 10 and storage points of 200.The Simulation 
results are as shown in Fig 3.23(i) for a feedback gain equal to 0.01. Also 
results are added for different gains as shown in Fig 3.23(ii), (iii) and (iv) 
respectively.

Comparative Response 
Plant, Plant with PID, Plant with FLC

Fig 3-23 (i)

FFG of FLC=I.57 , FBG=.l 
FFG of PID=1.2, FBG =.l

Fig 3.23 (ii)

Comparative Response 
Plant with dead zone, PID with dead zone 
_____ Adaptive fuzzy compensator_____

ig 3.23 (iii)

Comparative response 
FBG of fuzzy compensator =0.1 

Dead zone=-0.4 ,0.4

ig 3.23 (iv
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It may be concluded from figure that FLC improves the dynamic performance of 
the plant.

The conventional controller is based on plant dynamics and rigorous 
mathematical models with linear as well as non-linear variables. The control action is to 
tune the controller parameters, but this cannot cope with the varying control environment 
or system non-linearities. Facing these problems, the investigators realise that 
incorporating human intelligence into automatic control system would be more 
efficient solution and this leads to the development of Fuzzy Logic Controller. Due 
to the non-linear component added in the system Fuzzy Logic Pre compensator is also 
made which leads to the better response of the system.

3.8 Adaptive Fuzzy Logic Compensator for Backlash

Fuzzy Logic (FL) systems have several major properties that make them useful in 
feedback control, including the function approximation property, the classification 
property, ability to select initial parameter values based on sound control engineering 
experience and ability to tune the parameters adaptively to yield guaranteed closed-loop 
performance.

• Function approximation property of fuzzy system: For the fuzzy system it has been 
shown in various research papers that the fuzzy system functions provides a basis 
for continuous function if the membership function and rule are properly chosen. 
This justifies their usual name of fuzzy basis function (FBF), and implies a 
universal approximation result for FL system. The uniformly spaced triangular 
MBF suffice for any smooth f (w) if the number of MF Nj for each component w, is 
selected large enough.

• Classification property of fuzzy system: Implicit in the definition and the 
philosophy of FL systems is a classification property. Each component Wj of the 
input is classified as belonging to some MBF X1IJ, depending on the region within 
which Wj fallswith in the region of support of Xj,j(Wj).

In feedback control application, this allows a very convenient technique 
for defining different control methods actions depending on different regions of 
w. No analytic actuator nonlinearities such as the backlash have different effects 
depending on the region within which the argument lies, so that FL systems seem 
very natural in compensating for them. The FL approach thus subsumes other 
approaches based on switching logic and indicator functions.

In this section, a fuzzy pre compensator [16] is designed for symmetric backlash non 
linearities in actuation of system in the class.
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3.8.1 Backlash non linearities

If u and x are scalars, the symmetric backlash non linearity may be described as:

x = Bb (u)=

u -b/2 u<b_
U -b/2 b.<u < b_/2
u -f b/2 bV2<u<-b+
U + b/2 -b+/2<u<-b.
u -b/2 u = -b+

(3.15)

The parameter vector b = [b_/2 b+/2] characterizes the width of the motion backlash. 
In practical motion control system, since the width of backlash is unknown, the 
compensation is difficult. Most compensation techniques covers the case of 
symmetric backlash where bJ2 = b+/2.

• FL compensation of multi-input systems with output backlash

To offset the deleterious effect of backlash, one may place a pre compensator there 
the desired function of the pre compensator is to composite throughout from to to x to 
be unity. The power of fuzzy logic is that to allow one to use intuition, based on 
experience to design control system and then provide the mathematical machinery for 
rigorous analysis and modification of the intuitive knowledge, for the example 
through learning or adoption, to give the guaranteed performance due to classification 
property of FL, they are very powerful particularly when the non linearity depends 
on the region in which the argument u of the non linearity is located, as in the non 
symmetric backlash.

In most practical motion control systems, there are several control inputs so that 
co, u , x are generally u vectors. There may be different backlash characteristics in each 
channel so that for i = l,2,....,n for each components CDi, Uj, xj one has a symmetric 
backlash.

x, = Bb,(u,)= u, - Sat b,(u,) (3.16)

with b, = [ bV2 b+/2 ]T, one can write this in a vector form as

?i = Bb (u)= u - Sat b(u) (3.17)

where the block diagonal matrix diag( bj/2 b?/2 .. . } € R2n x", the vector 
saturation function is defined as

Sat B (u) = [ Sat B, (u,) ] (3.18)

where [ z, ] denotes the vector with component z,. Then one must use a 
fuzzy logic (FL) compensator for each channel.

The backlash pre compensator, designed using engineering experience would be 
discontinuous and depend on the region with in which © occurs. It would naturally be 
described only the rules
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If (w, G X+ (w,)) then (wr = B,+)
If (w,€ X. (w,)) then (wFl = -B,-) (3.19)

to accomplish this, define
Ui = w, + Wr (3.20)

with MFs X+(.), X (.) defined for each component according to the following :
0 , w, < 0 

X+(w,) = 1,0 = w,

1, w; < 0
X.(w,) = 0,0 = w; (3.21)

which are shown in fig-3.

Define the estimate vector B, = [ B,+/2 B,V2 ]x.The fuzzy logic pre compensator may be 
conveniently expressed in vector form as follows.

Define the vector WF = [ WFi, Wr, ... Wr* f so that

U = w + Wf
u = w + BT x (w) . (3.22)

where the block diagonal matrix of estimated backlash width is 
B = diag [ bi b2 b3... bn ] and 
the vector fuzzy logic based function is given by

X (w) =[X+(wO -X- (wj) X+ (w2) -XL(w2) ........X+(wn)-X.(w„)f (3.23]
The throughput of the compensator plus backlash for vector <d, u, xG R" is

x=w -Btx(w) + Bt8 (3.24)
~ A

where the matrix backlash width estimation is B = B - B 
= diag[bib2b3.. .bn).

The vector mismatch 5 has a component 8, and satisfies
H 5 1 = vn (3.25)

Tuning or learning of backlash width estimation B(k) is done on line. So that the tracking 
error is guaranteed minimum and all internal states are bounded. This will make discrete 
time adaptive EL backlash compensator. In this estimation it is assumed that the actuator 
output x(k) is not measurable. It is important to note here that the discrete time FL 
backlash compensation signal w(k) is injected exactly at the same instant at which 
standard dithering, signals are injected. Thus, this backlash compensation scheme could 
be considered as adaptive dithering.

3.8.2 RUNNING the SIMULATION

The adaptive EL compensator for output backlash compensation is simulated on a 
digital computer using MATLAB Simulink toolbox. It is proved to be very efficient 
in nullifying the effect of output backlash.
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We simulate the response for the known transfer function model of DC motor with 
output backlash, with and without FL compensator. The result taken are comparative 
for the same plant with uniform output backlash, using PID controller, with no 
controller and with FL controller. The DC motor transfer function considered in this 
particular case study is

0.2481 [z/(z-e130IT) - z/(z-e6 98T)] (3.26)
Taking sampling time T=0.1 sec, the system transfer function reduces to,

0.41 z/z -5.68 z +7.38 (3.27)

KjPRECOM -isizsl

Fie Edit View Simulation Format Tools Help
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Fig 3.24 FLC Based Compensator

L8.3 Two-Layered Adaptive Fuzzy Logic Controller

The direct use of FLC to a system having Backlash nonlineanties results in poor transient 
and steady state performance. Paper presents a fuzzy logic based scheme 
which eliminates above listed problem. Our control scheme consists of two 
layers: a fuzzy pre compensator and a usual fuzzy logic controller. 
Proposed system shows better performance as compared to normal one 
layer approach. Two layer fuzzy logic controllers consist of two fuzzy logic 
compensator:

l Conventional Fuzzy Logic Controller 
2. Fuzzy pre compensator

• Conventional Fuzzy Logic Controller: The fuzzy logic controller is usually 
designed on fuzzy lgic control law. In this paper the FL law taken is 
F[e(k),Ae(k)]. In that e(k) and Ae(k) are two input given to the controller and 
F[e(k),Ae(k)] is one output of the FLC. The two inputs considered are output 
error e(k) = ym(k)-yp(k) and second input is change in output error Ae(k)= e(k)- 
e(k-l). In the design of the FLC set of linguistic variable values and

LlL_
Ready
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membership functions are considered. In this FLC set of linguistic values L is 
considered and are

L= { NB,NM,NS,ZO,PS,PM,PB} and set of membership function (MBF) is
considered as : M= { MNb,MNm,Mns MZoMpS Mpm Mpb j and is a real line 
to the interval [0,1]. The meaning of the linguistic variable values are clear 

from their mnemonic and is taken as

First character 
N - Negative 
ZO- Zero 
P - Positive

Second Character 
B- Big 
M- Medium 
S- Small

In standard fuzzy logic controller it consists of three stages i.e 
fuzzification,
decision making fuzzy logic and defuzzification.
Fuzzification: It transforms the inputs e(k) and Ae(k) into the setting of the 

linguistic values. For each linguistic value 1 6 L, a pair of Mf values ne(l) and 
Ane(l) to the inputs e(k) and Ae(k) using associated MF. The association is 
given as

ne(l) =M1(Cee(k))
Ane(l) = M,(CAeAe(k)) (3.28)

where: Ce and CAe are scale factor and ne(l) and Ane(l) are used in fuzzy logic 
decision process.

Decision making Fuzzy Logic: Using linguistic variable values and MF numbers 
of rules can be associated with the fuzzy logic controller. The expertise and available 
knowledge is utilized to build these rules. Trial and error method is also implemented. In 
our case fuzzy rales R= f Ri,R2,R3 ... Rr}.

Each rule in rule base set R is a triplet { le, lAe, lw } where le> lAe, lw e L.The rales 
are often written as “if error (input 1) is le and change in error (inpu2) lAe then output is 
lw”. On the bases of set of 7 linguistic values 49 rales in the rale set can be taken. Here 
experience, practical knowledge and trial and error method will help us to prepare 
appropriate rule base. In our design of controller 21 rules are taken as a rale base and are 
listed in table:3.8.

e(K)
Ae (k) NB NM NS ZO PS PM PB

NB NB NS
NM NM NS’
NS NS ZO PM
ZO NB NM NS ZO PS PM PB
PS NM NS ZO PS
PM PM
PB PM PB

TAI iLE 3.8: FUZZY LO>GIC RULES FOR FLC
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Rule Ri= (le, W, lw) takes e(k) and Ae(k) as inputs mid assigns it to a function 
Pi(e(k), Ae(k),w), we [-1,1] and is given as

Nmin = min( ne(le), n^W))
Pi(e(k),Ae(k),w)=min(Nmin,Miw(w)) we [-1,1] (3.29)

Corresponding to each rule one pi function is associated and if we combine all 21 
function in this case we get an overall function q as,

q(e(k),Ae(k),w) = max( pi(e(k),Ae(k),w),.. pr(e(k),Ae(k),w)), w e [-1,1]
(3.30)

Defuzzification: This stage in FLC leads us to the real number output. In ELC 
design the FL rales are mapped to get real number output F[e(k), Ae(k)] and is 
given as

71 wq(e(k),Ae(k),w)dw
F[e(k),Ae(k)] = CF ------------------------------

71 q(e(k),Ae(k),w)dw ' (3.31)

Cf is a scale factor. As the ratio of RHS of the above equation is center of area or 
centroid of the function q(e(k),Ae(k),w), the defuzzification is called center of 
Area or centroid method.

• Fuzzy Pre compensator

Fuzzy pre compensator as in the usual FLC also contains three stages. It contains 
set of linguistic values L’ and set of Membership Functions (MF) M’. The linguistic 
values U are used for the input to the pre compensator and linguistic values L are used 
for the output. The pre compensator uses linguistic values set:

L’= {NE, ZE, PO] and

Associated MF M’ = {Mne,Mze,Mpo}. : The mnemonic in L stands for negative, zero 
and positive respectively. It is also consisting three stages as usual FLC compensator: 
Fuzzification, decision making fuzzy logic and defuzzification.

Fuzzification: The three inputs of the fuzzy compensator e(k), Ae(k) and p(k-l) 
are assigned with numbers me(l’), Ame(l’)» and i%(r) respectively through,

me(l’) = M]>(C’ee(k))
Ame(F) = Mr(C’AeAe(k))
m(l(r) = M,.(CVli(k-l)) (3.32)
where C’e, C’Ae and C’^are scale factor

Decision making fuzzy logic of pre compensator consists of 27 rule (R’i,... ,R’27] as 
per table 3.9
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IF THEN
e(k) Ae(k) H(k-l) H(k)

NE NS
NE NE ZE zo

PO zo
NE PS

ZE ZE zo
PO NS
NE PM

PO ZE PS
PO ZO
NE ZO

NE ZE NS
ZE PO NS

NE ZO
ZE ZE zo

PO ZE
NE PS

PO ZE , PS
PO ZO
NE PM

NE ZE PS
PO PO ZO

NE PM
ZE ZE PS

PO ZO
NE PB

PO ZE PS
PO ZO

TABLE 3.9: RULES FOR FUZZY PRECOMPENSATOR

Here each rule R\ is a quadruplet (l’e, l’Ae. l’n, V) where Pe, 1’Ae, l’ns L’ and 1^ e 
L(The linguistic values set of FLC). As in usual FLC, we had calculated function P’,’s 
using experience and practical knowledge and 27 P’, related with each rule in rule set 
are combined to get similar function q’ as in FLC. By defuzzification of the above 
function q we get single value output of the pre compensator and is given as

X1 pq’(e(k)Ae(k), |i(k-l), jx)dp
G[e(k), Ae(k), p(k-l)] =CG ---------------------------------------+p(k-l) (3.32)

X1 q’(e(k),Ae(k), |i(k-l), p)dp
CG is a scale factor.

The adaptive two layer FL controller for output backlash compensation is 
simulated on a digital computer using MATLAB Simulink and fuzzy logic toolbox. It is 
proved to be very efficient in nullifying the effect of output backlash. We have carried 
out simulation for the known transfer function model of DC motor with output backlash, 
with single layer (usual FLC) and two layer compensator approach. The results are
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compared for the same plant with uniform output backlash with single layer( Fig 3.25) 
and (ii) with two layer approach.

Fig 3.25: Single Layer FLC
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Fig 3.26: Two Layer FLC

The DC motor transfer function considered in this case study is

0.2481 [z/(z-eI301T) - z/(z-e6 981)] (3.33)

Taking sampling time T=0.1 sec, the system transfer function reduces to,
0.41 z/z2-5.68 z + 7.38 (3.34)
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Fig 3.27 shows the response and Fig 3.28 shows the effect of variation of width of 
backlash. The response indicates that the performance is independent of the width

£«• £d» ^indcw• U«*P

Tim* (second)

| MAT LAB Com | J^Lfetaty »«mufcTfc| pid_tz4| m IMkaosoft Po»m || M p>4_»»4/6«... ?3G 257AM

Fig: 3.27: Output Red - with FL Pre compensation; Blue - without FL 
compensation; Green - with PID
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Fig 3.28 Response of two layer FLC with Backlash

The effect of variation of width of backlash is shown in the figure. The response 
indicates that the performance is independent of the width.

The basic fuzzy controller application which replaces the PID controller for 
variable speed controlled EM is presented. The comparison of this controller with 
conventional PID controller shows improvement in the output response (Low settling 
time and less overshoot).

This controller is modified further to tune the desired performance by tuning the 
fuzzy inference system. The training data generation is based on the required response
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from the plant Training of FLC modifies the membership function so as to adopt the 
change in input for a fixed tracking of O/P. This improves the insensitivity of the 
controller to plant parameter variation. Neuro-Fuzzy Controller design using ANMS 
reduces the number of rules/membership functions and improves the speed of response in 
comparison to that of FLC.This improved controller makes the system robust. The system 
is easily implemented using crisp value (Sugeno type) on PC.A dedicated hardware can 
be used.

The Fuzzy Logic Controller and Fuzzy Logic Pre compensator is designed here. 
The fuzzy controller application replaces the PID controller for the variable speed 
controlled motor. From the responses obtained we can see that the Fuzzy Logic controller 
and FL compensator shows the improvement in the output response. The use of Fuzzy 
Logic compensator compensates the effects of the nonlinearity. This improved controller 
makes the system robust.

A discrete time two layered fuzzy logic controller (FLC) has been proposed for 
compensation of backlash non linearity in a control system. It consists of two layers i.e 
fuzzy pre compensator and a conventional fuzzy logic controller. The proposed scheme 
shows superior steady state and transient state performance, compared to usual single 
layer FLC.

The fuzzy pre compensator in this scheme can easily be added without affecting 
the existing system and retuning of system variables is also not required. It is a robust 
controller to the variation of backlash non linearity. The performance is verified through 
simulation result


