
Chapter 2

Mathematical Modeling of Power System

2.1 General

The mathematical model of synchronous machine can be described by a set of differential 

equations representing the dynamics of the machines, exciters and other controls and alge

braic equations representing the network relation. The model considered for the stability 

analysis in this thesis are described below:

2.2 Generator model

Fourth order model of generator [33,15, 43, 6] has been used in the present study as described 

below:

The dynamics of the synchronous generator can be represented by the following equations:

<5 Wjg (wm wmo) (2-1)

1
wm = ((wm wmo)) T Pm — Te) (2.2)

where 5 is generator’s rotor angle, wm the speed deviation, H machine inertia constant, 

Tm is the Mechanical power input to generator, Te is the electrical power output of the 

generator, kd the damping constant.

17
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The electrical torque equation is represented by following algebraic equation:

Te — Edid + ffqiq T (%d xq)idiq (2.3)

where id and iq are d-axis and q-axis current respectively, E'd and E'q are d-axis and q-axis 

transient voltage, xd and x'q are d-axis and q-axis transient reactance.

The effect of saliency is considered, the chages in flux linkage of the filed winding have 

to be accounted for along the d and q axes. Therefore, two more additional state equation 

(2.4) and (2.5) along with the swing equations (2.1) and (2.2) have to be considered.

^ E'q + ^Xd ^dj “b ^fd

(-K - (*9 - %)

(2.4)

(2.5)

where Td0 and T'qQ are d-axis and q-axis open circuit time constant, xd and xq d-axis and 

q-axis synchronous reactance,

The line resistance is considering very low, it equal to be zero ohms. The stator d and q 

axes current and voltage algebraic equations can written as follows:

id
Ebcos§ ~ E'q 

(xe + xd)

EbSinS + E'd 
(xe + xq)

(2.6)

(2.7)

vq — -xeid + Ebcos5 

vd = —xeig — EbSinS

Vt = ^Jv2d + vf

(2.8)

(2.9)

(2.10)

where xe is the line reactance, vd and vq are d-axis and q-axis voltage, Vt the terminal 

voltage and Eb infinite bus voltage.
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2.3 Excitation System
The IEEE type -ST1 exciter [33, 43] has been considered in this study and equation governing 

the dynamics is given as follows:

B,d = -~Bfd + ^(V„f-Vt) (2.11)
J-A -L A

where £?/<*= field excitation voltage 

Ka ^Exciter gain 

Ta =Exciter time constant 

Vref =Reference voltage setting 

Vt =Terminal voltage

2.3.1 Initial Conditions

The power system is described by set of non linear differential equations and is required to be 

solved numerically. It is assumed that the system is at a. stable equilibrium point till t=0. It 

is necessary to calculate the initial conditions at time t=0 based on power system operating 

points. Calculation of initial conditions [33, 43] are very important for power system stability 

analysis. The operating points are calculated from load flow analysis [41, 15].

The initial conditions are calculated from following set of Equations:

Calculation of /o0 from Equation (2.12).

iaQ ~ IaQA.(j)Q — 77—7^-yr (2.12)

VtoZ- — oq

Sq and Eq0 are calculated from Equation (2.13).

EqoZ.So = VtoZ$Q + (Ra + j%q) IaoAtfio (2.13)

The . different variables ido, iqpVdo, E/do, E'q0, Ed0 and Te0 are calculated from .following 

Equations:

^do = -Iapsin (<50 - <^o) (2.14)
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iqO = IaQCOS (<50 - </>o) (2.15)

Vdo = -VtoSin (So ~~ <po) (2-16)

VqQ — VtoCOS (So <j>o) (2-17)

Efdo “ EqO (Xd Xq) %d0 (2.18)

^q0 ^fdO *1" %dj idO (2.19)

£*0 = -(*,-*;)**> (2-20)

Teo = EqQlqO T "l- f Eg} IdO^qO = Tmg (2.21)

2.4 Linearization and Eigen Properties

2.4.1 Linearization

The dynamic system can be represented in a set of n first order non-linear differential equa

tions [88, 15].

x = f (x,u) , (2.22)

y = g(x,u) (2.23)

Where x is the state vector with n state variable, u is input vector to the system, and y 

is the output vector.

To investigate the small-signal stability at one operating point, equation (2.22) and (2.23) 

need to be linearized. Assume x§ is the initial state vector at the current operating point and 

u0 is the corresponding input vector. As the perturbation is considered' small, the nonlinear 

function / can be expressed in terms of Taylor’s series expansion. With terms involving 

second and higher order powers of Ax and Au are neglected, we may write

Xi = xi0 + Aii0 = fi [(x0 + Ax), (u0 + Au)} (2.24)
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- fi (*9,«o) +
+........ + -j^-Axn + |^A ux +..........+ |^-A ur

k)xn dui oxi
(2.25)

XiO = fi (xotu0)

A ■ 5/i A ,
A Xi — ——Aaq +........dxt

+ |AAi„ + Ma„1 + + |iA«r

OXn &Ui &&1.
(2.26)

A|fj = Axi +..........
uX\

+ ^ +........ + |£tA„r

OXn OU\ our
(2.27)

Therefore, the linearized forms of Equation (2.26) and (2.27) are written as:

Ax = AAx + BAu (2.28)

Ay — CAx + DAu (2.29)

Where A is the state matrix, B the control matrix, C the output matrix, and D is the 

feed forward matrix. For the stability analysis and eigen value analysis of the synchronous 

machine, the state matrix A is the most important. This matrix can be represented by 

Equations (2.30) and (2.31). The block diagram of state space is represented by Figure 2.1.

" 2A §& ’ ' 2R. ‘ §A '
ffxi dxn du\ dur

A - 5-

9fn d}n dfn
. dxi 9xn - - 9u i 9ur -

9gi M dgi dgi
dxi dxn du\ dur

c = D =

d()m ■9gn dg-m
- &C1. . ' dxn . - 9ui dur

(2.30)

(2.31)

Aa: is the state vector of dimension n

Ay is the output vector of dimension m
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Au is the input vector of dimension r 

A is the state or plant matrix of size n x n 

B is the control or input matrix ofnxr 

C is the output matrix of size m x n 

D is the feedforward matrix mxr

Figure 2.1: Block diagram of State Space Representation

2.4.2 Sate Space Representation

The Laplace transform of the equations (2.26) and (2.27), the state equations (2.32) and 

(2.33) are presented in the time domain as per follow [65, 88, 97]:

sAx(s) — Ax(0) = AAa;(s) + BAu(s) • (2.32)

A y(s) = CAx(s) + Du(s) (2.33)

Rearranging Equation (2.32), we have

(SI — A)Ax(s) = Aa;(0) + BAu(s) (2.34)

Hence

A x(s) — (SI — A)-1 [A$(0) + Bm(s)] (2.35)
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= + P-36)

and correspondingly,

Ay(s) = IMO) + Bu(s)] + DAu(s) (2.37)

The Laplace transforms of Ax and Ay consist two component, one dependent on the 

initial conditions and the other on the inputs. These are the Laplace transforms of the free 

and zero-state components of the state and output vectors. The poles of Ax(s) and Ay(s) 

are the roots of the Equation:

det(SI - A) = 0 (2.38)

The values , of s which satisfy the above are known as eigen values of matrix A, and 

Equation is refereed as the characteristics Equation of matrix A.

2.4.3 Eigen Values

The eigen values of a matrix [88] are given by the values of the scalar parameter A for which 

there exist non-trivial solutions to the equation

A(p = X(p (2.39)

where

A is an nxn matrix 

<^>is an n x lvector

For the calculation of eigen value, the equation (2.39) may be written in the form 

{A - \I)4> = 0 (2.40)

For a non-trivial solution

det(A — XI) — 0 (2.41)
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Expression of the determinant gives the characteristics equation. The r solution of (2.41) 

A = Ai, A2........., Anare eigen values of A.

2.4.3.1 Eigen Vector

For any eigen value Apthe n-column <j>pwhich satisfies (2.39) is called the right eigen vector 

[15] of A associated with the eigen value Ap.

A<f>p Aptpp (2.42)

P = 1,2,.........r

The right- eigen vector is represented by equation (2.43.)

(pip 

<p2p

(prp

Similarly, the r row vector ip-which satisfies the equation

(2.43)

i>PA — Ap^j, (2.44)

p — 1,2,.........ris called the left eigen vector associated woth the eignvalue Ap.

"0P IpVp Tp,rp
(2.45)

The left and right eigen vectors corresponding to different eigen values are orthoginal,

i.e.

ipq<t>p = 0 (2.46)
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AP7^A?and

4>q<Pp = ap . (2.47)

where Xp = Xq and ap is a non zero constant. To normalized these vector so that

Mp = 1 (2-48)

2.4.3.2 Participation Factor

Participation factor [48, 4, 15] is used for identifying the state variables that have significant 

participation on a selected mode among many modes in a multigenerator power system. 

Participation matrix (P), which combines the right and left eigen vectors entries and used 

as measure of the association between the state variables and the modes.

P--

with

P, P2 ... Pr (2.49)

P„

Pip ffilp'tPpl

P'2p

_

PJ. Tp 4*1p^Ppr

(2.50)

where

<Pkp =the element on the kth row and pth column of the modal matrix <p 

=kth entry of the right eigen vector <pp

ipPK—hhe element on the pth row and kth column of the modal matrix ip 

—kth entry of the right eigen vector ipp

The element Pkp=3kp'iPpk is the termed as the participation factor, <p^p measures the 

activity of the variable XK in the pth mode, and -tppK gives the weights of contribution of
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this activity to the mode, the product Prp measures the net participation. The. effect of 

multiplying the element of the left and right eigen vectors makes the Pkp dimensionless.

2.4.3.3 Eigen value and Stability

The time dependent characteristics of a mode corresponding to an eigen value A * is given by 

eXlt [88, 15]. Hence the stability of the system is determined by the eigen values as follows:

1. A real eigen value corresponds to a non-oscillatory mode. A negative real eigen value 

describes a decaying mode. The large its magnitude, the faster the decay. A positive 

real eigen value represents aperiodic instability.

2. Complex eigen values occur in conjugate pairs, and each pair corresponds to an oscil

latory mode. The real components of the eigen values give the damping, and the imag

inary components present the frequency of oscillation. A negative real part describes 

a damped oscillation, whereas a positive real part represents oscillation of increasing 

amplitude.

Thus A for a complex pair of eigen values is represented by equation (2.51).

\ = G±jw (2.51)

where o and us show the real part and imaginary part of the eigen value.

The frequency of oscillation in Hz is given by equation (2.52), which represents the actual 

of damped frequency.

' = £ <2-52>

The equation (2.53) represents the damping factor
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The damping ratio £ determines the rate of decay of the amplitude of the osciilation. 

The time constant of amplitude decay is j^.

2.5 Linear model of power system

The single machine infinite bus system (SMIB) is shown in Figure 2.2, where Vt and 

Eb are generator terminal voltage and infinite bus voltage respectively. The Xe and Xt 

are transmission line reactance and transformer reactance respectively. The dynamic model 

of the synchronous machine and exciter described by section 2.2 and 2.3 respectively are 

linearized about its initial conditions using linerization concept, which is described by section 

(2.4.1). After linearization of the equations (2,6) and (2.7) of i<i and iq and substituting these 

equations in (2.8), (2.9) and (2.10) yield the linearized equations of Vq, V);, Vt and Te. The 

linearized equations are represented by equations (2.54) to (2.61).

V*

Generator

Figure 2.2: Single Machine Infinite Bus System

2.5.1 Calculation of K\ to Kw Constants

The linerized form of A id and A iq are represented by equations (2.54) and (2.55).

A id — PiAS 4- P^AEq (2.54)

A iq = P3AS + P4AE'd (2.55)

Where

~EbsinS0 
xe + xd

P2 = 1
Xe + x'/ Pv

EbCos5o 
Xe + Xq’ (2.56)
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The linerized equations of Avd, Avq, Vt and ATe are shown by equations (2.57) to (2.61).

Al/d = (-Ebcos50 + P3xe) A5 + xePAAE'd (2.57)

AVq — (—EbSinSo + Pixe) AS — xeP2AE'q (2.58)

ATe = KxAS + K2AE'q.+ I<3AE'd (2.59)

AVt^Avd + ^-Avq (2.60)
VtQ VtO

AVj = KgAS + K<jAEg + K\oEd (2.61)

The fourth-order model of the synchronous machine is considered and K\ to Kio constant 

are derived by substituting the above equations in linearized form of the machine state 

equations (2.1), (2.2), (2.4), (2.5) and (2.11). The linearized forms of the machine state 

Equations are represented by equations (2.62) to (2.66).

5 u)iJ/S.ojrri . (2.62)

Acum — ~'^~pjAuim + ^ ATrn A 5- 
2 H §a£;-1|ab- (2.63)

1 / A Eg\

A Eq = —r 1 A Efd — K5A6 — 
1dO V

I<T) (2.64)

1 / A /?' \

AE'd^¥-\K7AS--j^j • (2.65)

A Tp __ a r El 9 a Tp* -^-A^IO a jrif , EA at/ . A /O iZf‘\
&Efd — A5 ~ &Eg — /S.E£ + 7= ^Ke/ rp ^fd (2.66)

J-A J-A ±A +A
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2.5.2 State Space Representation of System

The expression (2.67) is described linearized power system model in state space form 

Ax = AAx + BAu and-machine constant Kj to Kjo are described by equations (2.68) to 

(2.77). Figure 2.3 represents the block diagram of SMIB.

AS 0 Ub 0 0 0 AS

&0Jm Kx
2 H

D
2 H

I<2
2 H 2 H 0 Awm

AE' = -~*h
1*0 0 1T’d0K4 0 o I AE'q

> & Kr
T*iq0 0 0 1T'oKs 0 > ft.

 H

_ AEfd _ I<AK%L ta 0 kak9
Ta

O

1 iTa . _ A Efd _
0

+
2 H 
0

0

0 ATm 0 0 VTef

Ea
L TA J

(2.67)

where,

K1 = sfr = - [BL + (w - <) <00)3 “S*

K-

xd ~ xq) ido + Eqo

dTe

EbCosSo
xe + xdq

K*

8E'

dTe
8E',

dE'

K, - —?

E(io "t (^d Xq ) ^30

in + ((®d - x'q 

xe + xd

1 1r + Eq0-....;-~r + iqo

I’dn

xe + xd 

1

xe + x„

xe + xq

K*

IQ

8Eq (xe + Xd) + (xd - x'd) 

8En f , \ Ebsin5o
88

8E'

xd - xd xe + xd

9Ed {xe “f~ X^) + (’Xq Xq)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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I<7 =

K& —

K9 =

I<w =

dK
85

8Efd
85

8Efd
8E'q

9Efd
dE'd

EbCosSo 
xe + x'q

Vm

Vt0
xeEbcos50Etcosdo -j---------------------------------—

xe + xd

1
Vt0 xe + xd

V^oxe. 1 
Vm xe + x'q

(2.74)

(2.75)

(2.76)

(2.77)

Figure 2.3: Block diagram representaion of SMIB system
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2.6 Power System Stabilizer

The single machine infinite bus system with generator connected PSS is showfcin Figure
2.4.

jXth

j-YYY'i

Eb

Figure 2.4: SMIB with PSS

2.6.1 Conventional Power system stabilizer

The output response of the PSS is shown as a feedback element from generator speed and 

is described in the form [56, 33, 15]. The conventional power system stabilizer is described by 

equation (2.78). The first term in equation (2.78) is a reset term that is used to washout the 

compensation effect after the time lag Tw. The second term of AVpss is a lead compensation 

pair that can be used to improve the phase lag through the system from Vref to generator

K T sA T T ___ I'-pSS-LW° (l + TlS)(l + T2s)
shaft speed

/pss 1 + Tws |_(l + r3s)(l wT4s)_

The equation (2.78) is represented by state model of PSS which is shown by Figure 2.5.

Ae (2.78)

^xr> KpsJw v\ (1 +T,s) v2 (1 + Tzs)
rws + i ------- ----> (i + r3 s) d+r,5)

Figure 2.5: CPSS with state variables

The two new state rq, v2 and output variable AVpss of PSS are included in machine state 

equations. The CPSS new state equation are described as follow:

C /v not . 4 1Av, = - All?
2 H 2 H

K-2 Kyss A j-,'

—jrAE< k3k„. ,
2/7 d 6

-Avx (2.79)
iv
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Av2 = —OiA5 — a2Aum — (23A Eq — a,4AEd — a5 Av\ + a^v2 (2.80)

A vpss = —biAS — b2Au)m — b^AEq — biAEd + 65 Avi + bgAv2 + b7 Avpss (2.81)

2.6.1.1 Model of Power System with CPSS

The Power system stabilizer provides the additional signal to excitation system. After 

the addition of PSS with excitation system, the exciter equation would be changed. The

exciter equation is described by equations (2.82) and (2.83).
Efi = -~~Efd + ^ (Vref ~Vt + Vpss) 

J-a -La

AEfd = -—d^dlAS - if A ip) ^
ta q'

KaKi0 AE'd + ^AVT
rp------- ,rp---------Q rp a 1 rp ’ rp
-*■ A. A -*■ A A A

The state model of machine with PSS is described by equation (2.84)

(2.82)

1 Afd + ^Vpss(2.&3)
J-A

0 OJB 0 0 0 0 0
Ii 1
2 H

D
2 H

Kl
2 H

i<3
2 H 0 0 0

JA 0 1 0 1 0 0Tl1d0 T'd0K4 0 j

A =
El
t'Jq0

0 0 1
K 0*6

0 0 0

KaKs
Ta 0 KaKs

Ta
KaKw

Ta
1

Ta. 0 0
KiKpss

2 H
DKpss

2 H
K2 KpSS

2 H
— I<zKpss

2 H 0 - 1
Tw 0

di 0-2 a3 CL4 0 as &6

bi ^2 h 64 0 b3 ^6

Where,

x = A 5 A E'q A E'd A Bfd Adi Ari2 A Vpss

0

0

0

0

Ka
Ta

0

0

(2.84)

n _ _TiKpss n __ _TiJDKpss n __ _TiKyKpss n __ _TiKyKpSS _ _l_
— T^2H , a2 — T^2H , U3 — T2m , «4 — r22.£f , us — Tl T2TW 1

_L
t2

l „  T\ 73Ki Kpss l    T2T4DKpSs l    T2T3K2KPSS l    TiTzK-jKpss j   Th   Ti Ta
1 — T2T42H >u2 — T2T42H !°3— T2T42H ’ °4 — T2T42H ’ U5 ~ T2T4 T2T42H'
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2.6.2 Proportional Integral Derivative Power System Stabilizer

One of the most powerful but complex controller mode combines the proportional, integral 

and derivative mode. This mode eliminates the offset of the proportional mode and provides 

fast response [20, 88]. In present work PID based PSS is proposed with feedback element 

from generator speed and is represented by in Laplace form. The Laplace form of PID-PSS 

is represented by equation (2.85).

Kp + — + Kds 
s

A (2.85)

2.6.2.1 Model of Power System with PID-PSS

The state model of machine with PID-PSS is described by equation-(2.86). ' Figure 2.6 

represents block diagram of machine with CPSS and PID-PSS.

A

Ex
. “B

Where,

0 UJB 0 0 0

Ki D k2 Ez n
2 H -2H 2 H 2H
Kb 0 1 0 i
t'1dQ T'd0I<4 ^0

Kt 0 0 1 0
IqQ T'q0Ke

KaKr n kaks KaKw i
Ta Ta Ta Ta
K^K}n\ 

2 H I
(K„ - !&) K2Kp

2 H
-K3Kn

2 H
0

Ad Au4i AE'q AE’d AEfd fWpss

J 6x6

(2.86)
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P1D- Power System Stabilizer

Figure 2.6: Block diagram represntaion of SMIB with PSS

2.7 Thyristor Control Series Capacitor

Thyristor controlled series capacitor provides the fast, continuous and dynamic control 

of power by varying the apparent reactance of the specific transmission line. The TCSC 

can enhance the oscillatory stability by damping of oscillation and improves the dynamic 

and transient stability of the power system [55, 25, 44, 62]. One line diagram of the basic 

module of the TCSC is shown in Figure 2.7. A TCSC is a parallel combination of a fixed
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series capacitor and a variable thyristor controlled reactor. The TCSC has two operating 

ranges around its internal circuit resonance. One is amin < a < 180 where XTcsc(a)ls 

capacitive, and other is the 90 < a <wm where Xt.csc{ol)is inductive. The internal circuit 

resonance depends on the ratio of inductor and capacitor reactance of TCSC. The steady 

state relationship between firing angle and the reactance Xj-csc can be described by the 

following equation [44].

Xtcsc{cx) = Xc Xq{ix + sin/i) 
{Xc — Xl) tt

AXqCos2{/x/2) [ptan{^-) — tan(7r/2)] 
(Xc - Xi)(p2 - 1)7T

(2.87)

Where Xc is reactance of the fixed capacitor, Xl is inductive reactance of inductor L 

connected in parallel to capacitor, compensation ratio p = and conduction angle of

TCSC is p — 7r — a. The model for the TCSC for the stability study is shown in Figure 2.8 

and is based on the variation of the reactance of the TCSC in the capacitive region [38, 44]. 

In this Figure, Xmod is the stability, control modulation reactance value as determined by the 

stability control loop, and Xref denotes the TCSC steady state reactance or set point, whose 

value is calculated from power flow or steady state control loop. The sum of these two values 

produce Xtotai which is the final reactance offered by the external control block. This signal is 

passed through first order lag transfer function and produced the final value of the reactance 

Xrc5C(Q)-The time constant Ttcsc presents the natural response of the device and the delay
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introduced by the internal control. The limits are given by Xcmin = ^tcsc(180°) = Xc 

and Xcmox = XTcsc(®Cmin)- Here, the controller is assumed to operate in the capacitive 

region only, it means am,„ > aT, where arcorrespond to the resonant point.

Figure 2.8: Model of TCSC

XTCSC(a) (■Xmod + Xref) - XTCSC(a)
Ttcsc

The stability control loop of TCSC can be described by the Equation (2.89)

XTCSC(a)
KcTw\S 
1 + Tw\s

(1+ Tits) (1 + T2TS)

(1 + T^ts) (1 + T^rs)
AWr,

(2.88)

(2.89)

Where Twi andKc are time constant and gain of the washout filter. Tit,T2t,T3t and 

T^t are time constant of the phase compensator, which provides appropriate phase-lead 

characteristics to compensate for the phase lag between input and output signals.

2.7.1 Model of Power system with Inclusion of TCSC

Figure 2.9 represents the single machine infinite bus system with generator connected 

PSS and transmission line equipped TCSC.

Exciter
AVR

■ k

PSill

Figure 2.9: SMIB wiht PSS and TCSC



CHAPTER 2 Mathematical Modeling of Power System 37

After the inclusion of TCSC in power system model, the line reactance would be changed 

as Xnet = Xe — Xtcsc- The power transfer between the Vt and Ej, is written as follows:
Pt = VtE^m6° (2.90)

Xnet

The Current and voltage Equations of iq, Uvq and Vd would be changed. Hence electric torque 

Te is also changed. The linearized model of the machine is deriveed after the inclusion of 

TCSC and new set of state Equations A8,Au)m, AE'q, AE'd, AE/d are obtained. Consequently 

Ki to Kio constants of the power system are recalculated using new line rectance Xnet and 

initial conditions. After addition of TCSC, three new state variables and a state variable 

XTcsc{a) are required to considered for stability control loop of TCSC. For the TCSC sta

bility control loop the equation (2.88) and (2.89) are resolved using four state variables of 

TCSC model and then included in machine state equation. Figure 2.10 and 2.11 show sta

bility control loop and time delay of TCSC. Equation (2.91) represents power system matrix 

A with TCSC stability control loop.

^pss a + r,,*) % (t+12«)
rws + i ' (1+I3S) (1+T,}s)

Figure 2.10: TCSC state diagram

1 Xtcscm ■

T7CSc s -h 1

Figure 2.11: TCSC delay Equation
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The matrix A is described as follow:

0 U>b 0 0 0 0 0 0 0
_Al D /<2 K& 0 0 0 0 Ez

2H •2 H 2 H 2 H 2 H
k5 0 1 0 I 0 0 0 Ko

*$0*4 Td<3

k7
Ko

0 0 1
T^qKq 0 0 0 0 Kd

KaKs 0 I<aK9 KaKw 1 0 0 0 KaKm

Ta Ta Ta Ta Ta

Cl C2 c3 C4 0 C5 0 0 0
; dl d2 ^3 d4 0 dg d§ 0 0

Cl C2 e3 e4 0 65 e7 0

0 0 0 0 0 0 0 fi fi

Where

x — A6 Awm AE' AE'd A Efd Axl Ax2 Ax3 AXTcsc

(2.91)

2.7.2 Model of Power System with Inclusion of TCSC and PSS

The two state variables and AV^SS of CPSS, and three state variables and X^cscia) of 

TCSC are included in power system model. After the inclusion of state variables of PSS 

and TCSC, the power system model is converted in 12 x 12 matrix form. Equation (2.92) 

represents power system matrix A with PSS and TCSC stability control loop. Figure 2.12 

represents the block diagram of power system with TCSC and AVpsa signal coming from 

PSS.
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0 U)b 0 0 0 0 0 0 0 0 0 0

_ 2H
D
2B

I<2
2 H

_*a
2B 0 0 0 0 0 0 0 K£

2 H
0 1

T'd0K4 0 1
Tdo 0 0 0 0 0 0 Kq

I<7
T[o 0 0 1

T'0KS 0 0 0 0 0 0 0 IQ
KaKr

Ta 0 KfyKf,
ta

I<aK10
Ta

1
Ta 0 0 Ta 0 0 0 KAXfBi

Ta

KiKftsa
2H

DKVss
2 H

I^2^vss
2H

K^ICpSa
2 H 0 1

r«, 0 0 0 0 0 I^C^pss
2 H

ax 02 <33 &4 0 05 06 0 0 0 0 KcKvsaT\
2 HT2

bx 62 h 64 0 ^5 h 67 0 0 0 KcKpasTiTz
2 HT2T4

Cl C2 C3 c4 0 C5 0 0 0 0 0 0

di d2 ^3 d4 0 ds ^6 . 0 0 0 0 0

ei 62 e3 e4 0 e5 eg e7 0 0 0 0

0 0 0 0 0 0 0 A ■h 0 0 0

Where,
IS _ dTe If _ If _ IS __ 9Efd

P SX^csc ’ ® dXrcsc ’ f ‘ 9Xtcso ’ e: dXxcsc

Cl -Knlii 
2 H > C2 = -

KqD
2H C3 = 2if C4 KnKs 

2H > C5 1

TitKiKc;
T2t‘2H d,2 T2T2H ’ — TitK2Kc ,] _ _T\tK%KcT2T2H > “4 ~ T2cr2ir ’

dg — _i____ Tir
32T TztTw 1 ’

d$ — — 1
Tar

ei =~ TuTyrKiKc 
T2TTiT2H >

__ T-tThtDKc
T2T’^r4J'2i/ } e3

TitT3tI<2Kc __ T\tT3tK3Kq
T2tTat2H ■ c4 — T2tT4t2H

Txr TitTst 1 1
T2TT4T T2tT4tTw3 j Ctg — Tat Tit _

h 1
Trcsc’

1
Trcsc

(2.92)
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Figure 2.12: Block diagram of System with PSS and TCSC

2.8 Conclusion

For designing of computational intelligent techniques based PSS and TCSC, the mathemat

ical model of the power system with different, damping controllers are required. Calculation 

of eigen values, damping factors and participation of rotor mode are very important param

eters for depth analysis of small signal stability issues. The transient stability analysis can 

be done by dynamical model of the power system.

This chapter has presented the fourth order non linear mathematical model of the power
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system with IEEE-ST1 excitation system. The systematic procedure for conversion of non 

linear model into linear model with both PSS, TCSC and simultaneous designing of PSS 

and TCSC have been discussed. Using Taylor’s series method, a new fourth order linearized 

model of the power system with exciter has been derived and the equations of machine 

constant Ki to Kw have been calculated. The linerized mathematical model and state space 

form of power system with conventional power system stabilizer and a new PID- power 

system stabilizer have been described. The linearized state space form of power system with 

individual TCSC and simultaneous CPSS and TCSC have been also derived. The bock 

diagram representation of system with PSSs and TCSC has been included.


