
Chapter 4

Design of PSS and TCSC Using ANFIS 

and ANN

4.1 Introduction

The Adaptive Neuro-Fuzzy Inference System and Levenberg-Marquardt Artificial Neural 

Network algorithm for the development of the control strategy for thyristor control series 

capacitor based damping controller and power system stabilizer has been discussed in this 

chapter. In order to achieve the appreciable damping, the series capacitor has been suggested 

in addition to power system stabilizer. The non-linear simulations of single machine infinite 

bus system (SMIB) have been carried out using individual and simultaneous application 

of PSS and TCSC. The comparison between intelligent control strategies based damping 

controllers has been carried out. The results have shown efficacy and capability of proposed 

control schemes under the various operating conditions, disturbances and fault conditions, 

and also have demonstrated the improvement in the dynamic performance of the system 

with proposed control algorithm.
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4.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

Combining the learning power of neural network with knowledge representation of Fuzzy logic 

gives a Neuro-Fuzzy system. It gives the advantage of neural networks as well as of fuzzy 

logic system and it removes the individual disadvantages by combining them on the common 

features. Fuzzy logic has tolerance for imprecision of data, while neural networks have 

tolerance for noisy data. Fuzzy logic provides a structure within which the learning ability 

of neural networks is employed and neural network can be used to generate the membership 

functions for a fuzzy system and to tune them. There are two ways of hybridization; one 

is to endow NNs with fuzzy capabilities, thereby increasing the network’s expressiveness 

and flexibility to adapt to uncertain environment. The second aspect is to apply neuronal 

learning capabilities to fuzzy system to make the fuzzy systems more adaptive to changing 

environment.

4.2.1 ANFIS- Architecture

It is assumed that the fuzzy inference system under consideration has two inputs x and y 

and one output z. For a first order Sugeno fuzzy model, a common rule set with two fuzzy 

if-then rules is the following:

Rule 1: If x is Ax and y is Bx then fx = pxx+qxy + rx 

Rule 1: If m is A2 and y is Bx then f2 = p2x+q2y + r2

The reasoning mechanism for the Sugeno model has been shown in Figure 4.1 and corre

sponding equivalent ANFIS architecture has been shown in Figure 4.2. The ANFIS algorithm 

has been described in literature [13, 87].
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Figure 4.1: Takagi-Sugeno Fuzzy Model

Figure 4.2: Adaptive Neuro Fuzzy Architecture

Layer 1: Every node i in this layer is an adaptive node with a node function 

0lti = fj,Ai(x), for i = 1,2or 

Oiti = /iBi_2(y), for i = 3,4

Where x (or y) is the input to node A* (or B^) is a linguistic label associated with this 

node. Here the membership functions of A can be appropriate parameterized membership 

function such as generalized bell function:

RA(.x) = ~ 

1
26 (4.1)
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Where {a*, bin} is the parameter set. As the values of these parameters change, the bell

shaped function varies accordingly, thus exhibiting various forms of membership functions 

for fuzzy set A. Parameters in this layer are referred to as premise parameters.

Layer 2: Every node in this layer is a fixed node labeled II, whose output is the product 

of all the incoming signals:

02,» — Wi = Hm(x), * = 1,2. (4.2)

Each node output represents the firing strength of a rule. In general, any other T-norm 

operators that perform fuzzy AND can be used as the node function in this layer.

Layer 3: Every node in this layer is a fixed node labeled N. The *th node calculates the 

ratio of the *th rule’s firing strength to the sum of all rules’s firing strengths:

03, i = Wi =
IQj

Wi+W2’ i = 1,2.

Outputs of this layer are called normalized firing strengths.

Layer 4: Every node i in this layer is an adaptive node with a node function:

(4.3)

04, i = mji = Wi(piX + qty + r,:) (4.4)

Where (v)i) is a normalized firing strength from layer 3 and is the parameter

set of this node. Parameters in this layer are referred to as consequent parameters.

Layer 5: The single node in this layer is a fixed node labeled E, which computes the 

overall output and the summation of all incoming signals :

05,i = £>/< = 5^ (4.5)

From the ANFIS architecture as shown in Figure 4.2, we observe that when the values of 

the premise parameters are fixed, the overall output can be expressed as a linear combination 

of the consequent parameters. The output / in Figure 4.1 can be expressed as below:

f =
Wl

Wi + W2
fl +

Wi

Wl + w2h
- Wi(piX + qiy + ri) + w2{p2X + q2y + r2)

= {wix)pi + {wxy)qi + win + (w2x)p2 + (Wiy)q2 + w2r2

(4.6)
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4.3 Steps for Designing of ANFIS based PSS and TCSC

1. To generate the input data pattern and corresponding the target data pattern.

2. To develop the fuzzy inference system (PIS).

3. To select the number and type of the membership functions.

4. Application of rules extracted algorithm to initialize the rules of FIS.

5. Training of the FIS using learning algorithm such as hybrid learning or backpropagation 

learning algorithm [87, 13].

6. Testing of FIS through testing data.

7. If desired solution is achieved then stop training, else to change the fuzzy membership 

functions, fuzzy membership function types, change the rules extracted algorithm, FIS 

learning algorithm, no. of epochs, error tolerance and repeat the algorithm from the 

step 2.

8. Implementation of ANFIS in real system and compute the output of the system..

4.3.1 ANFIS-Power System Stabilizer

In this work, CPSS is replaced by the ANFIS based PSS. The mathematical model of the 

CPSS has been used for the generation of the training data for the ANFIS. The Takagi- 

Sugeno FIS [87] is used for the design of ANFIS based PSS. Sugeno has high computational 

efficiency and it works well with optimization and adaptive techniques [89, 90]. The network 

has been trained using 2000 sample training data, which are generated under the consider

ation of the different operating conditions and dynamic behavior of the power system. The 

two inputs and one output have been used for the training of ANFIS. The dynamic inputs 

are speed Aand change in speed and corresponding AV^S has been selected
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as output value of the ANFIS. Figure 4.3 shows the fuzzy logic controller (FLC) based PSS 

with inputs and output.

Speed

Change in 
Speed

Fuzzy Logic 
Controller

Figure 4.3: Fuzzy Logic Control based PSS

Generally gbell and gauss types membership functions (MFs) are preferable for ANFIS 

controller. No any convention for selection of type of MFs. The general rule is to produce 

a satisfactory response of the system with ANFIS controller in minimum time and also 

to obtain minimization of error with minimum ANFIS training parameters. The selection 

of number of membership function such that less number of membership function produce 

satisfactory response of the system. Consequently memory utilization should be reduced and 

ANFIS controller should produce quick response in less time. Table 4.1 shows the generating 

error after the execution of PSS-ANFIS structure with inputs and output data. Here four 

types of membership functions such that gbell, gauss, gauss2 and dsig are selected with 

different number of rules for designing of inputs and output variables of ANFIS controller. 

The triangle and trapezoidal membership functions are not suitable for ANFIS structure. 

Normally they are used for design of fuzzy logic controller based system. For two inputs, 

3, 4, 5 and 7 variables are selected and corresponding 9, 16, 25 and 49 rules are developed. 

Here forty nine rules based structure of the PSS-ANFIS controller is not preferable as it 

takes high computational time for the execution compared to the other ANFIS structures. 

The best ANFIS-PSS structure has been selected after the testing with real power system. 

The gbell type four membership functions are selected and total sixteen rules are developed 

for inputs and output.

Speed signal range is selected between -0.002527 to 0.003344 and change in speed signal 

-0.Q6441 to 0.1094 for defining the inputs membership functions. The output membership
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functions are varied between -0.09217 to 0.1112. Figure 4.4 represents the ANFIS-PSS 

structure with inputs and output. Figure 4.5 and 4.6 .have represented gbell type four 

linguistic membership functions. Figure 4.7 shows the decision surface viewer of inputs and 

output of the PSS.

For initializing of FIS rules, the grid partition method has been used and the initial 

rules are extracted. The hybrid learning algorithm has been used for training to modify FIS 

parameters after obtaining the application of grid partition method. The hybrid algorithm 

combines the least square and backpropagation gradient descent algorithm. In the hybrid 

algorithm [87], as shown in Figure 4.2, the node outputs go forward until layer 4 and conse

quence parameters are estimated by least-squares method. In the backward phase, the error 

signals propagate backward and the algorithm iteratively learns the premise parameters by 

gradient descent. The training is continued until the error becomes constant. 10 numbers 

of epochs are selected for training of ANFIS based PSS. The numbers of epochs are selected 

such that expected goal may be achieved with minimum value of error. After the 10 number 

of iteration, the error between actual output and ANFIS output is minimized. The training 

is continued until the desired error becomes constant. The training is completed when the 

constant error 0.00248381has been reached.

Table 4.1: Membership Function of ANFIS-PSS

No.of Rules
Type of Membership Functions

gbell gauss gauss2 dsig
Error

9 0.00305385 0.00295805 0.00265287 0.00287214
16 0.00248381 0.00303126 0.00298624 0.00320831
25 0.00325109 0.00285967 0.00240166 0.00406903
49 0.0016727 0.00158654 0.00207032 0.0033497
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Membership Functions of Speed (Input :1)-PSS
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Figure 4.4: ANFIS-PSS Structure
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Figure 4.6: Membership Functions of Change in Speed (Input :2)-PSS
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Figure 4.7: Decision-Surface Viewer of PSS

4.3.2 ANFIS-Thyristor Control Series Capacitor

Here, the stability control loop of the TCSC has been designed and replaced by sugeno 

ANFIS. The stability control loop of the TCSC has been used for generation of the training 

data pair of ANFIS under the consideration of plant dynamics. The inputs are speed Acjm(t) 

and change in speed ^~L^, and corresponding Xnuxl has been selected as output value of 

the ANFIS. The input signals of TCSC are speed and acceleration, so communication delay 

has been taken into consideration to compensate the time lag between generator signal and 

transmission side input of the TCSC. The first order transfer function with 0.5 second delay 

has been used as communication time delay for generation of input and output data. The 

comparative analysis between types of MFs with different number of rules are illustrated by 

Table 4.2. Table 4.2 shows the generating error after the execution of ANFIS structure with 

inputs and output data. Here three types of membership functions are selected with different 

number of rules for designing of inputs and output variables of ANFIS controller. It has been 

experimentally verified that forty nine rules based structure of the ANFIS controller is not 

preferable as it takes high computational time for the execution compared to the other 

ANFIS structures. Type of MFs, number of MFs and number of FIS rules are selected 

such that generating error should be minimized. The best ANFIS-TCSC structure has been 

selected after the testing with real power system. The TCSC model has been implemented in
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power system with ANFIS based stability control loop. Here the gauss type five membership 

functions are selected and total twenty five rules are designed for inputs and output. Speed 

signal range is selected between -0.003313 to 0.003808 and change in speed signal -0.05169 

to 0.1172 for defining the input membership functions. The output membership functions 

are varied between -0.2143 to 0.234. After 10 number of epochs, the error between actual 

output and ANFIS output is minimized. Figure 4.8 represents structure of ANFIS based 

TCSC controller. Membership functions for the ANFIS based TCSC controller have been 

represented in Figure 4.9 and 4.10. The decision surface viewer of ANFIS-TCSC controller 

has been presented by Figure 4.11. The training is continued until the desired error becomes 

constant. The training is completed when the constant error 0.000805447 has been reached.

Table 4.2: Membership Function of ANFIS-TCSC

No.of Rules
Type of Membership Functions

gbell gauss dsig
Error

9 0.00169247 0.00084397 0.00115811
16 0.00029095 0.000753772 0.00158915
25 0.00131741 0.000805447 0.000930369
49 0.000256792 0.000494053 0.00674250

Input Input MF

«n,(0

25 Rules Output
MF

Xmod Output
V
r

Figure 4.8: ANFIS-TCSC Structure
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Figure 4.10: Membership Functions of Change in Speed (Input :2)-TCSC
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Figure 4.9: Membership Functions of Speed (Input: 1)-TCSC
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Figure 4.11: Decision-Surface Viewer of TCSC
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4.4 Levenberge-Marquardt Neural Network

Artificial Neural Network has been one of the most interesting topics in the control com

munity because they have the ability to treat many problems that cannot be handled by 

traditional analytical techniques. There are several approaches to neural network training, 

for determining an appropriate set of weights. The feedforward multilayer neural networks 

are the most common neural network architecture for solution of control problem. A widely 

used training method for feedforward multilayer neural network is the back propagation al

gorithm; the standard back propagation learning algorithm has several limitations. Most of 

all, a long and slow training process when plant is non-linear and parameters of the plant 

are dynamic i.e. the rate of convergence is seriously affected by the initial weights and the 

learning rate of parameters. Here, the learning rule is common to a standard nonlinear 

optimization or least-squares technique. The adjustment of weight is done at the end of 

each iteration and the sum of squares of all errors is used as the objective function for the 

optimization problem. In this problem derivative -based optimization Levenberg-Marquardt 

method [87, 14] is used for solving the nonlinear least squares problem. The Gauss Newton 

Levenberg-Marquardt method works well in practice and has become standard of nonlinear 

least squares routines.

4.4.1 Levenberg-Marquardt Algorithm

To implement the Levenberg-Marquardt algorithm [87, 14, 94] for neural network training, 

the first step is calculation of Jacobin matrix and second step is organize the training process 

iteratively for weight updating. Suppose that we have a function V(k) to minimize with 

respect to the parameter lc vector, and then Newton’s method would be

Ak = - [vV(fc)-1] VV(k) (4.7)

Where is V2V(k) 1 Hessian matrix and W(k) is the gradient.
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Vw(fc) - sum of square funciton

N
'/W = Ee?W (4-8)

i=1

Then it can be shown that

Vi/ (As) = JT(k)e(k)

V2V(k) = JT(k) J{k) + s{k)

dei(k) dei(k) dei(k)
001 96 2 ' - d&„

de2(k) 062(k) dei(k)
061 002 ' ‘ ddn

deN(k) 9ejv(fe) deN(k)
dffi 002 ... g8n

N
s(k) = J>(fc)V2ei(fc)

2—1

The updated rule of Levenberg Marquardt to the Gauss-Newton method is

(4.9)

(4.10)

(4.11)

(4.12)

0k+i = dk~ [J(kfJ(k) + al] 1 J(k)e(k) (4.13)

Where J(k) is Jacobian matix, a is always positive called combination coefficient, / is the 

identity matrix. As the combination of the steepest descent algorithm and the Gauss-Newton 

algorithm, the Levenberg-Marquardt algorithm switches between the two algorithms during 

the training process. When the combination coefficient a is very small, the Gauss-Newton 

algorithm is used while combination coefficient a is very large; the steepest descent method 

is used. With'the update rule of the Levenberg-Marquardt algorithm equation (4.13) and 

the computation of Jacobian matrix, the next step is to organize the training process.
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4.5 Steps for Designing of LMNN based PSS and TCSC

1. To generate the input data pattern and corresponding the target data pattern.

2. To Develop the feedforward neural net

3. Training of the neural network using Levengerg-Marquardt algorithm

4. To Update the NN parameters through equation (4.13).

5. Calculating mean square error between actual output and targeted output.

6. Computing the output of the NN.

7. If desired solution is achieved then stop, else change the NN goal, learning rate, no. of 

epochs and repeat the algorithm from the step 4.

4.5.1 ANN-Power System Stabilizer

In this work, CPSS is replaced by the ANN based PSS. The time constants and gain of lag- 

lead compensator based CPSS has been tuned by genetic algorithm [8] and genetic algorithm 

tuned model of the CPSS has been used for the. generation of the training data for the 

artificial neural network. The network has been trained using 8000 sample data, which are 

generated under the consideration of the different operating conditions and dynamic behavior 

of the power system. The training pattern for the feedforward neural network is dynamic 

inputs u(t) and corresponding outputs y(t) such that um(t),ujm(t — 1 ),ujm(t — 2— 3) 

and Vpss respectively and targeted value of the neural network is y(t).

Table 4.3 represents the mean square error (mse), number of iteration and training time 

in second with different learning rate and different combination of neurons in input layer, 

hidden layer and output layer. The different combinations of neurons are selected and 

trained the neural network such that error should be reduced with less number of Iteration 

and less time. Each trained neural network has been tested with real power system and
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performance has been analyzed. Here dynamic data are used for training of neural network 

so large number of neurons is required for satisfactory performance of the system. Hence the 

feedforward network has been developed with 50 neurons in first layer, 30 neurons in hidden 

layer and 1 neuron in output layer with hyperbolic tangent sigmoidal transfer function in 

first layer and hidden layer, and linear transfer functions in output layer. The selection of 

[50 30 1] neurons with higher learning rate neural network has produced better response.

Table 4.3: Mean Square Error of ANN based PSS

No.of neurons
Learning rate

0.05 0.1
Iteration t (sec) mse Iteration t (sec) mse

[10: 5 1] 35 6 2.64xl0“6 11 2 3.01 xl0“5
[20 10 1] 89 24 2.72x10^ 25 7 2.96xl0~s
[30 20 1] 16 10 2.96xl0“5 12 8 2.80xl0~5
[50 30 1] 24 11 3.06xl0-5 27 12 2.98 xlO-6

0.3 0.5
Iteration t (sec) mse Iteration t (sec) mse

39 7 2,83xl0~5 32 6 2.98xl0~5
108 . 29 • 2.81 xlO-5 11 3 2.96xl0-5
26 16 2.60x10-5 13 8 2.97xl0-5
15 34- 2.88xl0~5 5 24 3.84xl0-5

During the training of ANN, the weights and bias of the network are adjusted such that 

the error between the actual output and targeted output is minimized and desired goal is 

achieved through Levenberg-Marquardt derivatives -based optimization. The optimization 

function can be represented by the following equation.

Ji(k) = \ [A<nm(k) - Afbm(k)}2 (4.14)

The Levenberg-Marquardt’s direction is determined by the updated rule of Levenberg 

Marquardt to the Gauss-Newton method. Which one is an intermediate between the Gauss- 

Newton direction and the steepest descent direction. Figure 4.12 shows relation between 

training data versus output data and targeted data. Figure 4.13 shows the minimizing of 

the cost function Jf (■&) described by the equation (4.14). The selected structure has produced



CHAPTER 4 Design of PSS and TCSC Using ANFIS and ANN 92

3.84x10 5 mse in 24 second with 0.5 learning rate. The training is performed for 5 number 

of iteration through appropriate adjustment of weight and bias of neural network.

Figure 4.13: Mean Square Error

4.5.2 Design of LMNN-TCSC

Here, the stability control loop of the TCSC has been trained by artificial neural network. 

The gain and time constant of TCSC controller has been tuned by GA and the tuned model 

of the TCSC described by the equation (2.87), (2.88) and (2.89) have been used to generate 

the training data for the NN under the different operating condition and dynamic behavior 

of the power system. Procedure for selection of number of neurons in different layers of 

ANN-TCSC is similar to the ANN-PSS. The training pattern for the feedforward neural
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network is dynamic inputs ui(t) and corresponding outputs yi(t) such that —

1 ),um(t - 2- 3) and Xmod respectively and targeted value of the neural network is 

The first order transfer function with 0.5 second delay has been used as communication 

time delay. The feedforward network has been developed with 30 neurons in first layer, 10 

neurons in hidden layer and 1 neuron in output layer with hyperbolic tangent sigmoidal 

transfer function in first layer and hidden layer, and linear transfer functions in output layer. 

The optimization function can be represented by the following equation.

Mk) = ^ [y(k) - yi(k)f (4.15)

The mean square error 0.00002947 x 10-5 has been reached after the 13 iterations through 

appropriate adjustment of weight and bias of neural network using Levenberg-Marquardt 

algorithm.

4.6 Non Linear Simulation

The nonlinear model of the power system has been used for the stability analysis of the 

SMIB system with generator attached PSS and transmission line connected TCSC. The 

initial conditions have been calculated using MATLAB programming. The non-linear sim

ulation is carried out using non-linear dynamic model, which has been implemented using 

MATLAB/simulink environment. The non linear model and detail data of the power system 

used in this study is given in Appendix A. The comparison analysis between ANFIS and 

LMNN based PSS and, simultaneous application of ANFIS and ANN based TCSC - PSS are 

carried out under different operating condition, faults and disturbance. These disturbances 

are considered such as the three phase short circuit at the infinite bus, outage of transmission 

line, suddenly changes in mechanical input and step change in terminal voltage reference. 

The comparison study of intelligent techniques based TCSC and PSS has been carried out.
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4.6.1 Case I

Considering operating condition 1 as defined in table 3.1 Pt = 0.6, Qt = 0.0224. A three 

phase fault is created at Is at the sending end of one the circuits of the transmission line and 

cleared after 100ms [33]. The original system restored after fault clearance. The response 

of speed deviation without the application of controllers and with application of intelligent 

controllers have been shown in Figure 3.6 and 4.14 respectively. Figures 3.6 shows that 

without application of controllers, the oscillation in speed deviation has been observed while 

using simultaneously application of ANFIS and ANN based TCSC-PSS, and individually 

PSS significantly diminished this oscillation in the system and provided very good damping 

characteristics.

Figure 4.14: Case I: Speed response of ANFIS and LMNN based PSS-TCSC

4.6.2 case II

Pt = 0.9, Qt = 0.12, Here heavy loading condition is considered. A three phase fault is created 

at Is at the sending end of one of the circuits of the transmission line and cleared after 50ms.. 

The original system restored after the fault clearance. The response of the without

controller has been shown in Figure 3.22, the oscillation in the power system continuously 

growing with respect to the time and system has become unstable. The speed response with 

LMNN and ANFIS based PSS and simultaneous application of LMNN and ANFIS based 

TCSC-PSS has been shown in Figure 4.15. The simultaneous application of ANFIS and
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time(sec)

Figure 4.15: Case II: Speed response of ANFIS and LMNN based PSS-TCSC

4.6.3 Case III

Pt = 0.9, Qi — 0.12,Under the heavy loading condition a 10% mechanical change applied at 

Is and removed at 5 s is considered. The system lost its stability at 4s without application of 

controllers, which has been shown by Figure 3.26. The response of with and simultaneous 

application of LMNN and ANFIS based PSS-TCSC has been shown in Figure 4.16. The 

simultaneous application of ANFIS and ANN based TCSC-PSS, and individual applications 

of PSS reduced the oscillations in the system and improved stability.

ANN based TCSC-PSS, and individual applications of PSS reduced the oscillations in the 

system and improved stability.
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time(sec)

Figure 4.16: Case III: Speed response of ANFIS and LMNN based PSS-TCSC

4.6.4 Case IV

Pt = 1.2, Qt = 0.2, A O.lp.u. change in reference input voltage is applied at 1 s and removed 

at 5 s. The response of the ujm without and with presence of controllers has been shown in 

Figure 3.30 and 4.17 respectively. Figures 4.17 shows that the simultaneous application of 

ANFIS-TCSC-PSS controller has improved stability of the system compared to individual 

application of LMNN-PSS and ANFIS-PSS.

tirae(sec)

■ LMNT4-P3S 
AHFIS-PSS

- ■ ANN-TCSC-PSS 
AHFIS-TCSC-PSS

sp
ee

d d
ev

ia
tio

n(
 ra

d/
se

c)
sp

ee
d d

cv
ia

tiu
n(

ru
d/

se
c)

Figure 4.17: Case IV: Speed response of ANFIS and LMNN based PSS-TCSC



Figure 4.18: Case V: Speed response of ANFIS and LMNN based PSS-TCSC

4.7 Conclusion

In this study, the smart control strategies based TCSC damping controller and PSS have been 

designed. The ANFIS and LMNN based PSS, and simultaneously LMNN and ANFIS based 

TCSC-PSS have been applied to the dynamical power system. The non-linear simulations 

have been carried out for detailed analysis of the stability of the power system. The time 

response of speed deviation obtained by intelligent techniques based controller has been 

compared to the conventional power system stabilizer. Four different operating conditions 

are taken and the response of rotor speed deviation has been analyzed under different types 

of the disturbances and faults.

time(sec)
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4.6.5 Case V

Pt = 0.75, Qt — 0.1, In this case another severe disturbance is considered. One of the trans

mission lines is permanently tripped at 1 sec. The line reactance is significantly increased. 

The speed response for the above contingency has been shown in Figure 3.34 and 4.18 with

out and with controller respectively. Figure 4.18 shows that ANFIS based simultaneously 

designed TCSC and PSS have provided good stability to system compared to individual 

neural network based power system stabilizer.
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1. Without the application of the controllers in the system, the oscillations in rotor speed 

deviation has been observed. Under the heavy loading condition, it has been observed 

that the active power and reactive power are increased; the oscillation in speed devi

ation is continuously growing which creates the instability of the system. The smart 

damping controllers have greatly diminished oscillations in system.

2. Conventional power system stabilizer does’t produce satisfactory response under the 

different operating conditions. While simultaneous application of ANFIS and ANN 

based TCSC and PSS have provided very good damping characteristics compared to 

the individual application of PSS and almost eliminated the oscillations in system.

3. It has been observed that individual application of ANFIS-TCSC produces better 

response compared to the individual application of LMNN-TCSC.

4. As shown in figures, individual application of ANFIS-PSS produces better response 

compare to the individual LMNN-PSS.

5. Under the heavy loading condition, ANFIS based TCSC-PSS has produced good re

sults compared to the LMNN based TCSC-PSS, and also improved the time response 

parameters such as settling time, rise time and delay time appreciably and decreased 

the overshoot in the system.


