A Summary of Ph.D thesis entitled

Design, Synthesis and Biological Studies of some Novel Diazepines and Pyrimidines

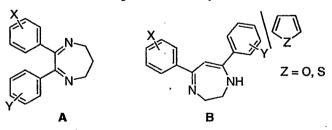
> By R. Ramajayam

Guided by Dr. (Mrs.) Rajani Giridhar M.Pharm., Ph. D.

P/Th 11473

Pharmacy Department Faculty of Technology and Engineering The M.S.University of Baroda Vadodara-390 001

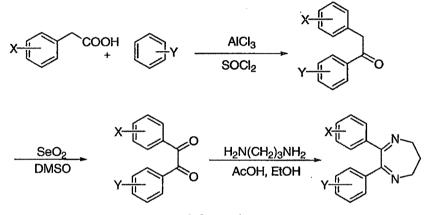
APRIL 2007


Summary

The thesis is presented in two parts: **Part A** concerning the syntheses, anticancer and antiplatelet activity of **1,4-diazepines** and **Part B** concerning the work on syntheses, biological studies and molecular modeling studies of **pyrimidines** for anti HIV activity.

Part A

1,4-diazepines

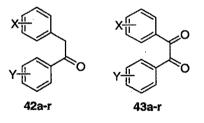

Since the discovery of benzodiazepines about five decades ago, as CNS active drugs, several studies have been undertaken to understand the SAR profile of 1,4-diazepines. Ring systems having fused of carbo/heterocyclic rings to 1,4-diazepine at various positions and isolated 1,4-diazepines having different types of substituents at different positions have been synthesized and evaluated for various pharmacological activities. The multifarious activities of the diazepines are mainly governed by the position of the nitrogen atom atoms in the ring and the types of additional rings and substituents present in the seven membered ring. Hence, it would not be safe to make any generalization as far as the bioactivity of 1,4-diazepines are concerned. Comparatively, reports on monocyclic diazepines are scarce particularly with respect to biological activity. In this thesis two types of monocyclic diazepines were synthesized and evaluated for anticancer and antiplatelet activity.

2,3-diaryl-6,7-dihydro-5H-1,4-diazepines (A): It was aimed to synthesize the unexplored and formidable syntheses of 6,7-dihydro monocyclic diazepines as observed in the chemical literature.

5,7-diaryl-2,3-dihydro-1H-1,4-diazepines (B): Unlike the earlier class of diazepines, 2,3-dihydro diazepines are chemically well explored but have received less attention with respect to pharmacological activity.

2,3-diaryl-6,7-dihydro-5H-1,4-diazepines (A): The 2,3-diaryl-6,7-dihydro-5*H*-1,4-diazepines are synthesized by the given **Scheme-1** below:

Scheme-1


Commercially available phenylacetic acid derivatives were used without purification. The expensive phenylacetic acid derivatives were synthesized by either Kindler modified Willgerodt reaction or acid hydrolysis of substituted benzyl cyanides. The substituted phenylacetyl chloride was reacted with substituted benzenes through Friedel-Crafts acylation to afford the ethanone. The ethanones were oxidized to the desired ethanedione using selenium dioxide as the oxidizing agent. The desired ethanedione derivatives thus obtained were cyclized with 1,3-propanediamine to afford the respective diazepines.

General Procedure for the synthesis of 1,2-substituted diaryl-1-ethanones (42a-r)

2-chloro/3-chloro/4-chloro/4-nitro/4-methyl phenylacetic acid (1 mol) was dissolved in excess quantity of thionyl chloride (2 mol) and allowed to reflux on steam bath for 3 hrs. The excess of thionyl chloride was recovered under vacuum. The resulting acid chloride was cooled and added dropwise into the cooled mixture of AlCl₃ (1.5 mol) and substituted aromatic compounds. The reaction mixture was stirred for 45 min. at room temperature followed by refluxing for 1 hr. The reaction mixture is quenched with cold-HCl, extracted with chloroform (3 x 20 mL). The combined organic extracts were washed with sodium bicarbonate solution, water and dried over anhydrous sodium sulphate. Recrystallization from methanol after solvent removal gave the ethanone derivatives. The results are summarized in **Table I**.

General procedure for synthesis of 1,2-diaryl ethanedione derivatives (43a-r) Selenium dioxide (0.15 mol) was added into the solution of ethanone derivatives (0.1 mol) in DMSO (15 ml) and irradiated in the microwave oven for the specified time as given in Table (I). The hot mixture was filtered to remove the selenium metal and filtrate was poured over crushed ice. The resulting precipitate was filtered, dried and recrystallized from methanol to get the ethanedione derivatives. The results are summarized in Table I.

Table 1. General structure of 1,2-diarylethanone and ethanedione derivatives

			IR (cm ⁻¹)		
Compound	x	Y	Ar Ar	Ar Ar	Reaction Time (Sec)
42a, 43a	Н	Н			30
42b, 43b	Н	4-CH₃	1680	1666	30
42c, 43c	Н	4-Br	1686	1668	95
42d, 43d	Н	4-F	1685	1664	80
42e, 43e	Н	4-OCH ₃	1674	1668	35
42f, 43f	Η	4-SCH ₃	1681	1666	35

p					
42g, 43g	4-C1	4-CH ₃	1676	1666	50
42h, 43h	4-C1	4-C1	1690	1658	100
42i, 43i	4-C1	4-F	1683	1663	80
42j, 43j	4-C1	4-SCH ₃	1672	1652	115
42k, 43k	4-C1	Н	1684	1667	55
421, 431	4-Cl	4-Br	1689	1664	155
42m, 43m	4-NO2	Н	1685	1662	20
42n, 43n	4-NO2	4-CH ₃	1680	1661	35
420, 430	2-Cl	4-C1	1691	1674	40
42p, 43p	2-C1	4-SCH ₃	1670	1659	40
42q, 43q	4-CH ₃	4-CH₃	1685	1660	40
42r, 43r	3-C1	4-CH ₃	1685	1677	55

General Procedure for synthesis of 2,3-diaryl-6,7-dihydro-5*H*-1,4-diazepines (44a-r)

The equimolar mixture of ethanedione derivatives, 1,3-propanediamine and glacial acetic acid (1:1:1) was dissolved in ethanol (30 ml). The mixture was allowed to reflux for 24–30 hrs. The reaction was monitored throughout by TLC and the solvent was evaporated under vacuum after completion. The resulting sticky compound was stripped with silica gel and chromatography with benzene gives a liquid product, with partial recovery of starting material, which on trituration with petroleum ether gives a solid product. This was recrystallized from a suitable solvent to afford the desired compounds (44a-r). The spectral analyses of title compounds are given in Table 2.

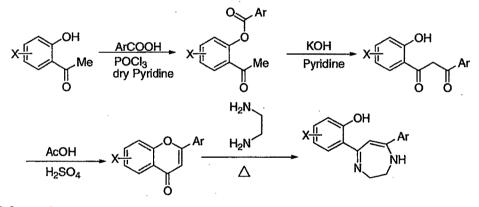
Table	2
-------	---

Compd.	IR (cm ⁻¹)	NMR (δ)	Mass (m/z)	CHN(%)
No		• ,	alesta an star an P	(Found)
44a ;	1605 (C=N)	2.31-2.40 (m, 2H, N- CH ₂ -C <u>H</u> ₂ -), 3.47 (br, 4H, N-C <u>H</u> ₂ - CH ₂ -), 7.2-7.6 (m, 10H, ArH)	249 (M+1)	

4

1 11

		;		
	1	2.32 (s, 3H, CH ₃),		
44b	1608 (C=N)	2.34-2.41(m, 2H, N-	263 (M+1)	
		CH ₂ -CH ₂ -), 3.5 (br,		
		4H, N-C <u>H</u> 2-CH2-),		
		7.11-7.64 (m, 9H,		
·	·	ArH)		
		2.33-2.41(m, 2H, N-		
44β	1598 (C=N)	$CH_2-CH_2-), 3.5$ (br,	329 (M+2)	
•		$4H, N-CH_2-CH_2-),$		
		7.1-7.6 (m, 9H, ArH)	· · · · · · · · · · · · · · · · · · ·	
		2.31-2.4 (m, 2H, N- CH ₂ -C <u>H</u> ₂ -), 3.5 (br,		
44d	1598 (C=N)	$4H_{N}-CH_{2}-CH_{2}-),$		
		6.9-7.6 (m, 9H, ArH)		
		3.77 (s, 3H, OCH ₃),	,	
44e	1(00 (C))	2.31-2.38 (m, 2H, N-	070 0 (.1)	
	1600 (C=N)	CH ₂ -C <u>H</u> ₂ -), 3.2 (br,	279 (M+1)	
		4H, N-C <u>H</u> 2-CH2-),		
		6.8-7.3 (m, 9H, ArH)		
		2.4 (s, 3H, SCH ₃),		
44f	1593 (C=N)	2.34-2.37 (m, 2H, N-	295 (M+1)	
		$CH_2-CH_2-)$, 3.5 (br,	· · · ·	
		4H, N-C <u>H</u> 2-CH2-), 7.1-7.5 (m, 9H, ArH)		
		7.1-7.3 (III, 711, MILI)		
44g		2.3 (s, 3H, CH ₃),		C, 72.84 (72.83)
U	1610 (C=N)	2.32-2.39 (m, 2H, N-	and the second sec	H, 5.77 (5.62)
		CH ₂ -CH ₂ -), 3.4 (br,		N, 9.44 (9.49)
		4H, N-C <u>H</u> 2-CH2-),		
		7.1-7.5 (m, 8H, ArH)	·····	
4 41		2.31-2.40 (m, 2H, N-		C, 64.37 (64.24)
44h	1614 (C=N)	$CH_2-CH_2-), 3.5 (br, 100)$		H, 4.45 (3.97)
		4H, N-C <u>H</u> ₂ -CH ₂ -), 7.2.75 (m. 9H. A. H)		N, 8.83 (8.98)
		7.2-7.5 (m, 8H, ArH)	····	C (7.00 ((0.10)
44i		2.32-2.39 (m, 2H, N-		C, 67.89 (68.12) H, 4.69 (4.16)
441	1614 (C=N)	$CH_2-CH_2-), 3.5$ (br, 4H, N-CH_2-CH_2-),		N, 9.31 (9.54)
		6.98-7.31 (m, 8H,		11, 9.01 (9.0±)
		ArH)		
		2.45 (s, 3H, SCH ₃),		C, 65.74 (65.91)
44j	1610 (0 30	2.28-2.43 (m, 2H, N-		H, 5.21 (4.72)
-	1610 (C=N)	CH ₂ -CH ₂ -), 3.51 (br,		N, 8.52 (8.82)


	· · · · · · · · · · · · · · · · · · ·	·····	1	1
•		$ 4H, N-C\underline{H}_2-CH_2-),$		
		7.1-7.7 (m, 8H, ArH)		
		2.32-2.41(m, 2H, N-		
44k	1611 (C=N)	$CH_2-CH_2-), 3.5$ (br,	283 (M+1)	
	1011 (C-N)	4H, N-C <u>H</u> ₂ -CH ₂ -),	200 (111+1)	
		7.2-7.6 (m, 9H, ArH)		
		2.3-2.4 (m, 2H, N-		C, 56.46 (57.05)
441	1(10(0))	CH ₂ -CH ₂ -), 3.5 (br,		H, 3.9 (3.33)
	1612 (C=N)	4H, N-CH ₂ -CH ₂ -),		N, 7.75 (8.19)
		7.2-7.5 (m, 8H, ArH)		
		2.3-2.4 (m, 2H, N-		
44m		$CH_2-CH_2-), 3.5$ (br,		
	1608 (C=N)	4H, N-CH ₂ -CH ₂ -),	293 (M+)	i
		7.2-8.1 (m, 9H, ArH)		
·····		2.33 (s, 3H, CH ₃),		
44n				
	1595 (C=N)	2.34-2.4 (m, 2H, N-		-
		$CH_2-CH_2-), 3.58 (br, 100)$		
		$ 4H, N-CH_2-CH_2-),$		
		7.1-8.1 (m, 8H, ArH)		
		2.43-2.52 (m, 2H, N-		
44o	1608 (C=N)	CH ₂ -C <u>H</u> ₂ -), 3.58-3.62		C, 64.37 (64.75)
		(t, 2H, J = 12)		H, 4.45 (3.95)
		Hz, N-C <u>H</u> ₂ -CH ₂ -),		N, 8.83 (9.12)
		3.70-3.74 (t, 2H, $J =$		
		12 Hz, N-C \underline{H}_{2} -		
		CH ₂ -), 7.22-7.68 (m,		
		8H, ArH)		
		δ 2.43 (s, 3H, SCH ₃),		
44p	1610 (C=N)	2.46-2.49 (m, 2H, N-	329 (M+1)	
		CH ₂ -C <u>H</u> ₂ -), 3.60-	525 (IVI+1)	-
		3.63 (t, 2H, $J = 12$		
		Hz, N-CH ₂ -CH ₂ -),		
		3.70-3.73 (t, 2H,		
		J =12 Hz, N-		
		C <u>H</u> ₂ -CH ₂ -), 7.1-7.3		
		(m, 8H, ArH)	•	
		2.32 (s, 6H, (CH ₃) ₂),		
44q		2.34-2.37 (m, 2H, N-	277 (M+1)	
1	1608 (C=N)	CH_2-CH_2-), 3.5 (br,		
		4H, N-C <u>H</u> ₂ -CH ₂ -),		1
		7.11-7.52 (m, 8H,		
		ArH)		
*****	<u>I</u>		I.,	II

.

		s s		
44r	1608 (C=N)	2.33 (s, 3H, CH ₃), 2.35-2.40 (m, 2H, N- CH ₂ -C <u>H</u> ₂ -), 3.53 (br, 4H, N-C <u>H</u> ₂ -CH ₂ -), 7.1-7.7 (m, 8H, ArH)	297 (M+1)	

5,7-Diaryl-2,3-dihydro-1H-1,4-diazepines (B)

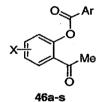
It was envisaged to synthesize 5,7-diaryl-2,3-dihydro-1*H*-1,4-diazepines (**B**) (Scheme 2) as discussed previously. For the preparation of such a system 1,3-diarylpropane-1,3-dione was required which could be cyclised to 2,3-dihydro-1,4-diazepine.

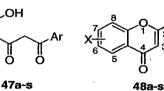
Scheme 2

General Procedure for 2-acetyl-1-(benzoyloxy) benzene derivatives (46a-s)

To a cold solution of 2-hydroxyacetophenone (0.05 mol) and substituted benzoic acid (0.05 mol) in pyridine (30ml), POCl₃ (0.07 mol) was added slowly. The reaction mixture was stirred at room temperature for 3 hr and then poured over ice and dil. HCl. The solid obtained was filtered and used directly in the next step without purification.

1-(2-hydroxyphenyl)-3-subtitutedphenyl-1,3-General procedure for propanediones (47a-s)


To a solution of substituted 2-acetyl-1-(benzoyloxy)benzene (2 g) in dry pyridine (20 ml) powdered KOH (0.8 g) was added and the mixture was stirred at room temperature till a thick yellow paste was obtained. The paste was diluted with water; the yellow solid obtained was filtered, dried and used in the next step without purification.


General procedure for 2-(substituted phenyl)chromen-4-one derivatives (48as)

To a solution of 1-(2-hydroxyphenyl)-3-subtitutedphenyl-1,3-propanedione (2.0 g) in glacial acetic acid (30 ml) was added few drops of con. H₂SO₄ and the reaction mixture were refluxed for 2hrs. After cooling to room temperature the reaction mixture was poured over crushed ice. The solid obtained was filtered, washed with water, dried and recrystallized from methanol.

Table 3: The carbonyl stretching of compounds (46a-s), (47a-s) and (48a-s)

OH

Compound	x	Ar	IR (cm ⁻¹)		
			Ar ^O	Ar Ar	chromene
46a, 47a, 48a	H	C ₆ H ₅	1735	1614	1645
46b, 47b, 48b	Η	4-CH ₃ C ₆ H ₄	1735	1616	1637
46c, 47c, 48c	Н	3-CH ₃ C ₆ H ₄	1732	1612	1637
46d, 47d, 48d	H	4-CH ₃ OC ₆ H ₄	1724	1616	1649
46e, 47e, 48e	Η	3-CH ₃ OC ₆ H ₄	1741	1621	1652

	•			•
Н	3-CH ₃ O,4-	1732	1604	1652
	CH ₃ OC ₆ H ₃	4		
Η	4-ClC ₆ H ₄	1739	1625	1662
Н	3-ClC ₆ H ₄	1739	1618	1641
Н	2-ClC ₆ H ₄	1743	1608	1652
Н	2-Cl,4-	1751	1620	1650
	ClC ₆ H ₃			
Н	4-BrC ₆ H ₄	1739	1614	1666
Н	$4-FC_6H_4$	1741	1625	1639
Н	2-Furyl	1732	1616	1662
H	2- Thienyl	1732	1620	1639
6-CH ₃ O	C ₆ H ₅	1738	1627	1641
6-CH ₃ O	$4-CH_3C_6H_4$	1724	1614	1647
6-CH ₃ O	4-ClC ₆ H ₄	1726	1608	1635
6-CH ₃ O	$3-ClC_6H_4$	1737	1617	1642
6-CH ₃ O	$4-CH_3OC_6H_4$	1735	1612	1647
	H H H H H H 6-CH ₃ O 6-CH ₃ O 6-CH ₃ O	CH3OC6H3 H 4-ClC6H4 H 3-ClC6H4 H 2-ClC6H4 H 2-ClC6H4 H 2-ClC6H4 H 2-ClC6H3 H 4-BrC6H4 H 4-BrC6H4 H 4-FC6H4 H 2-Furyl H 2-Furyl H 2-Thienyl 6-CH3O C6H5 6-CH3O 4-ClC6H4 6-CH3O 3-ClC6H4	$\begin{array}{c c c c c c } CH_{3}OC_{6}H_{3} & \\ H & 4-ClC_{6}H_{4} & 1739 \\ H & 3-ClC_{6}H_{4} & 1739 \\ H & 2-ClC_{6}H_{4} & 1743 \\ H & 2-ClA_{4} & 1743 \\ H & 2-ClA_{4} & 1751 \\ ClC_{6}H_{3} & \\ H & 4-BrC_{6}H_{4} & 1739 \\ H & 4-FC_{6}H_{4} & 1741 \\ H & 2-Furyl & 1732 \\ H & 2-Furyl & 1732 \\ H & 2-Thienyl & 1732 \\ H & 2-Thienyl & 1732 \\ H & 2-CH_{3}O & C_{6}H_{5} & 1738 \\ 6-CH_{3}O & 4-CH_{3}C_{6}H_{4} & 1726 \\ 6-CH_{3}O & 3-ClC_{6}H_{4} & 1737 \\ \end{array}$	$\begin{array}{c c c c c c c } CH_3OC_6H_3 & & & & \\ \hline H & 4-ClC_6H_4 & 1739 & 1625 \\ \hline H & 3-ClC_6H_4 & 1739 & 1618 \\ \hline H & 2-ClC_6H_4 & 1743 & 1608 \\ \hline H & 2-ClC_6H_4 & 1743 & 1608 \\ \hline H & 2-ClC_6H_3 & & & \\ \hline ClC_6H_3 & & & & \\ \hline H & 4-BrC_6H_4 & 1739 & 1614 \\ \hline H & 4-FC_6H_4 & 1741 & 1625 \\ \hline H & 2-Furyl & 1732 & 1616 \\ \hline H & 2-Furyl & 1732 & 1616 \\ \hline H & 2-Thienyl & 1732 & 1620 \\ \hline 6-CH_3O & C_6H_5 & 1738 & 1627 \\ \hline 6-CH_3O & 4-ClC_6H_4 & 1724 & 1614 \\ \hline 6-CH_3O & 3-ClC_6H_4 & 1737 & 1617 \\ \hline \end{array}$

General procedure for Synthesis of 5,7-substituted diaryl-2,3-dihydro-1H-1,4diazepines (49a-s)

A mixture of 2-phenylchromen-4-one derivatives (48a-s) (1 g) and 70% aqueous ethylenediamine (20 ml) was refluxed for 1hr on an oil bath. After 2 hrs the reaction mixture was cooled and 25 ml of cold water was added to the cooled reaction mixture. The solid obtained was filtered, dried and recrystallized from methanol to afford (49a-s). The spectral analyses of title compounds were given in Table 4.

T	a	bl	e	4
---	---	----	---	---

Compd.	IR (cm ⁻¹)	NMR (δ)	Mass (m/z)	CHN(%)
No		•	-	(Found)
49a	3231, 3000, 1605	3.65 (br, 2H, CH ₂), 3.9 (br, 2H, CH ₂), 5.71(s, 1H, CH), 8.35 (br, 1H, NH), 6.45-7.74 (m, 9H, ArH)	264 (M+)	

	·····			
49b 49c	3176, 2916, 1595 3232, 3000, 1608	2.39 (s, 3H, CH ₃), 3.72 (br, 2H, CH ₂), 3.82 (br, 2H, CH ₂), 5.8 (s, 1H, CH), 9.8 (br, 1H, NH), 6.53- 7.62 (m, 8H, ArH) 2.45 (s, 3H, CH ₃), 3.62 (br, 2H, CH ₂), 3.9 (br, 2H, CH ₂), 5.7 (s, 1H, CH), 8.27	 279 (M+1)	
49d	3200, 3000, 1604, 1255, 1031	(br, 1H, NH), 6.48- 7.65 (m, 9H, ArH) 3.63 (br, 2H, CH ₂), 3.88 (bs, 5H, CH ₂ &OCH ₃), 5.7 (s, 1H, CH), 8.25 (br, 1H, NH), 6.45-7.65 (m,		C, 73.45 (73.49) H, 6.16 (6.13) N, 9.52 (9.64)
49e	3200, 2985, 1600, 1230, 1048	8H, ArH) 3.63 (br, 2H, CH ₂), 3.9 (bs, 5H, CH ₂ & OCH ₃), 5.72 (s, 1H, CH), 8.25 (br, 1H, NH), 6.45-7.66 (m, 8H, ArH)	295 (M+1)	
49f	3217, 2929, 1602, 1251, 1024,	3.63 (br, 2H, CH ₂), 3.9 (bs, 2H, CH ₂), 3.88 (s, 3H, OCH ₃), 5.73 (s, 1H, CH), 8.25 (br, 1H, NH), 6.5-7.6 (m, 7H, ArH)		
49g	3203, 3000, 1598	3.75 (br, 2H, CH ₂), 3.85 (br, 2H, CH ₂), 5.74 (s, 1H, CH), 7.74 (br, 1H, NH), 6.61-7.59 (m, 8H, ArH)		
49h	3200, 2916, 1610	3.62 (br, 2H, CH ₂), 3.92 (br, 2H, CH ₂), 5.7 (s, 1H, CH), 8.28 (br, 1H, NH), 6.5-7.7 (m, 8H, ArH)	298 (M+)	

,

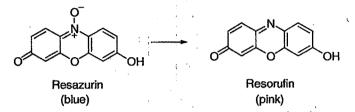
10

۰.

		5		
49 i	3232, 2916, 1598	3.63 (br, 2H, CH ₂), 4.0 (br, 2H, CH ₂), 5.37 (s, 1H, CH), 8.3 (br, 1H, NH), 6.49-7.64 (m, 8H, ArH)	298 (M+)	
49j	3087, 3000, 1598	3.71 (br, 2H, CH ₂), 3.97 (br, 2H, CH ₂), 5.41 (s, 1H, CH), 7.54 (br, 1H, NH), 6.46-7.45 (m, 7H, ArH)	333 (M+)	
49k	3064, 3000, 1635	3.69 (br, 2H, CH ₂), 3.89 (br, 2H, CH ₂), 5.65 (s, 1H, CH), 8.11(br, 1H, NH), 6.46-7.54 (m, 8H, ArH)	345 (M+2)	
491	3203, 3000, 1604	δ 3.65 (br, 2H, CH ₂), 3.9 (br, 2H, CH ₂), 5.68 (s, 1H, CH), 8.38 (br, 1H, NH), 6.5-7.8 (m, 8H, ArH)	282 (M+)	
49m	3286, 3000, 1608	3.65 (br, 2H, CH ₂), 3.9 (br, 2H, CH ₂), 6.1 (s, 1H, CH), 8.28 (br, 1H, NH), 6.53- 7.96 (m, 7H, ArH)	254 (M+)	
49n	3203, 3000, 1595	3.6 (br, 2H, CH ₂), 3.9 (br, 2H, CH ₂), 5.92 (s, 1H, CH), 8.3 (br, 1H, NH), 6.5-7.8 (m, 7H, ArH)		
490	3423, 3100, 1633	3.65 (br, 2H, CH ₂), 3.8 (br, 2H, CH ₂), 3.71 (s, 3H, OCH ₃), 5.68 (s, 1H, CH), 7.57 (br, 1H, NH), 6.7-7.55 (m, 8H, ArH)	295 (M+1)	

	-			
49p	3288, 3000, 1608, 1218,	2.38 (s, 3H, CH ₃), 3.69 (br, 2H, CH ₂), 3.78 (br, 2H, CH ₂),	309 (M+1)	
	1040	$3.71(s, 3H, OCH_3),$		
	1040	5.68 (s, 1H, CH),		
		7.49 (br, 1H, NH),		
		6.75-7.47 (m,		
		7H, ArH)		·
<u> </u>		3.69 (br, 2H, CH ₂),		
49q		3.92 (br, 2H, CH ₂),		
1	3299, 3000,	3.73 (s, 3H, OCH ₃),	1998-8999 W	
	1595, 1271,	5.65 (s, 1H, CH),		
	1095	7.87 (br, 1H, NH),		
		6.77-7.58 (m, 7H,		
		ArH)		
	3257, 3000,			
49r	1612, 1218,			
	1040			
		3.66 (br, 2H, CH ₂),		
49s	3222, 3000,	3.90 (br, 2H, CH ₂),	325 (M+1)	
	1604, 1257,	3.72 (s, 6H, OCH ₃),	020 (1111)	
	1033	5.69 (s, 1H, CH),		
		7.88 (br, 1H, NH),		
		6.75-7.47 (m, 7H,		
l		ArH)		

Biological Studies


٠

The biological work carried out has been discussed under following sub heads:

- A. Antiproliferative activity
- B. Antiplatelet activity

A. Antiproliferative activity

Initial evaluation of 2,3-diaryl-6,7-dihydro-5*H*-1,4-diazepines and 5,7-diaryl-2,3dihydro-1*H*-1,4-diazepines were carried out at Memorial Sloan Kettering Cancer Center (MSKCC), New York (USA). The cytotoxic effects of the above said compounds were tested using Alamar blue assay. Alamar blue (Resazurin) is nontoxic, commonly employed as an indicator of cell number and viability, since it is reduced to a (Resorufin) pink fluorescent dye in the medium by cell activity (possibly by oxygen consumption through metabolism). Alamar blue reduction was measured on CCD-based optical imaging reader.

The various human leukemic cancer cell lines Jurkat, HL60, Molt3, NCEB-1 and K562 were incubated with various concentrations of the 2,3 and 5,7diaryldiazepines for 72 h (48h plus 24h with dye). The results of IC_{50} values of the compound are summarized in **Table 5 and 6**.

Table 5: Antiproliferative activity IC $_{50}$ (μ M) values of 2,3-diaryl-6,7-dihydro-

|--|

1,4-diazepines (44a-r)

>100 > 48.6 0.59 71.87 NT > NT >	IL60 -100 45 41 59 -100 -100	Molt-3 >100 31.25 24.37 82 NT	NCEB-1 >100 70 54 75 >100	K562 >100 64 49 68 >100
48.6 0.59 71.87 NT > NT >	45 41 59 100	31.25 24.37 82 NT	70 54 75	64 49 68
0.59 /1.87 NT > NT >	41 59 100	24.37 82 NT	54 75	49 68
71.87 NT > NT >	59 •100	82 NT	75	68
NT > NT >	100	NT		
NT >			>100	15100
	100			>100 (
201	100	NT	>100	>100
20.1 ·	39	22.6	>100	27.22
51.78	47	27.6	54	39.19
3.72	46	22.47	57	43.83
6.67	30	21.4	40	36.59
29	40	22.64	56	44
8.26	67	28:75	>100	51.54
9.73	32	25.13	65	49.18
>100; >	100	· >100	>100	>100
44	38	21	45	37.79
NT >	100	I NT ·	82.88	>100
NT >	100	NT	>100	¦;>100 ⊨
NT	100	NT	>100	·>100.
	9.73 100 > 44 NT > NT >	9.73 32 >100 >100 44 38 NT >100 NT >100	9.73 32 25.13 >100 >100 >100 44 38 21 NT >100 NT NT >100 NT	9.73 32 25.13 65 >100 >100 >100 44 38 21 45 NT >100 NT 82.88 NT >100 NT >100

1H-1,4-diazepines (49a-s)						
Compound	Jurkat	HL60	Molt-3	NCEB-1	K562	
49a	10.59	60	11.4	>100	9.12	
49b	50.79	>100	40.81	86	24.3	
49c	8.47	22	11.6	100	4.55	
49d	>100	>100	31	>100	20.85	
49e	5.39	23	14.33	26	8.28	
49f	N. T	>100	N.T	>100	>100	

64

>100

12.09

N.T

N.T

38.48

>100

N.T

N.T

N.T

N.T

N. T

N.T

>100

>100

23

>100

>100

70

>100

>100

>100

>100

>100

N.T

>100

65

>100

10.12

>100

>100

29.46

88.78

>100

85.26

>100

>100

N. T

>100

>100

>100

26

>100

>100

80

>100

>100

88.24

>100

>100

N.T

>100

Table 6: Antiproliferative activity IC₅₀ (μM) values of 5,7-diaryl-2,3-dihydro-1H-1,4-diazepines (49a-s)

N.T = Not tested

49g

49h

49i

49j

49k

491

49m

49n

490

49p

49q

49r

49s

81.58

>100

7.66

N.T.

N.T

22.75

>100

N.T

N.T

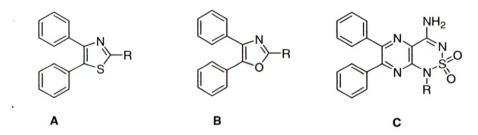
N.T

N.T

N.T

N.T

Looking to the results of antileukemic activity of 2,3-diaryl-6,7-dihydro-5*H*-1,4diazepines (44a-r) and 5,7-diaryl-2,3-dihydro-1*H*- 1,4-diazepines (49a-s) it is reflected that the former category of compounds do not show any significant activity. In comparison, among the 5,7-diaryl-2,3-dihydro-1*H*- 1,4-diazepines (49a-s) compound 49a showed significant cytotoxic activity with IC₅₀ values of 9.12 and 10.59 μ M against K562 and Jurkat cell lines respectively. Introduction of methyl group at meta position of the diaryldiazepine nucleus as in compound 49c, demonstrated high cytotoxic activity against the K562 and Jurkat cell lines with an IC₅₀ values of 4.55 and 8.47 μ M respectively. Compound 49e, in which the methyl group was replaced with a greater electron donating group, a methoxy group, was also found to be cytotoxic but significantly less so than the compound **49c**. Results indicate that among the halo substituted diaryldiazepines, compound **49i**, bearing a chloro substituent at ortho position showed significant activity with IC₅₀ value of 7.66 μ M against Jurkat cell line. Substitution of methoxy at 5th position of the phenyl ring attached to the 4th position of the dazepine does not show any significant activity (**49o-s**). Also, there was no interesting activity when one of the aryl rings was replaced by furan (**49m**) and thiophene ring (**49n**).


B. Antiplatelet activity

The evaluation of antiplatelet activity for 2,3-diaryl-6,7-dihydro-5*H*-1,4-diazepine (**44a-r**) in this study was due to the following reason:

Looking to the chemical features of 2,3-diaryl-1,4-diazepines, the antiplatelet activity can be speculated, as the compounds possess both the features for such activity reported in case of certain diazepines (described in the introduction chapter) and some diaryl heterocycles (A-C).

The 2,3-diaryl-6,7-dihydro-5H-1,4-diazepines (44a-r) were evaluated to inhibit platelet aggregation of female Sprague-Dawley rat platelet-rich plasma induced by arachidonic acid. 500 μ M of test compounds (44a-r) were used in the

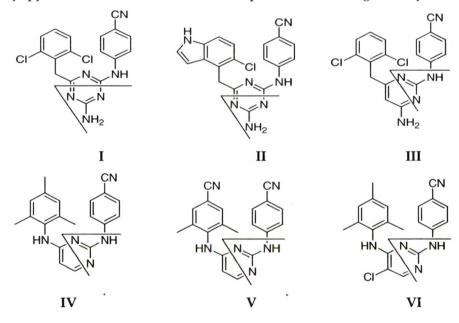
preliminary screening. Aspirin was used as standard drug and showed maximum inhibition (97%) at 10mM. In this screening 44c, 44d, 44h, 44i, 44k, 44m and 44o were found to be moderately active (Table 7).

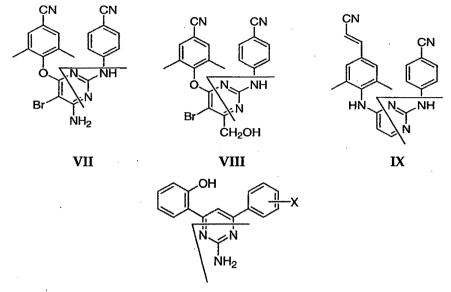
	Table 7 Anuplatelet activity (500 µM)				
Compound	% inhibition				
44a	18.5				
44b	35.7				
44c	42.5				
44d	60.7				
44e	. 35.7				
44f	34				
44g	34				
44h	44.3				
44 i	77.8				
4 4j	36.4				
44k	44.6				
441	43				
44m	52.6				
44n	22				
440	58.2				
44p	N.T				
44q	22.1				
44r	0				
N.T = N	ot tested				

Table 7	Antip	latelet	activity	(500 µM))

Hence, these compounds were subjected to further screening at low concentrations (100 µM). The results of the screening are displayed in Table 8.

Table 8 Antiplatelet activity (100 µM)		
% inhibition		
18.5		
18.8		
24		
36.4		
24		
24.2		
28.3		
14		

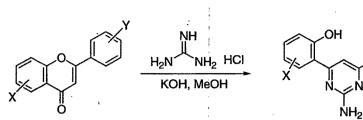

Table 8	Antiplat	elet activity	y ((100 µM)
---------	----------	---------------	-----	---------	---


From these studies, **44i** was the most active one with 36.4% inhibition. Compound **44o** showed 28.3% inhibition with two fold greater activity as compared to aspirin (14%). The compound **44h**, **44k** and **44m** showed moderately good activity.

Part B

4,6-diaryl-2-aminopyrimidines

Incorporation of a structural fragment or pharmacophore into a molecule is the one of the approaches adopted in searching for lead compounds. Common fragments present in various compounds contribute to similarity in biological activity. However, they usually exhibit different potencies. The common fragments, guanidine and the diaryl wings, present in the structures of the diaryl pyrimidines, an NNRTI class of compounds, were recognized by us.


Proposed compounds (50a-q)

Compounds containing such common fragments can be synthesized by reacting the starting materials containing such fragments or by incorporating the fragments during the synthesis. It is also known that diaryl pyrimidines could be synthesized from a common intermediate chromen-4-one derivatives (47a-q), from which we reported the synthesis of different 5,7-diaryl diazepines presented in Part I of this thesis. The reaction of flavones with guanidine hydrochloride leads to the formation of the diaryl pyrimidines which contain both the common fragments.

Hence, it was proposed to synthesize diaryl pyrimidines and evaluate their anti-HIV activity.

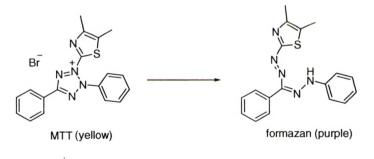
Synthesis of 4,6-diaryl-2-amino pyrimidine derivatives (50a-q)

The 2-(substituted phenyl)chromen-4-one derivatives on refluxing with guanidine hydrochloride in methanol in presence of potassium hydroxide furnished 2-amino diaryl pyrimidines (Scheme 3). The spectral analyses of the title compounds are given in Table 9.

Scheme 3

Table 9

Compd.	IR (cm ⁻¹)	NMR (δ)	Mass (m/z)	CHN(%)
No		,		(Found)
50a	3508, 3354, 3205, 1625	5.37 (s, 2H, NH ₂), 6.92-8.06 (m, 10H, ArH+ C-5 pyrimidine), 14.3 (br, 1H, OH)	264 (M+1)	
50Ъ	3500, 3330, 3197, 1610	2.43 (s, 3H, CH ₃), 5.74 (bs, 2H, NH ₂), 6.93-8.0 (m, 9H, ArH+C-5 pyrimidine), 13.5 (br, 1H, OH)	278 (M+1)	
50c	3490, 3394, 3200, 1629	2.46 (s, 3H, CH ₃), 5.35 (s, 2H, NH ₂), 6.92-7.88 (m, 9H, ArH+C-5 pyrimidine), 14.2 (br, 1H, OH)		
50d	3492, 3327, 3150, 1615, 1249, 1026	3.88 (s, 3H, OCH ₃), 5.4 (s, 2H, NH ₂), 6.76-8.24 (m, 9H, ArH+ C-5 pyrimidine), 14.5 (br, 1H, OH)	294 (M+1)	
50e	3400, 3313, 3176, 1647, 1236, 1029	3.92 (s, 3H, OCH ₃), 6.0 (bs, 2H, NH ₂), 6.92-7.89 (m, 9H, ArH+C-5 pyrimidine), 14.2 (br, 1H, OH)		•


			·	
50f	3431, 3313, 3190, 1643, 1259, 1026	3.89 (s, 6H, (OCH ₃) ₂), 6.9 (s, 2H, NH ₂), 7.07-8.25 (m, 8H, ArH+ C-5 pyrimidine), 14.12 (s, 1H, OH)	324(M+1)	
50g	3502, 3340, 3217, 1641	6.28 (bs, 2H, NH ₂), 6.92-8.07 (m, 9H, ArH+ C-5 pyrimidine), 13.5 (br, 1H, OH)	298 (M+1)	
50h	3502, 3346, 3203, 1616	5.24 (s, 2H, NH ₂), 6.92-8.05 (m, 9H, ArH+ C-5 pyrimidine), 13.5 (br, 1H, OH)	_	—
50i	3489, 3371, 3180, 1631	δ 6.44 (bs, 2H, NH ₂), 6.91-7.80 (m, 9H, ArH+ C-5 pyrimidine), 13.8 (br, 1H, OH)		
50j	3502, 3338, 3217, 1641	6.66 (bs, 2H, NH ₂), 6.89-7.64 (m, 8H, ArH+ C-5 pyrimidine)	332 (M+)	
50k	3519, 3367, 3200, 1639	δ 6.1 (s, 2H, NH ₂), 6.95-7.93 (m, 9H, ArH+ C-5 pyrimidine)	_	_
501	3490, 3321, 3201, 1647	5.5 (bs, 2H, NH ₂), 6.93-8.11 (m, 9H, ArH+ C-5 pyrimidine)	282 (M+1)	
50m	3417, 3286, 3163, 1635	5.3 (s, 2H, NH ₂), 6.59-7.87 (m, 8H, ArH/furyl+ C-5	254 (M+1)	
		pyrimidine), 14.3 (br, 1H, OH)		
50n		5.27 (s, 2H, NH ₂), 6.92-7.84 (m, 8H,		

.

	3502, 3438,	ArH/thienyl+ C-5	270 (M+1)	-
	3232, 1647	pyrimidine),		
		13.5 (br, 1H, OH)		
500	3492, 3311,			_
	3190, 1633,	—		
	1218, 1093			
		2.43 (s, 3H, CH ₃),		
50p	3475, 3305,	3.84 (s, 3H, OCH ₃),	_	_
	3160, 1631,	5.32 (s, 2H, NH ₂),		
	1218, 1220,	6.94-		
	1074	7.96(m,8H, ArH+C-5		
		pyrimidine)		
	3444, 3332,	3.87 (s, 3H, OCH ₃)		
50q	3220, 1643,	7.32 (s, 2H, NH ₂),		_
	1431, 1218,	6.91-8.38 (m, 8H,		
	1091	ArH+ C-5		
		pyrimidine), 13.5 (s,		
		1H, OH)		

Anti-HIV activity

The anti-HIV studies of 4,6-diaryl-2-aminopyrimidines were carried out at Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium. Inhibition of the HIV-induced cytopathic effect was used as the end point. The viability of both HIV- and mock-infected cells was assessed spectrophotometrically via the *in situ* reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into formazan.

The most active ones are compounds 50a and 50c with IC_{50} of 3.22 and 3.45 μ M respectively (Table 9). However their selectivity indices are rather weak by 10 and 4 respectively.

đ

 Table 9: The anti-HIV activity, cytotoxicity and selectivity index of 4,6-diaryl

 2-aminopyrimidines.

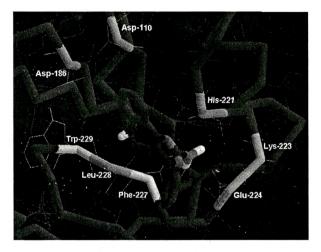
Compound	EC ₅₀ (µM) ^a HIV-1- III _B	СС ₅₀ (µМ) ^ь	SIc
50a	3.22	31.28	10
50b	>125	>125	-
50c	3.45	12.98	4
50d	>92.22	92.22	- ·
50e	>78.3	>78.3	-
50f	>7.36	7.36	-
50g	>74.7	>74.7	-
50h	>125	>125	-
50i	>4	>4	~
50j	>4	>4	-
50k	>20	>20	-
501	>67.48	67.48	-
50m	>125	>125	- ·
50n	5.59	5.3	
500	>4	>4	-
50p	>20	>20	· -
50q	>20	>20	-

^aConcentration required to reduce HIV-1 induced cytopathic effect by 50% in MT-4 cells.

ivi1-4 cens.

^bConcentration required to reduce MT-4 cell viability by 50%.

^cSelectivity index : ratio CC₅₀/EC₅₀


Docking Studies

As discussed in the Aims and Objectives Section Part B, the synthesized 4,6diaryl-2-aminopyrimidines are chemically similar to the DAPY analogs of NNRTIS. So we sought to validate our hypothesis by performing automated

22

Ί

docking studies of the active compounds using Autodock 3.0. After 100 runs, the lowest docked energy conformation was found to be -7.83 kcal/mol.

Compound 50a

Inspection of conformation of the compound **50a** at the non nucleoside binding site (NNBS) led to the following conclusions: The phenyl ring attached to the 4th position of the pyrimidine ring interacts with Asp 110 (distance 4.43 Å) and Asp 186 (distance 3.61 Å) which are at proximity to the polymerase active site. The hydrogen of the hydroxyl group of the phenyl ring forms a hydrogen bond with Leu 228 (distance 2.0 Å). The amino group hydrogens hydrogen bond with Glu 224 (distance 3.32 Å) and His 221 (distance 3.28 Å). The phenyl groups show lack of hydrophobic binding with the surrounding residues of NNBS viz., Tyr 181, Tyr 188, Trp 229 (distance 10.74 Å), Phe 227 (4.64 Å). The weak interactions are highlighted in yellow color.

It is therefore hypothesized that a linker group between one of the aromatic residues and the pyrimidine ring in the ligand would provide better binding interactions which may therefore contribute to better antiHIV-1 activity.

Conclusion

The 2,3-diaryl-6,7dihydro-5*H*-1,4-diazepines screened for both antileukemic and antiplatelet activities. From the results of the above studies, some compounds this class of diazepines showed very good antiplatelet activity when arachidonic acid induced platelet aggregation. Further studies are required to prove their mechanism of action. This group of compounds lack antileukemic activity.

The antileukemic results of 5,7-diaryl-2,3-dihydro-1*H*-1,4-diazepines indicate that a few compounds show promising activity. They can be further optimized by introducing different substitutions in both aryl rings and diazepines ring. In case of the 4,6-diaryl-2-aminopyrimidine, we hypothesize that a linker group between one of the aromatic residues and the pyrimidine ring in the ligand would provide better binding interactions which may therefore contribute to better antiHIV-1 activity.