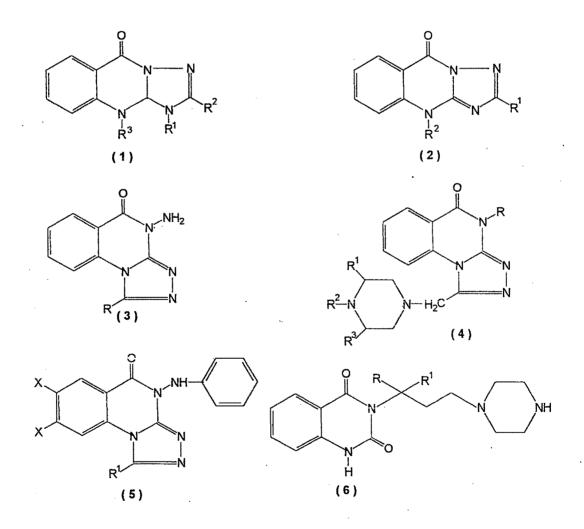


INTRODUCTION

Quinazolines and condensed quinazolines received the attention of medicinal chemists, due to their wide range of biological activities like analgesic, antiinflammatory, antibacterial, antifungal, antiviral, antihistaminic, antihypertensive and anticancer. A brief survey of literature is described here.

Wammoff and coworkers¹ in 1985 synthesized a series of 1,3,4-triazoloquinazolin-4-ones (1) and studied their antihypertensive activity. The compound 1,2,9-trimethyl-1,3,4-triazoloquinazolin-4(3H)-one was found to exhibit potent antihypertensive activity.


In 1986, Chien and coworkers² synthesized some 1,3,4-triazolo quinazolin-4-ones (2) speculating antihypertensive property. The compound 2,9-dimethyl-1,3,4-triazoloquinazolin-4(3H)-one was found to be the most active antihypertensive agent in this series.

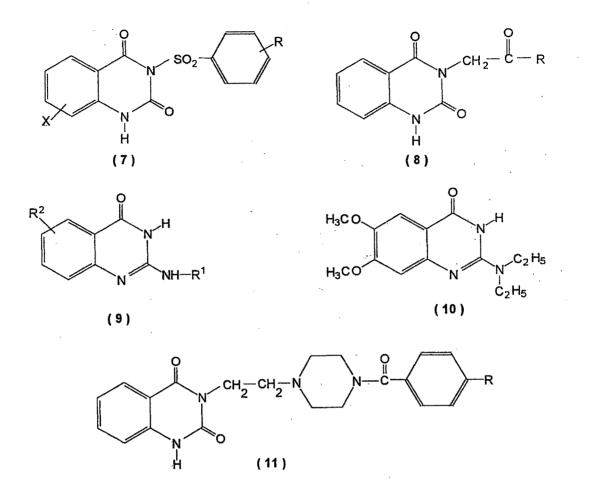
The same authors³ in 1988, synthesized a series of 1,2,4-triazolo quinazolines (3) and studied their antihypertensive activity. These compounds also showed antihypertensive activity ranging from 20.5 to 46.7% with maximum activity when R was a thiol substituent.

Later, Ram and coworkers⁴ in 1990, prepared a series of 4-substituted-1,2,4-triazoloqunazolin-4-ones (4) with the piperazine moiety at 1-position. These compounds were found to possess antihypertensive activity.

Zhoghna⁵ in 1993, reported the synthesis of the following 1,7,8-tri substituted-1,2,4-triazoloquinazolines (5) by substituting arylamine at 4-position. Pharmacological investigation of these compounds showed significant antihypertensive activity.

In 2000, Garcia and coworkers⁶ prepared a series of quinazolin-2,4diones (6) with a substituted piperazine moiety at 3-position. These compounds were found to exhibit antihypertensive activity.

Harukazu and coworkers⁷ in 1996 synthesized a series of quinazolin-2,4-diones (7) by introducing arylsulfonyl moiety at 3-position and studied their antihypertensive activity. These compounds exhibited significant antihypertensive activity.


Rivero and coworkers⁸ in 1998, synthesized some 3-substituted quinazolin-2,4-diones (8) and investigated their antihypertensive activity. These compounds were found to exhibit significant activity.

Kotto and coworkers⁹ in 1965, prepared a series of 2-substituted amino-5,6,7,8-substituted quinazolin-4-ones (9) with the aim of producing antihypertensive agents. These compounds exhibited antihypertensive activity by inhibiting the angiotensin converting enzyme.

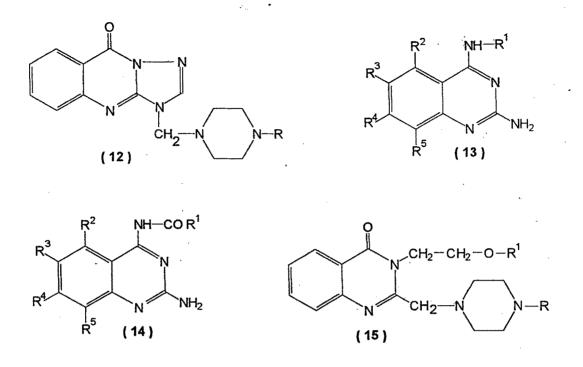
Trimony and coworkers¹⁰ in 1968, synthesized a series of 2,6,7trisubstituted quinazolin-4-ones and studied their antihypertensive activity. The compound 2-diethylamino-6,7-dimethoxyquinazolin-4-one (10) was found to be the most active agent in this series.

In 1995, Pathak and coworkers¹¹ prepared certain analogs of quinazolin-2,4-diones (11) with substitution at position-3. These compounds were reported to exhibit significant antihypertensive activity.

Jung Mou and coworkers¹² in 1997, reported the synthesis of substituted imidazolo [1,2-c] quinazolines and studied their antihypertensive activity.

In 1993, Chern and coworkers¹³ prepared some 2,3-dihydro imidazolo [1,2-c] quinazolines for their antihypertensive property. These compounds were found to exhibit antihypertensive activity by blocking α_1 -adrenergic receptor.

The same authors¹⁴ in 1998, synthesized a series of fused quinazolines and 1,2,4-benzothiadiazine-1,1-dioxides with the aim of improvising α -adrenergic blocking activity. These compounds shown significant α -adrengic antagonistic activity.


West and coworkers¹⁵ in 1981, synthesized a series of 1,3,4-triazolo quinazolin-4-ones (12) by placing 4-substitutedpiperazinyl moiety at 1-position with the aim of having antihistaminic activity. These

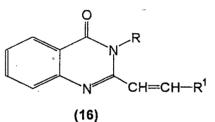
Kottke and coworkers¹⁶ in 1983, prepared a series of 1,4disubstituted triazoloquinazolin-4-ones by placing halogens at 7 and 8 positions. These compounds were found to inhibit passive cutaneous anaphylaxis. $M^{M^{+}}$

Fujio and coworkers¹⁷ in 1998, prepared some 2-amino-5,6,7,8substituted quinazolines (13) with substituted amino group at 4-position. These compounds were found to exhibit antiallergic activity.

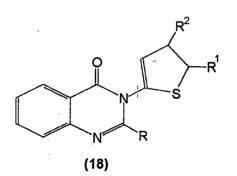
In the same year, Teruharu and coworkers¹⁸ synthesized a series of 2-amino-5,6,7,8-substituted quinazolines (14) by incorporating substituted amide group at 4-position. The pharmacological investigation of these compounds shown significant antiallergic activity. Showed

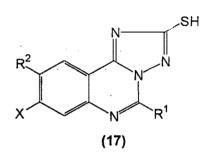
In 1989, Lemura and coworkers¹⁹ synthesized the following 2-(4-substituted piperazinylmethyl)-3-substituted quinazolin-4-ones (15) and studied their antihistaminic activity.

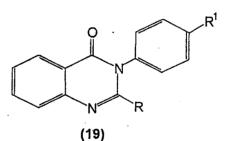
In 1982, Agnihotri and coworkers²⁰ prepared some 2,3-disubstituted quinazolin-4(3H)-ones (16) and found them to exhibit antiviral activity.

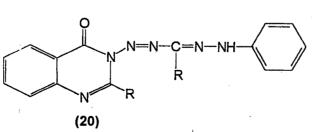

In 1983, Pandey and coworkers²¹ prepared a series of 1,2,4triazoloquinazolines (17) and tested them for their antimicrobial property. These compounds were found to possess significant antibacterial and antifungal activities

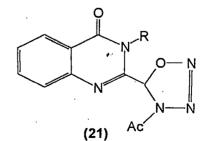
In the same year, Dash and coworkers²² synthesized a series of 2-substituted quinazolines bearing a thiophene ring at 3-position (18) and tested the compounds for their antimicrobial activity. These compounds were found to exhibit antifungal activity.


In 1985, Parasharya and coworkers²³ prepared a series of 2,3-disubstituted quinazolin-4-ones (19) and found them to possess antibacterial activity.


Pandey and coworkers²⁴, in the same year synthesized a series of 2,3-disubstituted quinazolines (20). Biological investigation of these compounds showed antiviral activity.

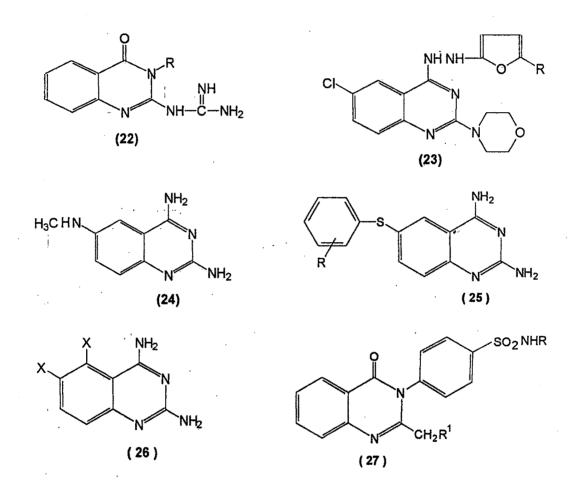

In 1989, Khalil and coworkers²⁵ prepared of a series of 2-oxatriazolin-4(3H)-quinazolines (21). These compounds were found to exhibit antimicrobial activity.





Barakat²⁶ in 1990, prepared a series of 3-aryl-2-pyridinium ethyl-4(3H)-quinazolines and studied their antimicrobial activity.

In 1993, Kreiutzberger and coworkers²⁷ prepared a series of 2-guanidino-3-substituted quinazolin-4-ones (22) and studied them for antibacterial activity.


In 1995, Jantova and coworkers reported²⁸ the synthesis of 2-morpholino-6-chloro-4-substituted quinazolines (23). These compounds were found to exhibit antibacterial activity.

In 1995, Ganjee and coworkers²⁹ reported the synthesis of a series of 2,4-diamino-6-methylamino quinazolines (24) and its derivatives. These compounds were found to exhibit antifungal activity.

In the same year Chan and coworkers³⁰ prepared a series of 2,4-diamino quinazolines (25) by replacing the 6-methylamino group with the thiophenyl group. These compounds were found to exhibit selective inhibition of *Candida albicans* dihydrofolate reductase, with MIC of 0.05 μ g/ml

Rowosky and coworkers³¹ in the same year synthesized a series of 2,4-diamino quinazolines (26) by introducing halogen at 5 and 6 position. These compounds showed significant antibacterial activity.

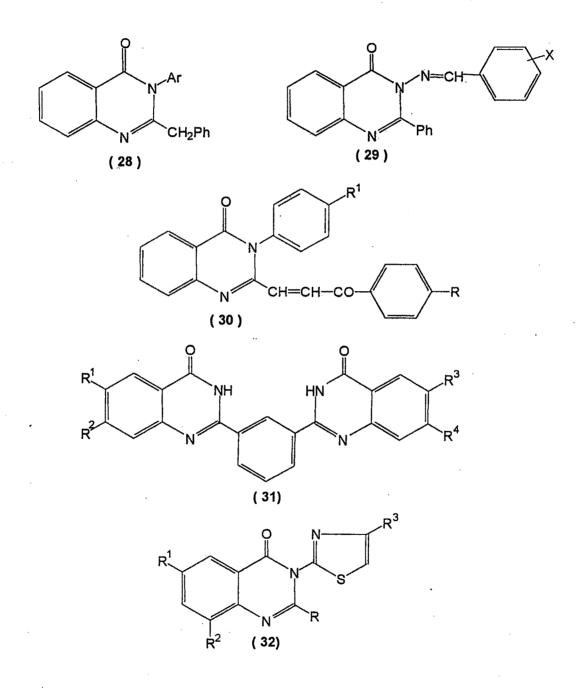
In 1996, Gaur and coworkers³² synthesized some novel 2-substituted methyl-3-(4-substituted sulphonamido phenyl) quinazolin-4(3H)-ones (27) and tested these compounds for their antibacterial activity.

Zeid and coworkers³³ in the same year reported the synthesis of some 2,3-disubstituted quinazolines. These compounds were found to possess antimicrobial activity.

In 1996, Desai and coworkers³⁴ synthesized a few 1-substituted-2phenyl-3-arylamino-4-oxo quinazolines. These compounds were found to exhibit potent anti HIV activity.

Oliver and coworkers³⁵ in 1996, prepared some imidazolo quinazolines and 3-substituted quinazolin-4-ones. Biological investigation of these compounds showed antifungal activity.

Mishra and coworkers³⁶, in 1997 synthesized some 2-benzyl-3-aryl γ quinazolin-4-ones (28) and studied their antimicrobial activity


In 1997, Abdul Hamid³⁷ synthesized certain analogs of 2-phenyl-3substituted quinazolin-4(3H)-ones (29). These compounds were found to possess antimicrobial activity.

Abdul Rahman and coworkers³⁸ in the same year reported the synthesis of a series of 2,3-disubstituted quinazolines (30). These compounds were found to exhibit antimicrobial activity.

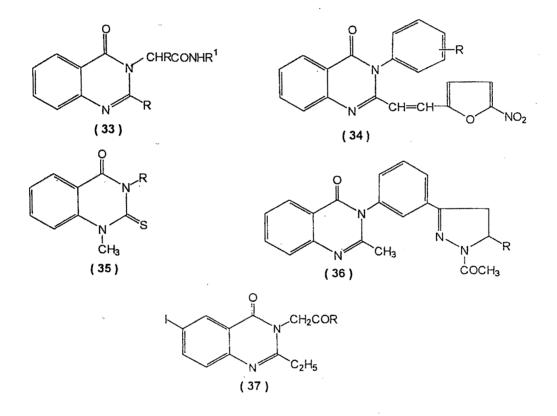
Shiba and coworkers³⁹ in 1997, synthesized some novel substituted bisquinazolin-4-ones (**31**) and tested them for their antimicrobial activity.

Kumar and coworker, in 1997 reported⁴⁰ the synthesis and antifungal activity of a series of 2,6,8-trisubstituted-3-(2-thiazolyl) quinazolin-4-ones (32).

In 1997, Assy and coworkers⁴¹ prepared certain analogs of substituted quinazolines. These compounds were found to exhibit significant antibacterial activity.

Tamany and coworkers in 1997, reported⁴² the synthesis of some novel 2,6,8-trisubstituted quinazolines and studied their antimicrobial activity.

In the same year Abdul Hamide⁴³ synthesized certain analogs of 2-Phenyl-6-iodo quinazolin-4(3H)-ones. On testing for antimicrobial activity, these compounds were found to exhibit antibacterial activity.


In 1997 Kumar and coworkers, reported⁴⁴ the synthesis of some 2substituted aryl-6,8-disubstituted quinazolin-4-ones. These compounds were found to possess antifungal activity.

In 1998, Kovalenko⁴⁵ prepared some novel 2,3-disubstituted quinazolines (33). These compounds were reported to exhibit antimicrobial activity.

In 1998, Shivarama and coworkers reported⁴⁶ the synthesis and antibacterial activity of a series of 2-(nitrofurylvinyl)-3-substituted arylquinazolines (34).

Rakesh and coworkers⁴⁷, in 1998 synthesized a series of 1-methyl-2-thioxo-3-substituted quinazolin-4-ones (**35**). These compounds were found to exhibit antimicrobial activity. In the same year Habesh and coworkers⁴⁸ synthesized certain analogs of 2-methyl-3-substituted quinazolines (36) and studied their antimicrobial activity.

Aziza and coworkers⁴⁹, in the same year prepared a series of 2-ethyl-6-iodo-3-substituted quinazolines (37). These compounds were reported to exhibit antibacterial activity.

Abdul Rahman in 1998, reported⁵⁰ the synthesis of several 2,3disubstituted quinazolin-4-ones. These compounds were shown to possess antimicrobial activity. Arti and coworkers⁵¹ in 1998, prepared a series of 2-methylbenzylamino quinazolin-4(3H)-ones. These compounds were reported to exhibit antimicrobial activity.

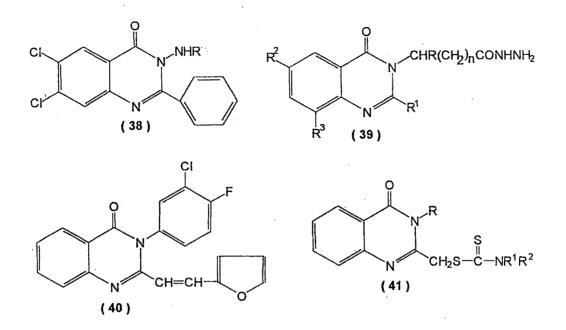
In 1998, Bhadbesh Naik and coworkers⁵² synthesized some 1-(2-methyl-4-quinolinyl) quinazolin-2-ones and studied their antibacterial activity.

In 1998, Kumar and coworkers⁵³ synthesized a series of novel 6,8disubstituted-2-aryl quinazolin-4(3H)-ones. These compounds were reported to possess antifungal activity.

In the same year, Patnaik and coworkers reported⁵⁴ the synthesis of certain analogs of 3-aryl-2-(4-arylthiazol-2-yl-amino methyl) quniazolin-4-ones and studied their antifungal activity.

James and coworkers⁵⁵ in 1998, synthesized and patented a series of substituted quinazolines. These compounds showed significant antifungal activity.

In 1998, Desai and coworkers⁵⁶ prepared a series of substituted quinazolines. These compounds were found to exhibit antitubercular activity.


Karel and coworkers⁵⁷ in 1998, synthesized some novel quinazoline derivatives. These compounds were reported to posses antitubercular activity.

In 1999, Ibrahim⁵⁸ synthesized various 2,3-disubstituted quinazolin-4-one derivatives (**38**) by introducing chloro group at 6 and 8 positions. These compounds were found to exhibit antimicrobial activity.

Kovalenko⁵⁹ in 1999, synthesized some 2,3,6,8-tetrasubstituted quinazolin-4(3H)-ones (**39**) and these compounds were found to exhibit more potent antimicrobial activity.

Shivarama and coworkers⁶⁰, in 1999 synthesized a series of 2-furyl vinyl-3-aryl quinazolin-4(3H)-ones (40). These compounds were reported to exhibit antibacterial activity.

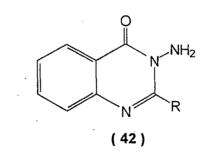
In 1999, Farghaly and coworkers⁶¹ prepared a series of N,Ndisubstituted dithiocarbamic esters (41) derived from 2-methyl quinazolines. These compounds were reported to possess antifungal activity.

In 1999, Ramasarma and coworkers reported⁶² the synthesis of some novel oxoquinazolyl thiosemicarbazones. These compounds were found to exhibit antimicrobial activity.

Hiti and coworkers⁶³ in the same year synthesized some quinazolin-4-yl hydrazones and dihydrazones. These compounds showed significant antimicrobial activity.

In 1999, Purohit and coworkers⁶⁴ synthesized certain analogs of 1-phenylamino quinazolones and studied them for their antimicrobial activity.

Jantova and coworkers⁶⁵ in 1999, prepared a series of substituted quinazolines. Biological investigation of these compounds showed antibacterial activity.

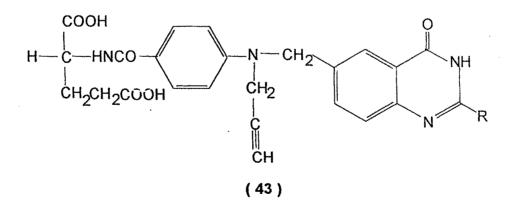

In the same year Kung Pei-pei and coworkers reported⁶⁶ the structural activity relationship of a series of 2-substituted quinazolines and their antibacterial activity.

Ahluwalia and coworkers⁶⁷ in the year 1999, prepared a series of substituted quinazolines and studied their antimicrobial activity.

Pandeya and coworkers⁶⁸ in 1999, synthesized some Schiff's and Mannich bases of isatin derivatives with 3-amino-2-methylthio quinazolin-4(3*H*)-ones and reported their antibacterial, antifungal and anti HIV activities.

Liu Xin and coworkers⁶⁹ in 1999, reported the synthesis of some novel hydroxamic (4-quinazolinyl) thioesters. These compounds were reported to exhibit antifungal activity.

In 1999, Pandey and coworkers⁷⁰ synthesized a series of 3-amino-2substituted quinazolin-4-ones (42) and studied their antiviral activity.



EL Gaby⁷¹ in 2000, synthesizied a series of substituted quinazolines and studied their antibacterial activity. These compounds were found to possess good antibacterial activity.

In 2000, Jantova and coworkers⁷² synthesized some trisubstituted quinazolines and studied their antibacterial activity.

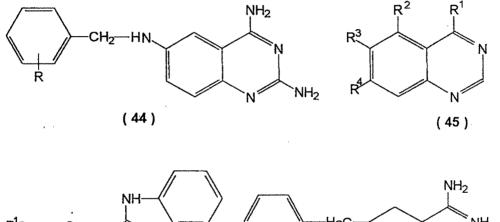
Ghorab and coworkers⁷³ in the same year prepared some new fluorinated hydroquinazoline derivatives and studied their antifungal activity.

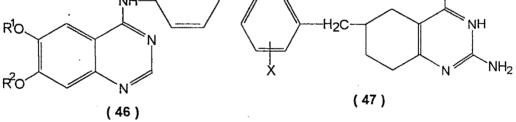
Robba and coworkers⁷⁴ in 1974, prepared some N-[[4-(amino-3,4dihydro-4-oxoquinazolyl)methyl]-N-prop-2-yl-amino]benzoylyl-Lglutamic acid (43) and its derivatives as selective thymidylate synthetase inhibitors. These compounds showed encouraging antitumor activity against breast and ovarian cancer in clinical trials.

Boyle and coworkers⁷⁵ in 1993, reported the synthesis of some 2-methyl-6-substituted quinazolines. These compounds were found to exhibit antitumor activity.

Brana and coworkers⁷⁶ in 1994, prepared a series of benzimidazo [1,2-c]quinazolines. When tested for anticancer activity, these compounds were found to exhibit potent antitumor activity.

Mang and coworkers⁷⁷ in the same year synthesized some 2,4diamino-6-substituted quinazolines (44) and studied their anticancer activity.


Arnold and coworkers⁷⁸ in 1995, prepared a series of 4,5,6,7-tetra substituted quinazolines (45). These compounds were found to exhibit anticancer activity.


In 1997, Jones and coworkers⁷⁹ synthesized a series of 3-chloro-N-[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]-4-phenyl sulphonyl)-N-(prop-2-nyl-)aniline and studied their antitumor activity.

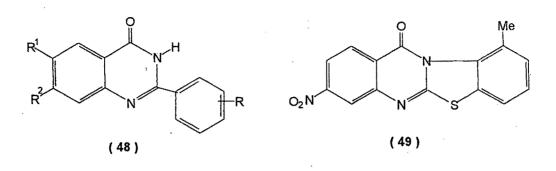
Kazuo and coworkers⁸⁰ in 1999, synthesized certain analogs of substituted quinazolines and studied their antitumor, antiatherosclerotic and antidiabetic activities.

In the same year Fathima and coworkers reported⁸¹ the synthesis of 4-arylamino-6,7-disubstituted quinazolines (46) and studied them for antitumor activity.

Papoulis and coworkers⁸² in the same year prepared a series of 2,4diamino-6-(arylmethyl)-5,6,7,8-tetrahydro quinazolines (47). These compounds were reported to exhibit antitumor activity.

Raffa and coworkers in 1999, reported⁸³ the synthesis of some 3-(3-phenylisoxazo-5-yl-)quinazoline derivatives and studied their antineoplastic activity.

Mann Jen and coworkers⁸⁴ in 2000, synthesized a series of 2,3dihydro -3-methoxy-2-phenyl-4-quinazolinones and studied their anticancer activity. In the same year Lipunova and coworkers reported⁸⁵ the synthesis of some novel fluorinated condensed quinazolines. These compounds were found to exhibit antitumor activity.

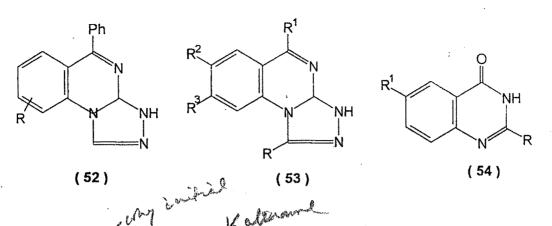

In 2000, Mann Jen and coworkers⁸⁶ synthesized some novel 2-aryl-6,7- disubstituted quinazolin-4-ones (48) and studied their antitumor activity.


EL Sherbeny and coworkers⁸⁷ in 2000, prepared a series of benzothiazol-2,3-b-quinazoline derivatives (49). These compounds were found to possess antitumor activity.

In the same year Yanong and coworkers reported⁸⁸ the synthesis, SAR and anitumor activity of a series of 4-subsitututed anilino-3-cyano-6,7-dimethoxy quinazolines (50).

Richard and coworkers⁸⁹ in 2001, synthesized and patented a series of 4-(3-ethylpheylamino) quinazolines (51). These compounds were found to possess anticancer activity.

Lezlecovsky and coworkers⁹⁰ in 1965, prepared a series of 4-phenyl-6,7,8,9-substituted-1,2,4-triazoloquinazolines (52) and studied their analgesic and antiinflammatory activities.



Normen cledimt

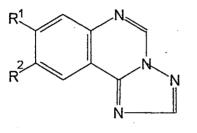
 $_{2}H_{5}$

In 1977, Yamamoto and coworkers⁹¹ synthesized some 1,5,7,8tetrasubstituted-1,2,4-triazoloquinazolines (53). These compounds were reported to possess analgesic, antiinflammatory, tranquillizing and antiviral activities.

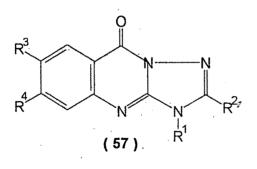
In 1977, Koizomi and coworkers⁹² prepared a series of 2,6-disubstituted quinazolin-4-ones (54) as antiinflammatory agents.

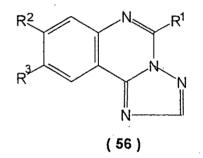
In 1978, GHardtman and coworkers⁹³ synthesized and patented some 1,3,4-triazoloquinazolines (55). The pharmacological investigations of these compounds revealed their analgesic, antiinflammatory, tranquillizing and antiviral activities.

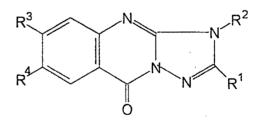
(F.G)Hardtman and coworkers⁹⁴ in the same year prepared a series of 4,7,8-trisubstituted-1,3,4-triazoloquinazolines (56). These compounds exhibited antiinflammatory, tranquillizing and antiviral activities.

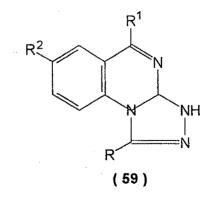

Kottke and coworkers⁹⁵ in 1988, prepared a series of 1,2,8,9tetrasubstituted-1,3,4-triazoloquinazolines (57). These compounds were found to exhibit antirheumatic activity.

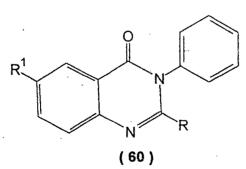
100


In 1988, the same authors⁹⁶ also synthesized substituted triazoloquinazolinones (58). These compounds exhibited antirheumatic and antianaphylactic activities.

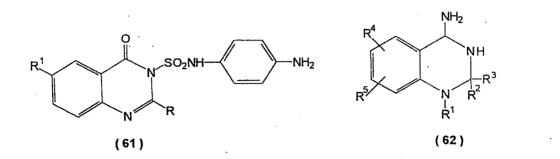

7 Kamal and coworkers in 1988, reported⁹⁷ the synthesis of some 1,5,7trisubstituted-1,2,4-triazoloquinazolines (59). These compounds shown both analgesic and antiinflammatory activities.

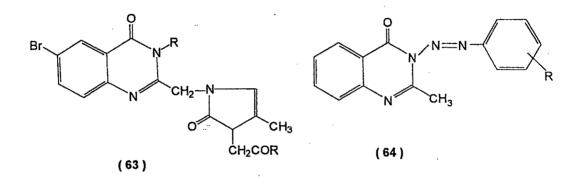

Nigam and coworkers⁹⁸ in 1991, synthesized some 3-substituted aryl-2,6-disubstituted quinazolines (60). These compounds exhibited antiinflammatory activities.





In 1993, Srivastava and coworkers⁹⁹ prepared a series of substituted indolyl quinazolin-4-ones and studied their analgesic and antiinflammatory activities.


Hitkari and coworkers¹⁰⁰ in 1995, synthesized some 6-substituted-2alkyl-3-(4-aminobenzene sulphonamido) quinazolin-4-ones (61). These compounds showed antiinflammatory activity.


In 1996, Peter and coworkers reported¹⁰¹ a series substituted quinazolines (62) by incorporating amino group at 4 position. These compounds were found to possess antiinflammatory activity.

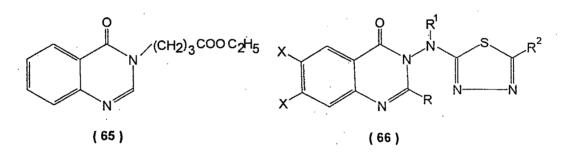
Hiroshi and coworkers¹⁰² in 1996, prepared certain analogs of substituted dioxoquinazolines. These compounds were reported to possess antiinflammatory activity.

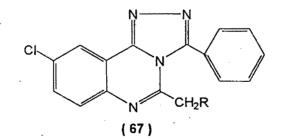
Saravanan and coworkers¹⁰³ in 1998, prepared some 2,3-disustituted-6bromo quinazolin-4-ones (63) and studied their antiinflammatory activity.

Rity and coworkers¹⁰⁴ in 1998, prepared certain analogs of 2-methylsubstituted quinazolin-4-ones (64) and studied their antiinflammatory activity.

Bothra and coworkers¹⁰⁵ in 1998, prepared some substituted quinazolines and tested them for their antiinflammatory activity.

Bekhit and coworkers¹⁰⁶ in the same year synthesized some novel benzopyrazolyl, benzoxazolyl, quinazolinyl derivatives of quinazolin-4-ones. These compounds exhibited antiinflammatory activity.

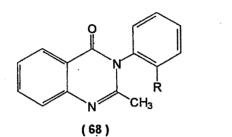

Junichi and coworkers¹⁰⁷ in 1998, synthesized a series of substituted quinazolines. These compounds were found to exhibit analgesic activity.

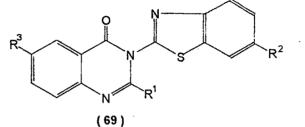

In 1999, Qi Deng coworkers reported¹⁰⁸ the synthesis of some 3-substituted quinazolin-4-ones (65). These sompounds showed antiinflammatory activity.

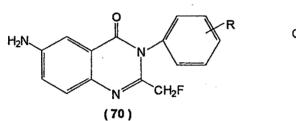
Ramasarma and coworkers¹⁰⁹ in 1999, prepared a series of 3-(thiadiazolylamino)-2,6,8-trisubstituted quinazolin-4-ones (66) and studied their antiinflammatory activity.

Giedrute and coworkers¹¹⁰ in 1999, synthesized some 4-(substituted anilino) quinazolin-2-carboxylates and studied their antiinflammatory activity.

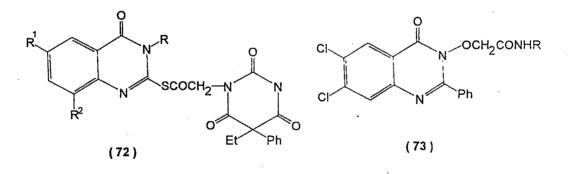
Abdelal and coworkers¹¹¹ in 2001, prepared a series of 1,2,4-triazolo [4,3-c]quinazolines (67). When evaluated for their CNS activities these compounds showed both analgesic and anticonvulsant activities.

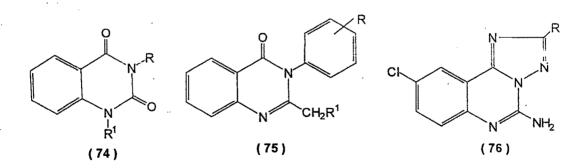

Jackman and coworkers¹¹² in 1960, prepared some 2-methyl-3-(o-tolyl)quinazolin-4(3*H*)-ones and 2-methyl-3-(o-chlorophenyl) quinazolin-4(3*H*)-ones (68). These compounds were reported to possess sedative, hypnotic and anticonvulsant activities.


Chaurasia and coworkers¹¹³ in 1982, prepared a series of 3-(2-benzthiazolyl)-2,6-disubstituted quinazolin-4(3H)-ones (69). These compounds were found to exhibit CNS depressant activity.


Tanabe Seiyaku¹¹⁴ in 1985, synthesized some 2-fluoromethyl-3substituted phenyl-6-amino quinazolin-4(3H)-ones (70), when evaluated for their CNS activities these compounds were found to possess CNS depressant activity.

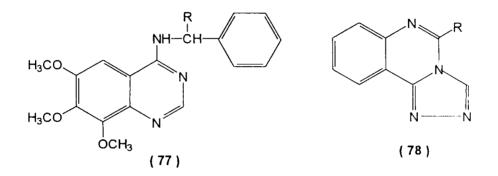

Certain analogs of 2-substituted thio-3-substituted phenyl quinazolin-4- (3H)-ones (71) with chloro group at C-7 position were prepared by Lakhan and coworkers¹¹⁵ in 1989. These compounds were reported to possess CNS depressant activity.


In 1996, Abdul Hamid and coworkers¹¹⁶ prepared a series of 2-(((5-ethyl-5-phenyl-1-barbituryl)methyl)carbonyl)thio-3,6,8-trisubsituted quinazolin-4(3*H*)-ones (72). These compounds were reported to possess anticonvulsant activity. Ibrahim¹¹⁷ in 1998, synthesized a series of 3-substituted-6.8dichloro-2-phenyl-4(3*H*)-quinazolines (73) and studied their anticonvulsant activity. These compounds were found to possess good anticonvulsant activity.



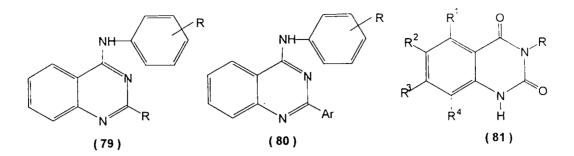
Hassanein and coworkers¹¹⁸ in 1998, synthesized some 1,3disubstituted quinazolin-2,4-diones (74). When evaluated for their anticonvulsant activity, these compounds were found to possess anticonvulsant property. In the same year, Nawrocka and coworkers¹¹⁹ prepared a series substituted quinazoline-4-ones. The pharmacological investigation of these compounds showed anticonvulsant activity as expected.

Cyrilo and coworkers¹²⁰ in 2000, synthesized some acetylenic quinazoline derivatives with the aim of exhibiting anticonvulsant activity. These compounds were found to possess anticonvulsant activity as expected.


In 1981, Kumar and coworkers¹²¹ synthesized some 3-(substitutedphenyl)-2-substitutedmethyl-4-oxo quinazolines (75) and studied their antiparkinsonism activity.

Franchis and coworkers¹²² in 1988, synthesized some substituted-1,3,4-triazoloquinazoline (76), when evaluated for their adenosine antagonistic activity these compounds were found to possess significant adenosine antagonistic activity.

Takasa and coworkers¹²³ in 1993, prepared a series of 4-(substituted benzylamino)-6,7,8-trimethoxy quinazolines (77). Biological investigations of these compounds shown good c-GmP-PDE inhibition activity.

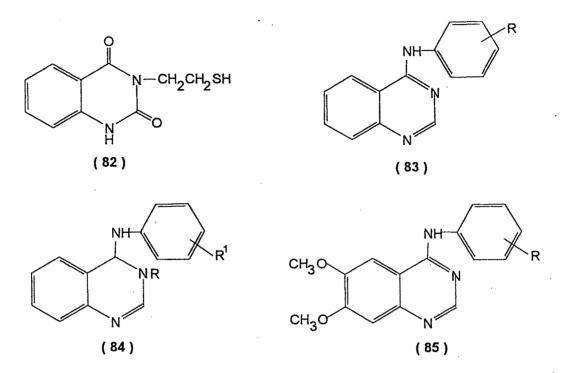

In the year 1993, Gatta¹²⁴ prepared some substituted-1,2,4triazoloquinazolines (78). These comounds were reported to possess affinity towards adenosine and benzodiazepine receptors.

In 1995, Splegel and coworkers¹²⁵ prepared some 2-substituted-4-(substitutedanilino) quinazolines (79) and studied their affinity to nerve growth factor.

Lee and coworkers¹²⁶ in the same year prepared some 2-(pyridyl/imidazolyl)-4-(substituted anilino)quinazolines (80). These compounds were reported to possess c-GMP- PDE inhibition activity.

Kaddachi and coworkers¹²⁷ in 1995, described the synthesis of some 3,5,6,7,8-substituted quinazolin-2,4-diones (81).

In 1995, synthesis of certain analogs of 3-(2-mercaptoethyl) quinazolin-2,4-diones (82) were reported by Gutschow and coworkers¹²⁸.


Gazit and coworkers¹²⁹ in 1996, synthesized some 4-substituted anilino quinazolines (83) and studied their enzyme inhibition activity. These compounds were reported to possess significant tyrosine kinase inhibition activity.

Denny and coworkers¹³⁰ in the same year prepared a series of 4-substituted anilino quinazolines (84) with substitution at 3-position also. These compounds were found to possess good tyrosine kinase inhibition activity.

In the same year Rewcastle and coworkers^{13!} synthesized some 4-substituted anilino quinazolines (85) with methoxy group at 7 and 8 positions. These compounds were reported to exhibit tyrosine kinase inhibition activity.

In 1996, Gabor and coworkers reported¹³² the synthesis of 5,6.7,8-tetrahydro quinazolin-4(3*H*)-one derivatives.

Gray and coworkers¹³³ in 1996, described the synthesis of certain analogs of substituted quinazolines.

Hashash and coworkers¹³⁴ in 1996, reported the synthesis of 2-substituted quinazolin-4(3H)-thione derivatives and studied their biological activity.

Bertrand and coworkers¹³⁵ in 1997, synthesized some 3-(2-chlorophenyl)-2-(substitutedpyridinyl)-6-fluoroquinazolin-4(3H)-ones and studied their AMPA antagonistic activity.

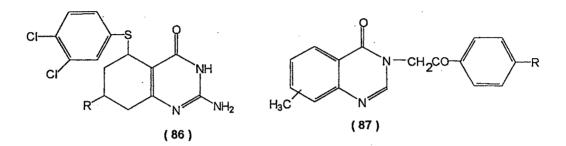
Heinrich and coworkers¹³⁶ in 1997, synthesized some substituted quinazolines, and studied their NPY receptor antagonistic activity.

Elliot Mark and coworkers¹³⁷ in 1997, prepared some 2,3disubstituted quinazoin-4(3*H*)-ones. These compounds were found to possess AMPA receptor antagonistic activity.

In 1997, Sarac and coworkers¹³⁸ described the synthesis of 4-aryl-1,2,3,4,5,6,7,8-octahydroquinazolin-2-thione derivatives.

Mitskyavichyus¹³⁹ in 1997, synthesized certain analogs of 1-(2-carboxyethyl) quinazolin-2,4-diones.

Arpad and coworkers in 1997, reported¹⁴⁰ the synthesis of some fused heterocyclicquinazolin-4(3H)-ones.

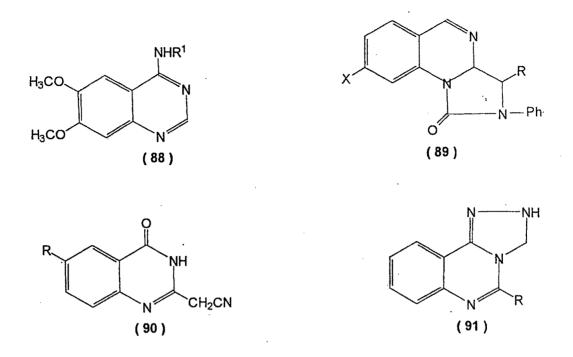

Debi Prasad and coworkers¹⁴¹ in 1997, reported the synthesis of 2,3-disubstituted quinazolin-4(3H)-ones from acylamino-N-aryl benzamides.

Aleem and coworkers in 1997, reported¹⁴² the synthesis of nonclassical 2-amino-5,7-disubstituted tetrahydro quinazolin-4-ones (86) and studied their thymidylate synthetase inhibition activity.

Monica and coworkers¹⁴³ in 1997, described the stereoselective synthesis of 2,3-disubstituted-5-pyrrolidinone derivatives of quinazolin-4(3H)-ones.

Stefan Stankovsky and coworkers¹⁴⁴ in 1997, described the synthesis of condensed quinazolines from 3-aryl-4-quinazolones.

Kalinowska and coworkers¹⁴⁵ in the same year reported the synthesis of substituted quinazolin-4(3H)-ones (87).



Michael and coworkers¹⁴⁶ in 1997, synthesized some 4-(anilino). 4-(phenoxy), 4-(thiophenoxy)-6,7-dimethoxy quinazolines (88).

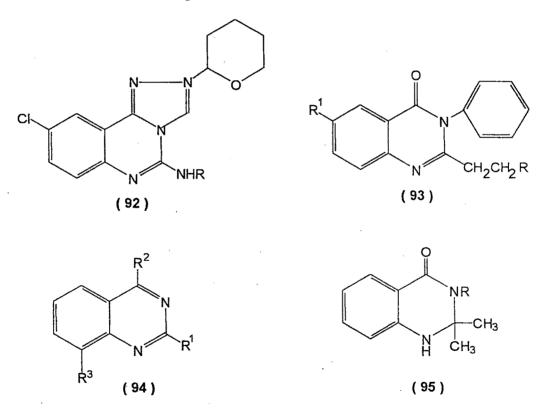
Kazuyoshi and coworkers¹⁴⁷ in 1997, described the synthesis of imidazo [3,4-a] quinazolin-1-ones (89).

In the same year Volovenko¹⁴⁸ described the synthesis of 6-substituted-2-cyanomethyl quinazolin-4(3H)-ones (90).

Spirkova and coworkers¹⁴⁹ in the same year reported the synthesis of a series of 1,2,4-triazoloquinazolines (91).

Bertrand and coworkers¹⁵⁰ later, prepared a series of 3-phenyl/pyridyl-6-substitued quinazolin-4(3H)-ones. These compounds were reported to possess AMPA antagonistic activity.

Yong Chul and coworkers¹⁵¹ in 1998, prepared some substituted-1,3,4- triazoloquinazolines (92). These compounds were found to exhibit adenosine antagonistic activity.


Willard and coworkers¹⁵² in the same year prepared a series of 3phenyl-2,6-disubstituted quinazolin-4(3H)-ones (93) and studied their AMPA receptor antagonistic activity.

In 1998, Huang Charles and coworkers¹⁵³ synthesized some 2,4,8-trisubstituted quinazolines (94).

Yasser and coworkers¹⁵⁴ in 1998, described the chemical transformations of 2,3-disubstituted-1,2,3,4-tetrahydro quinazolin-4-ones (95).

Althebeiti and coworkers¹⁵⁵ in 1998, reported the synthesis of some novel spirothiazolidinone and spiroazitidinone derivatives incorporated with quinazolines.

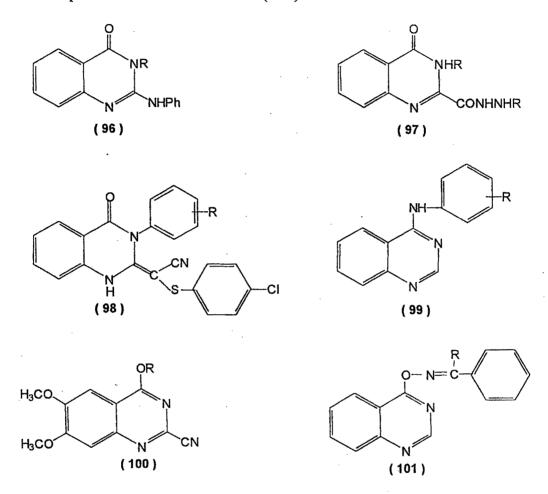
Du Jong and coworkers¹⁵⁶ in 1998, described the synthesis of a series of 5-substituted quinazoline derivatives.

Shaban and coworkers¹⁵⁷ in 1998, reported the synthesis of some 1,2,4-triazino[4,3-c] quinazolines and 4-(pyrazol-1-yl) quinazolines.

In 1998, EL Deen and coworkers¹⁵⁸ described the synthesis of 3-substituted-2-phenylamino-4-oxo quinazolines (96).

Mekuskiene and coworkers¹⁵⁹ in 1998, synthesized some 2,3-disubstituted quinazolin-4(3H)-ones (97) and studied their mono amino oxidase inhibition activity.

Zohry and cowokers¹⁶⁰ in 1998, reported the synthesis of spiroquinazoline-4-heterocyclic derivatives.


Feky and coworkers in 1998, reported¹⁶¹ the synthesis of some novel 2-substituted-3-aryl quinazolin-4(3H)-ones (98) from 2cyanomethyl-3-substitutedphenyl-4(3H)-quinazolinone.

Robert and coworkers¹⁶² in 1998, reported synthesis of some 3-acetoxyamino quinazolin-4(3H)-ones.

S.Wojciech and coworkers¹⁶³ in 1998, reported the synthesis of certain analogs of 4-substituted arylamino quinazolines (99) from 2-amino-N-aryl benzamidines.

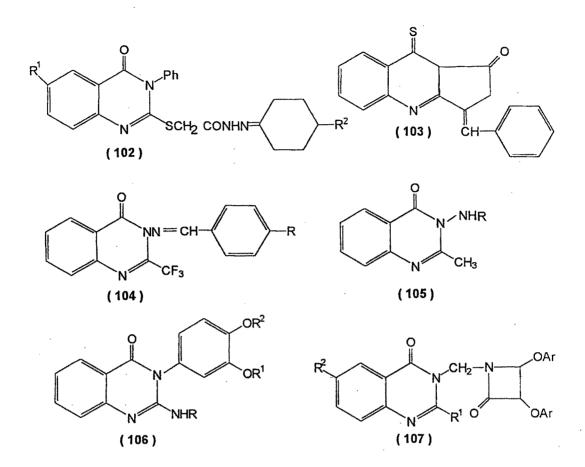
W.Wojciech and coworkers¹⁶⁴ in 1998, reported the synthesis of certain analogs of 2,4-diamino quinazolinones.

Thierry and coworkers¹⁶⁵ in 1998, reported the synthesis of 2cyano-4-alkoxy-6,7-dimethoxy quinazolines (100). Li Huiying and coworkers¹⁶⁶ in 1998, reported the synthesis of some 4-quinazolinone oxime ethers (101).

Nilgun and coworkers¹⁶⁷ in 1998, reported the synthesis of cyclohexylidenehydrazide derivatives of 3-phenyl-4(3H)-quinazolinones (102).

In the same year Amine and coworkers¹⁶⁸ described the synthesis of condensed quinazolin thiones (103).

In 1998, Tonkikh and coworkers reported¹⁶⁹ the synthesis of certain analogs of 5,6,7,8-tetrahydro quinazolines.


Pastors and coworkers¹⁷⁰ in 1998, described the synthesis of some 2-(trifluoromethyl)-3-substituted-4-oxo quinazolines (104) from 3-amino-2-(trifluoromethyl) quinazoline.

In 1998, Kandeel and coworkers reported¹⁷¹ the synthesis of substituted benzimidazolo, triazolo, tetrazolo and thiadiazolo quinazolines.

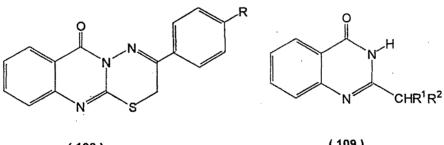
Ibrahim and coworkers¹⁷² in 1998, described the synthesis of some 3-substitutedamino-2-methyl-4-oxo quinazolines (105).

Marcicatherine and coworkers¹⁷³ in 1999, synthesized some 2-(substituted amino)-3-(alkoxylphenyl) quinazolin-4(3H)-ones (106). When tested for their biological activity, these compounds shown oestrogen agonistic activity.

In 1999, Pramila and coworkers¹⁷⁴ prepared a series of 3-(substituted methyl)-2,6-disubstituted quinazolin-4 (3H)-ones (107) and studied their antiamoebic activity. These compounds were found to exhibit good antiamoebic activity.

Mateo and coworkers¹⁷⁵ in 1999, described the intramolecular azawitting reaction of imino-phosphoranes with β -lactam carbonyl group of substituted quinazolin-4-ones.

Mohammed Sadegh and coworkers¹⁷⁶ in 1999, reported the microwave promoted synthesis of substituted quinazolin-4-(3H)-ones.


Feng and coworkers¹⁷⁷ in 1999, described the rearrangement of 4-imino benzoxazines to 4-quinazolinones via amidine carboxamides.

Santagati and coworkers¹⁷⁸ in 1999, described the new synthetic approaches to fused heterocyclo quinazolones (108).

Xuedong and coworkers in 1999, reported¹⁷⁹ the synthesis of 2-substituted guinazolinones.

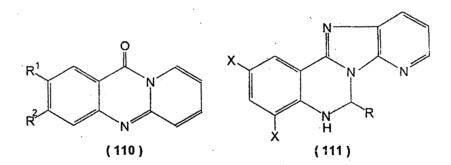
Kawadkar and coworkers¹⁸⁰ in 1999, described the synthesis of some novel substituted quinazolin-4-ones.

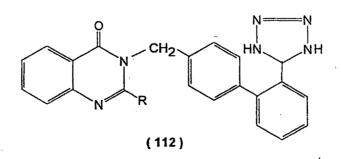
Keith and coworkers¹⁸¹ in 1999, described the synthesis of 2-substituted quinazolin-4(3H)-ones (109).

(109)

Laurent and coworkers in 1999, reported¹⁸² the synthesis of a series of oxindole quinazolines by a novel synthetic route.

Reddy and coworkers in 1999, reported¹⁸³ the synthesis of some 2-substituted guinazolin-4(3H)-ones.


In 1999, Bharadwaj and coworkers reported¹⁸⁴ the synthesis of some substituted pyrido quinazolines (110).


Bahekar and coworkers¹⁸⁵ in 1999, described the synthesis of some novel benzimidazo [1,2-c] quinazolin-6(5H)-ones (111).

Mohammed and coworkers¹⁸⁶ in the same year reported the synthesis of 6-substitutedbenzimidazo [1,2-c] quinazolines under microwave irradiation.

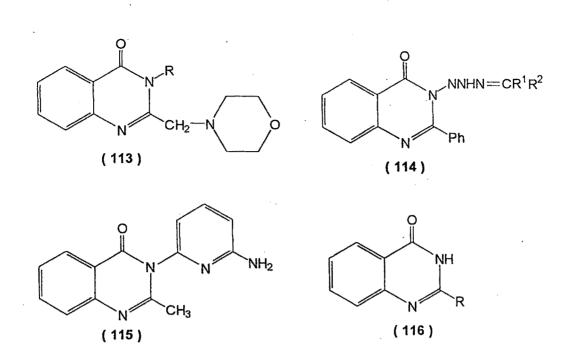
Ji Wang and coworkers¹⁸⁷ in 1999, described the synthesis of 3-(substituted biphenyl)-2-substituted quinazolin-4(3H)-ones (112). The pharmacological investigations of these compounds showed angiotensin-II antagonistic activity.

Jorg and coworkers¹⁸⁸ in 1999, reported the synthesis of some substituted-4-oxo quinazolines.

43

Tombary and coworkers¹⁸⁹ in 1999, reported the synthesis of some novel triazolo [4,3-a] quinazolines and bistriazolo [4,3-a] quinazolines.

Mamoru and coworkers¹⁹⁰ in 1999, described the thermal ring contraction of 1,4-benzodiazepines into quinazolines.

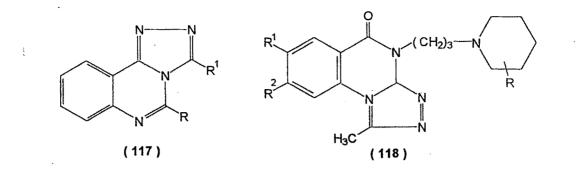

Sharma and coworkers in 1999, reported¹⁹¹ the synthesis of 7,8,9,10-tetrahydroazepino[2,1-*b*]quinazolines. These compounds were found to possess bronchodilator activity.

Spirkova and coworkers in 1999, reported¹⁹² the synthesis of some 2-morpholinomethyl-3-substituted quinazolin-4(3H)-ones (113).

In 1999, Mohammed and coworkers reported¹⁹³ the synthesis of 2-phenyl-3-substituted-4-oxo quinazolines (114).

Strakov and coworkers in 1999, reported¹⁹⁴ the synthesis of 3-(6-amino-2-pyridyl)-2-methyl-4(3H)-quinazolinone (115) and its chemical reactions.

In 1999, Ramana and coworkers¹⁹⁵ described the synthesis of 2-substituted quinazolin-4(3H)-ones (116).



Abderrahim and coworkers¹⁹⁶ in 1999, reported the synthesis of certain analogs of substituted triazoloquinazolines (117).

Feifter and coworkers in 1999, reported¹⁹⁷ the synthesis of some substituted-1,2,4-triazoloquinazolines.

Lucia and coworkers¹⁹⁸ in 2000, prepared some 1,2,3triazoloquinazolines. Biological investigations of these compounds shown adenosine and benzodiazepine receptor agonistic activity.

In the same year Noriko and coworkers¹⁹⁹ synthesized some 1methyl-4-(3-substitutedpropyl)-7,8-disubstituted-1,2,4-triazoloquinazolin-4(3H)-ones (118) and studied their enzyme inhibition activity. These compounds were found to be chemokine inhibitors.

In 2000, Szczepankiewicz and coworkers reported²⁰⁰ the synthesis of some novel 3-(2-cyanophenyl) quinazolin-4(3H)-ones.

The same workers in 2000, also reported²⁰¹ the synthesis of 4arylamino quinazolines and 2-aryl-4-arylaminoquinazolines.

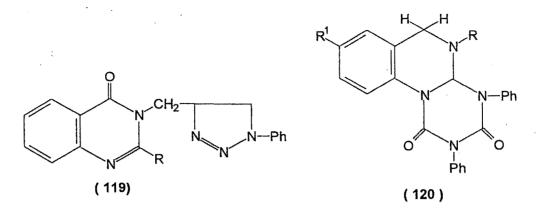
Patel and coworkers in 2000, reported²⁰² the synthesis of 2-methyl-3-(2-methylphenyl)-6-arylazo quinazolin-4-one and its derivatives.

Pavel and coworkers²⁰³ in the same year reported the synthesis of some 2-phenyl-2-hydroxymethyl-4-oxo-1,2,3,4-tetrahydro quinazoline and its derivatives.

In 2000, Ali Hussain and coworkers reported²⁰⁴ the synthesis of o-ethyl phosphorodiamidates from substituted quinazolin-4-ones.

Aleem and coworkers²⁰⁵ in 2000, synthesized a series of novel nonclassical reversed bridge quinazolines and studied their thymidylate synthetase inhibition activity. Abdugafurov and coworkers in 2000, reported²⁰⁶ the synthesis of 3-(substituted triazolomethyl)-2-alkyl-4-oxo quinazoline (119) derivatives.

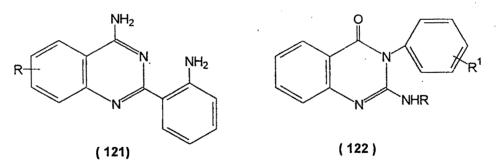
Benedict and coworkers²⁰⁷ in 2000, prepared some 2-substituted amino quinazolin-4-ones and studied their biological activity. These compounds were found to be potassium channel openers.


In 2000, Petra and coworkers reported²⁰⁸ the synthesis of 5,6,7,8-tetrahydro-2,6-diamino quinazolines.

Witt and coworkers²⁰⁹ in 2000, prepared a series of 2-vinyl-3H-quinazolin-4-ones and studied their chemical reactions.

In the same year Simon and coworkers²¹⁰ described the synthesis of some 2-substituted aryl quinazolin-4-(3H)-ones.

Hiti and coworkers in 2000, reported²¹¹ the synthesis of some substituted quinazolin-4(3H)-ones.


Helmuth and coworkers²¹² in the same year studied a novel isocyanate reaction on quinazolines (120) in which the formation of unexpected cycloadducts was observed.

In 2000, Muijlwijk-Koezen and coworkers²¹³ synthesized a series of substituted quinazolines and studied their human adenosine A_3 receptor antagonistic activity.

Julio and coworkers in 2000, reported²¹⁴ the microwave enhanced synthesis of 2-(2-aminophenyl)-4-aminoquinazoline derivatives (121).

Ding ming and coworkers²¹⁵ in 2000, described the synthesis of 2-substituted amino-3-(substituted phenyl) quinazolin-4(3*H*)-ones (122).

Jun Min and coworkers²¹⁶ in 2000, prepared some α -thiocarbonyl phosphoric acid derivatives of quinazolin analogs.

Hiyoshizo and coworkers²¹⁷ in 2000, reported the synthesis of some substituted quinazolines.

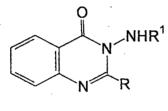
Azizian and coworkers²¹⁸ in 2000, described the rearrangement of 4-imino(1*H*,4*H*)-3,1-benzoxazine-2-ones to quinazolin-2-4-diones.

Tonkikh and coworkers²¹⁹ in the same year synthesized some 2-substituted-5-oxo-5,6,7,8-tetrahydro quinazolines.

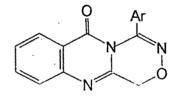
Sahadeva and coworkers²²⁰ in 2000, synthesized a series of substituted indolyl quinazolines.

Takumi and coworkers²²¹ in 2000, described the synthesis of substituted quinazolines using carbondioxide (or) carbonmonoxide with sulfur under mild condition.

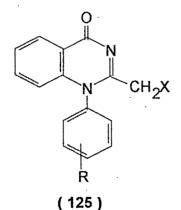
Wojciech and coworkers in 2000, reported²²² the synthesis of 4-amino-2-phenyl quinazoline and its derivatives.

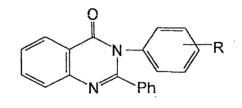

Cyril and coworkers²²³ in 2000, described the synthesis of some 5-chloro-2-methyl-3-(5-methylthiazol-2-yl)-4(3*H*)-quinazolone derivatives and studied their biological activities.

Srivastava and coworkers in 2000, reported²²⁴ the synthesis of 3-substituted amino-2-alkyl/aryl-4-oxo quinazolines (123).

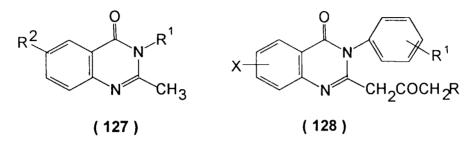

In 2003, Reddy and coworkers²²⁵ synthesized some new 4-aryl-1,2,4-oxadiazino[5,4-b]quinazolines (124) from 2-chloro quinazolin-4-one. In 2003, Gangual and coworkers²²⁶ prepared some 1,2-disubstituted quinazolines (125) and studied their antiinflammatory activity.

In the same year Reddy and coworkers reported²²⁷ the synthesis of some bismethaqualone, bismecloqualone and bispiroqualone analogues.

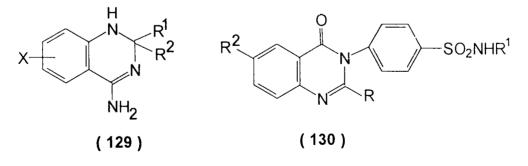

coworkers²²⁸ in 2003, prepared Kant and а series of 2.3-disubstituted quinazolines (126). When evaluated for their antimicrobial activity these compounds were found to possess mild antifungal activity.



(124)



(126)


Panneerselvam and coworkers²²⁹ in 2003, synthesized a series of 2-methyl-3,6-disubstituted quinazolin-4-ones (127) for their analgesic and antimicrobial activity.

In 2003, Ashok kumar and coworkers reported²³⁰ the synthesis, analgesic, antiinflammatory, ulcerogenic and Cyclooxygenase activities of a series of novel quinazolinyl pyrazolines (**128**).

In 2003, Tinker and coworkers reported²³¹ the synthesis of 1,2dihydro-4-quinazolinamines (129). These compounds where found to possess antiinflammatory activity at nanomolar concentration.

Selvam and coworkers²³² recently prepared some 2,6-disubstituted quinazolin-4-ones by incorporating sulphonamides at 3-position (130). These compounds were investigated for their antibacterial and antiviral activities.

