NOTATIONS

The following notations are used in this thesis, with dimensions as indicated

А	=	Inequality constraints
A_{j}	=	Irrigated area of j th crop, ha
A ₁	=	Irrigated area for sugarcane, ha
A_2	=	Irrigated area for banana, ha
A ₃	=	Irrigated area for mango, ha
A_4	=	Irrigated area for cabbage, ha
A_5	=	Irrigated area for paddy, ha
A_6	=	Irrigated area for jowar, ha
A ₇	=	Irrigated area for wheat, ha
A_8	=	Irrigated area for cotton, ha
A_9	=	Irrigated area for groundnut, ha
A ₁₀	=	Irrigated area for grass, ha
AR₁	_ =	Fraction of water diverted to canal, i.e. lost as aquifer recharge, assumed as 20%
AR_2	=	Fraction of water from irrigated area i.e. lost as aquifer recharge,
		assumed as 20%
Aeq	=	Equality constraints
Amj	=	Upper limit areas under various crops according to management of
		j th crop, ha
Asej	=	Lower limit of area under particular crops according to Socio-
		Economic needs. of j th crop, ha
b	=	R.H.S. values of inequality constraints
beq	=	R.H.S. values of equality constraints

DR =	Minimum ground water quantum that be exploited to fulfill the
	drainage requirement, ha.m
$ET_1 =$	Fraction of water diverted to canal i.e. lost as non beneficial
	evapotranspiration, which is assumed as 10 %
$ET_2 =$	Fraction of water from irrigated to canal i.e. lost as non beneficial
	evapotranspiration, which is assumed as 10 %
Flp1 =	Optimal results of general linear programming Model
Flp2 =	Optimal results of general linear programming Model with fuzzified
	constraints
Flp3 =	Optimal results of fuzzy linear programming Model with aspiration
	level, λ of 100%
f =	objective function in matlab
GWP =	Total ground water potential that can be available yearly, ha.m
GW _i =	Amount of ground water supplied to the command area, ha.m in i th
	month
GW ₁ =	Ground water pumped in command area in january, ha.m
$GW_2 =$	Ground water pumped in command area in february, ha.m
GW3 =	Ground water pumped in command area in march, ha.m
GW ₄ =	Ground water pumped in command area in april, ha.m
GW ₅ =	Ground water pumped in command area in may ha.m
$GW_6 =$	Ground water pumped in command area in june ha.m
GW ₇ =	Ground water pumped in command area in july ha.m
GW ₈ =	Ground water pumped in command area in august, ha.m
GW ₉ =	Ground water pumped in command area in september, ha.m
$GW_{10} =$	Ground water pumped in command area in october, ha.m
GW ₁₁ =	Ground water pumped in command area in november, ha.m
$GW_{12} =$	Ground water pumped in command area in december, ha.m
Gcc =	Annual capital cost for ground water, Rs./ha.m
Goc =	Annual operational cost for ground water, Rs./ha.m
i =	1, 2, 3,, I (Number of decision period, i.e., month)

xiii

.

j =	1, 2, 3,, J (Number of crops)
K _{ij} =	Land use coefficient for j th crop in i th month as per the crop calendar
	followed in the command area
LRg =	Additional ground water requirement for leaching, %
LRs =	Additional surface water requirement for leaching, %
lb =	Lower bound
N.B.1 =	Net benefits obtained using the actual water requirement of the
•	crops during the year 1999-2000
N.B.2 =	Net benefits obtained using the actual water requirement of the
	crops during the last 10 years, i.e. year 1990-1991 to1999-2000
N.B.3 =	Net benefits obtained in Chalthan branch canal using
	both surface and ground water.
N.B.4 =	Net benefits obtained in Chalthan using surface water restriction
N.B.5 =	method. Net benefits obtained in Umbhrat branch canal using
	prevailing cropping pattern.
N.B.6 =	Net benefits obtained in Umbhrat branch canal using
	originally practiced cropping pattern.
NR _j =	Net returns from j th crop, Rs./ha
Q ₁ =	Used to take into consideration the efficiency of surface water
Q ₂ =	Used to take into consideration the efficiency of ground water
Re _i =	Effective rainfall during i th month
$SR_1 =$	Fraction of water delivered to canals i.e. lost as surface runoff,
	which assumed as 10%
SR ₂ =	Fraction of water from irrigated area i.e. lost as surface runoff,
	which assumed as 10%
SW =	Surface water available at the head of canal under consideration for
	a particular year, ha.m
S.W.1 =	Unit cost of surface water charged by the N.W.R.W.S. & K.
	department to the farmers.

xiv

.

. . .

.

.

:

S.W.2 =	Actual unit cost of surface water.
S.W.3 =	Unit cost of surface water charged by the N.W.R.W.S. & K.
	department to the industries.
S.W.4 =	Actual unit cost of surface water during the last 10 years, i.e. 1999-2000
SW _c =	Discharge carrying capacity of canal in particular month, ha.m
SW _i =	Surface water supplied to canal diversions for command area in i th month, ha.m
SW _j =	Surface water supplied to canal diversions for command area in i th month, ha.m
SW1 =	Surface water supplied to canal in january, ha.m
SW ₂ =	Surface water supplied to canal in february, ha.m
SW ₃ =	Surface water supplied to canal in march, ha.m
SW ₄ =	Surface water supplied to canal in april, ha.m
$SW_5 =$	Surface water supplied to canal in may ha.m
SW ₆ =	Surface water supplied to canal in june ha.m
SW ₇ =	Surface water supplied to canal in july ha.m
SW ₈ =	Surface water supplied to canal in august, ha.m
SW ₉ =	Surface water supplied to canal in september, ha.m
SW ₁₀ =	Surface water supplied to canal in october, ha.m
SW ₁₁ =	Surface water supplied to canal in november, ha.m
$SW_{12} =$	Surface water supplied to canal in december, ha.m
Scc =	Annual capital cost for surface water, Rs./ha.m
Soc =	[•] Annual operational, maintenance and repairs cost for surface
	water,Rs./ha.m
TA =	Total available cultivation area, ha

.

.

WP_i = Ground water pumping capacity of the wells located in command area for ith month

•

 WR_{ij} = Irrigation water requirement of jth crop in ith month

•

- X = Optimal Values
- Z = Objective function
- λ = Aspiration level

.

.

•

-