List of Figures

Chapter 1

Figure 1.1. Electromagnetic Spectrum07
Figure 1.2. The general shape of reflectance curves for green vegetation16
Chapter 2
Figure 2.1. Location of the study area26
Figure 2.2. Map showing study area27
Figure 2.3. SWS in the month of October27
Figure 2.4. SWS in the month of April28
Figure 2.5. Two dominant vegetation covers in SWS34
Figure 2.6. Mixed vegetation covers in SWS35
Figure 2.7. Mangifera and Madhuca vegetation covers
Figure 2.8. EO-1 along with Hyperion instrument39
Figure 2.9. Overlap in surface area coverage of the ALI, Hyperion, and LAC
sensors39
Figure 2.10. False colour composite (FCC) of acquired Hyperion image for two
differentseasons40
Figure 2.11. Principal absorption features of different gases present in Earth's
atmosphere44
Figure 2.12. False colour composite of October Hyperion image subset49
Figure 2.13. False colour composite of April Hyperion image subset49
Figure 2.14. Distribution pattern of teak and bamboo quadrats in the image
subset46
Figure 2.15. Performance of SVM classifier for different Kerne
types54

Chapter 3

Figure	3.1a.	Spectral	signature	of	major	vegetation	covers	of	SWS
(Octebe	r)					• • • • • • • • • • • • • • • • • • • •			61
Figure	3.1b.	Spectral	signature	of	major	vegetation	covers	of	sws
(April)			***********			***********			61
Figure 3	3.2a. Te	ak density	Hyperion re	eflect	ance s	pectra	· · · · · · · · · · · · · · · · · · ·		62
Figure 3	8 .2b . Ba	ımboo den	sity Hyperio	on ref	lectano	e spectra	•••••		62
Figure 3	3.3. Hyp	erion refle	ctance spec	ctra o	f three	vegetation c	overs of	SWS	63
Figure 3	3.4a. Re	egression n	nodel prepa	ared b	etweer	n BA and HC	1		65
Figure 3	8. 4b . Re	egression r	nodel prepa	ared b	etwee	n BA and H'.			65
Figure 3	3. 5. Ave	erage reflec	ctance spec	ctra (C	Octobe	r) for the thre	e mixed	vege	tation
classes.			*****						66
Figure 3	3.6a. N[OVI image	subset (Oct	tober))	************		•••••	71
Figure :	3. 6b. N	DVI mask	image prep	pared	for ex	clusion of no	n vegeta	ation	cover
during c	lassifica	ation				······	• • • • • • • • • • • • • • • • • • • •	· • • • • • •	71
Figure 3	3.7. lma	iges classi	fied with (a)	ANN	I, (b) S	AM, and (c)	SVM cla	ssifie	rs (22
isolated	bands)	•••••				• • • • • • • • • • • • • • • • • • • •			72
Figure	3.8. lm	ages class	sified with	(a) S	AM ar	nd (b) SVM	classifie	rs (a	II 165
bands)							*********	· • • • • • •	75
Figure	3.9. Pe	rcentage a	area occup	ied b	y 8 tro	pical vegeta	tion clas	ses	in the
image s	ubset cl	assified wi	th different	class	ifiers				75
Figure	3.10.	Measured	and pred	dicted	bioph	nysical attrib	utes thr	ough	PLS
regressi	on of fu	ull reflactar	nce spectra.				· · · · · · · · · · · · · · · · · · ·		83
Figure	3.11.	Measured	and pred	dicted	bioph	nysical attrib	utes thr	ough	PLS
regressi	on of s	pectral sub	set	• • • • • • •			*****		84
Figure	3.12. I	Measured	and pred	licted	bioch	emical attrib	outes thr	ough	PLS
regressi	on of fu	ull reflactar	nce spectra	• • • • • •			**********		87
Figure	3.13.	Measured	and pred	licted	bioch	emical attrib	outes thr	ough	PLS
regressi	on of s	pectral sub	set						90

Figure 3.	.14. C	ross-valida	ited pi	rediction of	Chlor	rophyll and L	Al by leave o	ne out
method ι	using	best perfo	rming	developed	indic	es. (a.) LOC	O-CV for dev	eloped
vegetatio	n inde	x 743/692	for T	eak (b.) LC	O-CV	for develop	ed vegetatior	index
743/692	for	Bamboo	(c.)	LOO-CV	for	developed	vegetation	index
1457/108	4					******************		93
Figure 3.	15. A	verage Lab	orator	y reflectan	ce spe	ectra for selec	cted species	100
Figure 3.	.16. C	omparison	betw	een labora	tory s	pectra with F	lyperion refle	ctance
spectra o	f sam	e species	· · · · · · · · ·					103
Figure 3.	17. Le	eaf anatom	ical st	ructures for	spec	ies selected t	or Laboratory	1
spectra a	cauisi	tion						104