Table of Figures

Figure No.	Title	Pg.
		No.
Fig. 1.1	Different ubiquitin linkage types and their role	6
	in cellular signalling.	
Fig. 1.2	Schematic overview of the ubiquitin proteasome	7
	pathway.	
Fig. 1.3	Domain organization of UBA1.	8
Fig. 1.4	Transfer of ubiquitin to E2 by E1.	9
Fig. 1.5	Transfer of activated ubiquitin from E2 to	11
	substrate with the help of E3.	
Fig. 1.6	Structural classification of E2s.	13
Fig. 1.7	Important structural features of UBC domain.	14
Fig. 1.8	Model showcasing isopeptide bond formation	15
	during ubiquitin chain formation.	
Fig. 1.9	Cartoon view of UBC4 (PDB 1QCQ).	16
Fig. 1.10	Ribbon diagram of UBC1.	18
Fig. 1.11	Models of polyubiquitin chain synthesis.	25
Fig. 1.12	Regulation of protein levels by ubiquitination.	26
Fig. 2.1	Sequence comparison of two proteins UBC1 (S.	35
	Cerevisiae) and E2-25K (Homo sapien) using	
	Clustal Omega.	
Fig. 2.2	Sequence alignment of E2-25K and c-UBC1.	36
Fig. 2.3	Graphical representation of strategy used to	39
	generate c-UBC1.	
Fig. 2.4	Yeast expression vector YEp96/UbWT,	39
	expresses synthetic ubiquitin under cup1	
	promoter.	
Fig. 2.5	Vector map of pET-28a.	42
Fig. 2.6	Various components used to set up	45
	polyubiquitination assay for UBC1 and c-UBC1.	
Fig. 2.7	Gel picture showing amplicons of <i>c</i> -UBC1.	48

Fig. 2.8	Gel picture showing screening for c -UBC1 and	49
	UBC1 in YEp96.	
Fig. 2.9	Gel picture showing insert release of UBC1 and	49
	c-UBC1 fragments from YEp96 plasmid.	
Fig. 2.10	Confirmation of c-UBC1 in YEp96 by DNA	50
	sequencing.	
Fig. 2.11	Representative graph showcasing growth profile	51
	of YWO5 cells with Δ ubc1 mutation transformed	
	with plasmids expressing UBC1 and c-UBC1.	
Fig. 2.12	Survival of Saccharomyces cerevisiae strain	52
	YWO5 transformed with plasmids expressing	
	UBC1 and c-UBC1 under heat stress $(37^{\circ}C)$ at	
	various time intervals.	
Fig. 2.13	Graph showing thermotolerance profiles of	53
	Saccharomyces cerevisiae strain YWO5 with	
	Δ ubcl mutation transformed with plasmids	
	carrying genes for UBC1 and c-UBC1.	
Fig. 2.14	Antibiotic stress complementation of	54
	Saccharomyces cerevisiae strain YWO5 by	
	variants of E2 namely, UBC1 and c-UBC1.	
Fig. 2.15	Gel picture showing confirmation of cloning of	55
	UBC1 and c-UBC1 in pET 28(a) by insert	
	release.	
Fig. 2.16	Gel profile showing over expression and	56
	purification of UBC1.	
Fig. 2.17	Gel profile showing over expression and	56
	purification of c-UBC1.	
Fig. 2.18	Gel picture displaying purified proteins UBC1	57
	and c-UBC1.	
Fig. 2.19	Far-UV CD spectra of UBC1 and c-UBC1.	58
Fig. 2.20	Intrinsic fluorescence emission spectra of	59
	guanidine hydrochloride denaturation of UBC1.	
Fig. 2.21	Intrinsic fluorescence emission spectra of	60

	guanidine hydrochloride denaturation of	
	c-UBC1.	
Fig. 2.22	Change in λ_{max} values of guanidine	60
	hydrochloride denaturation curves of UBC1 and	
	c-UBC1.	
Fig. 2.23	Fluorescence resonance energy transfer spectra	61
	showing the fluorescence of extrinsic	
	fluorophore ANS bound to UBC1.	
Fig. 2.24	Fluorescence resonance energy transfer spectra	61
	showing the fluorescence of extrinsic	
	fluorophore ANS bound to c-UBC1.	
Fig. 2.25	Western blot of ubiquitin thioester assay of the	62
	E2 conjugating enzymes UBC1 and c-UBC1.	
Fig. 2.26	Secondary structure prediction of c-UBC1 using	64
	SWISS-MODEL and its comparison to UBC1.	
Fig. 2.27	Secondary structure prediction of c-UBC1 using	65
	Phyre ² and its comparison to ubc1 (chosen as	
	template by the database).	
Fig. 3.1	Sites of amino acid replacement in UBC4	69
Fig. 3.2 (a)	Interactors of UBC4.	77
Fig. 3.2 (b)	Interactors of UBC5.	78
Fig. 3.2 (c)	Interactors of UBC4 and UBC5.	79
Fig. 3.3	Diagrammatic representation for physical	80
	interactions of UBC4 and UBC5.	
Fig. 3.4	Agarose gel showing screening for variants of	95
	UBC4.	
Fig. 3.5 (a)	DNA sequencing showing confirmation of UBC4	95
	in YEp96.	
Fig. 3.5 (b)	DNA sequencing showing confirmation of E15G	96
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (c)	DNA sequencing showing confirmation of T20A	96
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (d)	DNA sequencing showing confirmation of A42S	96

	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (e)	DNA sequencing showing confirmation of I68V	96
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (f)	DNA sequencing showing confirmation of S69N	97
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (g)	DNA sequencing showing confirmation of A81S	97
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (h)	DNA sequencing showing confirmation of N82S	97
	substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (i)	DNA sequencing showing confirmation of	98
	H126Q substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (j)	DNA sequencing showing confirmation of	98
	R132K substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (k)	DNA sequencing showing confirmation of	98
	P133A substitution in UBC4 in YEp96 plasmid.	
Fig. 3.5 (l)	DNA sequencing showing confirmation of	99
	R140K substitution in UBC4 in YEp96 plasmid.	
Fig. 3.6	Analysis of expression levels and stabilities of	100
	variants of UBC4 at various time points	
Fig. 3.7	Growth curves of UBC4 mutants of MHY508	101
	cells of S. cerevisiae	
Fig. 3.8	Functional complementation under heat stress at	103
	24h by variants of UBC4	
Fig. 3.9	Complementation by UBC4 variants under	105
	protein translation inhibitors in MHY508 strain	
	of S. Cerevisiae.	
1		