List of Tables:

Table	Description	Page
Table 2. 1:	Acyclovir Pharmacokinetic characteristics (range)	79
Table 2.2:	Acyclovir Peak and Trough Concentrations at Steady State	79
Table 2.3.	Summary of HPLC methods for analysis of acyclovir	84
Table 2.4.	Summary of HPLC methods for analysis of efavirenz	96
Table 3.1	Calibration curve for acyclovir in 0.1N HCl	103
Table 3.2:	Calibration curve for acyclovir in ethanol	105
Table 3.3	Calibration curve for acyclovir in PBS pH 7.4	107
Table 3.4	Calibration curve for efavirenz in methanol	113
Table 3.5	Calibration curve for efavirenz in 1% SLS	115
Table 3.6	Peak area for different concentration of efavirenz in standard	118
	solution	
Table 3.7	Peak area for different concentration of efavirenz in rat plasma	119
Table 3.8	Peak area for different concentration of acyclovir	126
Table 3.9	Precision and accuracy of intra-day analysis for determination of	127
	acyclovir in rat plasma by HPLC	
Table 3.10	Precision and accuracy of inter-day analysis for determination of	127
	acyclovir in rat plasma by HPLC	
Table 4.1.	Different microemulsion system for detailed studies.	135
Table 4.2	Formulation variables to check the transparency of the	137
	system.(system A)	
Table 4.3	Formulation variables to check the transparency of the system	138
	(system B)	
Table 4.4	Formulation variables to check the transparency of the system	139
	(system C)	
Table 4.5	Formulation variables to check the transparency of the system	141
	(system D)	
Table 4.6	Solubility of acyclovir and efavirenz in different oil	143
Table 4.7	Solubility of acyclovir and efavirenz in different surfactant.	144

Table 4.8	Effect of labrasol and / or plurol olique on interfacial tension	145
Table 4.9	Effect of tween 80 and/ or propylene glycol on interfacial tension	147
Table 4.10	Effect of labrasol and/ or transcutol on interfacial tension	149
Table 4.11	Effect of cremophor RH40 and/ or propylene glycol on interfacial	151
	tension	
Table 4.12:	Effect of ST to COST ratio and labrafac content on the % water	153
	uptake to form microemulsion (System A)	
Table 4.13	Effect of ST to COST ratio and labrafac content on the % water	154
	uptake to form microemulsion (System B)	
Table 4.14	Effect of ST to COST ratio and labrafac content on the % water	156
	uptake to form microemulsion (System C)	
Table 4.15	Effect of ST to COST ratio and labrafac content on the % water	157
	uptake to form microemulsion (System D)	
Table 4.16:	Concentration of acyclovir in the different microemulsion system	169
	at different Km after 2 hours and after 3 days from preparation.	
Table 4.17	Concentration of efavirenz in the different microemulsion system	170
	at different Km after 2 hours and after 3 days from preparation.	
Table 5.1:	Microemulsions vehicle composition (%w/w) at différent ST to	175
	COST ratio (Km) (System A)	
Table 5.2:	Microemulsions vehicle composition (%w/w) at different ST to	176
	COST ratio (Km) (System B)	
Table 5.3:	Microemulsions vehicle composition (%w/w) at different ST to	177
	COST ratio (Km) (System C)	
Table 5. 4:	Microemulsions vehicle composition (%w/w) at different ST to	178
	COST ratio (Km) (System D)	
Table 5.5:	Content of acyclovir in different microemulsion	185
Table 5.6	Content of Efavirenz in different microemulsion	185
Table 5.7:	Measurement of electrical conductivity of the selected acyclovir	188
	microemulsion formulation at various % of aqueous phase	
Table 5.8:	Measurement of electrical conductivity of the selected efavirenz	193
	microemulsion formulation at various % of aqueous phase	

Table 5.9	Viscosity (cP) change with increasing % of aqueous phase	196
Table 5.10:	Viscosity (cP) change with increasing % of aqueous phase	200
Table 5.11:	Particle size (nm) and polydispersity index (PI) data of different microemulsion formulation.	204
Table 5.12:	Effect of dilution on particle size (nm) and polydispersity index (P.I.)	204
Table 5.13:	Particle size (nm) and polydispersity index (PI) data of different microemulsion formulation.	208
Table 5.14:	Effect of dilution on particle size (nm) and polydispersity index (P.I.)	208
Table 5.15:	Zeta potential of the different microemulsion system.	212
Table 5.16:	Refractive index (RI) and % Transmittance (%T) of the microemulsion system	212
Table 5.17:	pH of the different microemulsion	213
Table: 5.18	Comparative diffusion parameter of acyclovir from pure drug, tablet and system A	215
Table 5.19	Comparative diffusion parameter of acyclovir from pure drug, tablet and system B	216
Table 5.20	Comparative diffusion parameter of acyclovir from pure drug, capsule and system C	218
Table 5.21	Comparative diffusion parameter of acyclovir from pure drug, capsule and system D	219
Table:5.22	Particle size change on stability:	222
Table 6.1:	Coded units of Taguchi orthogonal experimental design L_{9} (3 ⁴) for preparation of acy –SLN	228
Table 6.2	Coded units of Taguchi orthogonal experimental design L ₉ (3 ⁴) for preparation of Efa –SLN	229
Table: 6.3.:	Optimum parameter for spray drying of acy-SLN and Ef-SLN	232
Table: 6.4.:	Experimental design for acyclovir SLN and their corresponding results.	236

.

Table 6.5.:	Analysis of Variance (ANOVA) for Acy-SLN	23
Table 6.6:	Reproducibility of the optimum batch for Acy-SLN	23
Table 6.7.:	Experimental design for efavirenz SLN and their corresponding results.	23
Table: 6.8:	Analysis of Variance (ANOVA) for Efa-SLN	23
Table 6.9.:	Reproducibility of the optimum batch for Efa-SLN.	24
Table 6.10.:	Effect of homogenization cycle on particle size (μ m) of Acy-SLN and Ef-SLN	24
Table: 6.11.:	Effect of drug loading on the particle size (nm) and drug entrapment efficiency (DEE) (%)	24
Table 6.12.:	Summary of zeta potential of different SLN dispersion in water and in 0.1N HCl	25
Table 6.13.:	In-vitro diffusion of acyclovir from SLN	25
Table 6.14:	Various diffusion parameter of acyclovir through dialysis bag	25
Table 6.15.:	In-vitro diffusion of efavirenz from different SLN formulations.	25
Table 6.16.:	Various diffusion parameter of efavirenz through dialysis bag	25
Table 6.17.	Effect of time of storage on particle size and drug entrapment (DE) of SLNs	25
Table7.1:	Concentration of acyclovir in rat plasma at different time.	26
Table7.2:	Summary of pharmacokinetic data of acyclovir in rats following i.v. and oral administration of 19mg/kg of acyclovir.	27
Table7.3:	Concentration of efavirenz in rat plasma at different time.	27
Table7.4:	Summary of pharmacokinetic data of efavirenz in rats following i.v. and oral administration of 19mg/kg of efavirenz.	27
Table 8.1	Nephro-toxicity study of acyclovir and its formulations (microemulsions and SLN) on the serum levels of creatinin, urea, uric acid and BUN	28
Table 8.2	Hepato-toxicity study of efavirenz and its formulations (microemulsions and SLN) on the serum levels of SGPT and SGOT.	28

.

. .

- iv -