APPENDIX II

POST - TEST

Time :3 hours Marks :100

- N.B.: 1) All questions are compulsory.
 2) Write answers of the questions in the space provided below the question.
- 1. Define the terms : (5)
 - (i) Systems :
 - (ii) Surrounding :
 - (iii) Internal energy :
 - (iv) Enthalpy :
 - (v) Coordinate bond :
- 2. (a) What do you mean by the internal energy of molecules ? (3)

Θ

(b) How will you determine it's absolute value ?

- 3. State whether each of the following conditions will increase OR decrease the total energy content of the system : (3)
 - (a) Work done by the system :

۲,

(b) Heat transferred to the surrounding :

- (c) Work done on the system :
- 4. State and Explain briefly the Hess's law of constant heat summation. (3)

5. Explain the term Exothermic and Endothermic reactions giving examples in each case. (3) Exothermic Reactions :

Endothermic Reactions :

6. (a) Define Enthalpy of neutralization ? (2)

(b) Reason out why enthalpy of neutralization of strong acid - strong base is constant ? (2)

7. What are Saturated and Unsaturated hydrocarbons give example of each. (2) Saturated hydrocarbon :

Unsaturated hydrocarbon :

 8. What are Primary, Secondary and Tertiary carbon atoms ? Explain giving example of each. (6)
 1⁰ carbon atom :

 2^0 carbon atom :

 3^0 carbon atom :

9. Write the full expression of 'IUPAC' (1)

10. Write the given functional groups in decreasing order
of reactivity. (3)
- C - C -, - X, - OH, - CO -, - CHO, - COOH, - COOR, -
$$NO_2$$

- NH_2 , - CH_3 , - C -
-
11. Give IUPAC Name for the following structural formulae :
(4)
(1) CH_3 - CH = CH - CH - CH_3
OH
Name :

(2)
$$CH_3 - CH_2 - CH - CH_2 - COOH$$

Name :

Name :

(4)
$$CH_3 - CH - CH_2 - CH_2 - CH_2$$

|
CN

12. Write structural formulas of the following compounds : (3)
(1) 2,5 - dimethyl - 3 - hexene

(2) 3 - Nitro - butanoic acid

(3) 1 - cyano - 4 - methyl pentane.

- 13. Draw the structures of possible isomers of the following compounds and show the type of isomerism existing in them.
 - (i) C₃H₆O Structures of : isomers

Type of isomerism :

- (ii) C₄H₉ Br :
 Structures of :
 isomers
 - Type of isomerism :

(iii)C₆H₁₄ Structures of : isomers

Types of isomerism :

14. What are optical isomers ? Give one example (3)

- 15. From the following given compounds select the compounds having chiral carbon atom and Draw the structures of enentiomers.
 - (a)
 - (b)
 - $\begin{array}{c} \text{CH}_3 \quad \text{CHCL} \quad \quad \text{CH}_3 \\ \text{CH}_3 \quad \text{CHCL} \quad \quad \text{COOH} \\ \text{Br} \quad \quad \text{CH}_2 \text{CHCL} \quad \text{CH}_2 \text{Br} \\ \text{CH}_3 \quad \text{CHOH} \quad \text{CH}_2 \quad \text{CH}_3 \end{array}$ (C)
 - (d)

- (a) State the conditions necessary for an organic 16. compound to show geometric isomerism ? (4)
 - (b) Give the types of possible geometric isomers.

- 17. Give the elements which are likely to form ionic bond. (2)
 - (a) (C)
 - (b) (d)
- 18. Define octet rule ? Give valency of the following elements (6) Octet Rule :

	Oxygen O ₈	Sodium Na ₁₁	Calcium Ca ₂₀
	Phosphorous P ₁₅		
19.	Give three points ionic bond.	of differences	between covalent and (3)
	Covalent bond	Ioni	ic bond
	1.		
	2.		
	3.		
20.	Draw Lewis electr molecules.	on dot structur	es for the following (5)
	(i) NH ₃		(ii) CO

- (iii) BF3 (iv) H₂S
- (v) SiCl₄
- Give Lewis electron dot diagram and indicate type of bonding between them. (4) 21.
 - (i) Na_{11} and F_9

Lewis Electron dot Structures :

Sodium Fluorine

Type of bonding between sodium and Fluorine :

(i) NH_3 and H^+

Lewis Electron dot Structures :

NH₃ molecule H⁺ proton

Type of bonding between ${\rm NH}_3$ and ${\rm H}^+$:

22. Describe the formation of Hydrogen molecule on the basis of electrostatic interaction also give potential energy diagram. (5)

23. (a) What is meant by Hydrogen bond ? (4)

(b) How does it come into existence ?

- (c) Show the existence of Hydrogen bond in the structure of NH₃ molecule.
- 24. Give Scientific Reasons :
 - (a) Graphite is a good conductor of electricity while diamond is bad conductor.
 - (b) Ammonia has higher boiling point than phosphine (PH₃) although both belong to the same group.
 - (c) Ionic reactions are very fast
 - (d) He₂ molecule does not exist.

NUMERICALS

Answer any three

(6)

(8)

1. Apply Hess's law to calculate the enthalpy of formation of SO_2 from the following thermochemical equations :

 $S(s) + 3/2 O_2 (g) ----> SO_2 + X KJ$ $SO_2 + 1/2 O_2 (g) ----> SO_3 + Y KJ$

2. Calculate the enthalpy of combustion for NO from the following data :

 $1/2N_2(g) + 1/2O_2(g) ----> NO(g)$ H = + 90.7 KJ $1/2N_2(g) + O_2(g) ----> NO_2(g)$ H = + 34.0 KJ 3. (i) Calculate H for the reaction

 $CH_2CL_2 ----> C(g) + 2H(g) + 2Cl(g)$

bond energies of

C-H, C-Cl bonds are 415.0 & 326.0 KJ/Mole

(ii) Calculate the amount of heat evolved when 39 gm of benzene is burnt. Given that

$$C_6H_6Cl + 1 1/2 O_2(g) ----> 3H_2O(g) + 6CO_2(g) :$$

H = -3264.6 KJ/Mole

4. For the reaction at 1300^OK

Si(s) + Sicl (g) ----> 2 Sicl₂(g) H = 531 KJ G = -5.837 KJ calculate S ?

5. Calculate the energy change per mole for the following reaction.

 $CaCo_3$ (s) ----> $Cao(s) + CO_2(g)$ at 298^OK H = 177.9 KJ S = 160.4 JK

6. What would be the heat released when : an aqueous solution containing 0.5 mole of HNO₃ is mixed with an aqueous solution containing 0.3 mole of NaoH.