

LIST OF FIGURES

Fig. No.	Title	Page No.
2.1	A representative cross-section of a cerebral capillary of the BBB	13
2.2	Schematic representation of emulsion polymerization technique	31
2.3	Schematic representation of emulsion-evaporation technique	
2.4	Schematic representation of (A) Single and (B) Double emulsion	22
	technique for preparation of nanoparticles	- 33
2.5	Schematic description of the proposed formulation mechanism	24
	of nanocapsules by emulsification/ solvent diffusion.	.54
2.6	Schematic representation of formation of nanoparticles by	25
	solvent displacement technique	33
2.7	Pathophysiologic connection between nose and brain.	41
4.1	FTIR spectrum of Pioglitazone HCl (Standard)	117
4.2	FTIR spectrum of Pioglitazone HCl (Sample)	117
4.3	FTIR spectrum of Rosiglitazone maleate (Standard)	118
4.4	FTIR spectrum of Rosiglitazone maleate (Sample)	118
4.5	FTIR spectrum of Rosiglitazone base (Standard)	119
4.6	FTIR spectrum of Rosiglitazone base (Sample)	119
4.7	Ultraviolet absorption spectrum of Pioglitazone HCl in	
	Methanol:Acetonitrile	120
4.8	Ultraviolet absorption spectrum of Pioglitazone HCl in	
	Methanol:Acetonitrile:PBS (pH 7.4):0.1 N NaOH Solution	120
4.9	Ultraviolet absorption spectrum of Roseglitazone maleate in	
	Methanol	121
4.10	Ultraviolet absorption spectrum of Rosiglitazone base in	
	Acetonitrile:PBS (pH 7.4)	121
4.11	Linearly regressed calibration curve of Pioglitazone HCl in	
	MeOH-ACN at $\lambda_{max} = 268.0$ nm	122
4.12	Linearly regressed calibration curve of Pioglitazone HCl in	
	MeOH - ACN - PBS(pH 7.4) – 0.1 N NaOH at $\lambda_{max} = 266.0$ nm	124
4.13	Linearly regressed calibration curve of Rosiglitazone maleate in	
	MeOH at $\lambda_{max} = 246.8$ nm	126
4.11	Linearly regressed calibration curve of Rosiglitazone base in	
	ACN-PBS(pH 7.4) at $\lambda_{max} = 246.2 \text{ nm}$	128
5.1	Optimization of PLGA concentration with respect to particle	4.40
	size and PDI	143
5.2	Optimization of PLGA concentration with respect to	4 4 4
	entrapment efficiency	143
5.3	Optimization of loading amount of drug with respect to particle	144

	size and PDI	
5.4	Optimization of loading amount of drug with respect to	144
	entrapment efficiency	117
5.5	Optimization of surfactant concentration with respect to particle size and PDI	145
5.6	Optimization of surfactant concentration with respect to entrapment efficiency	145
5.7	Optimization of PVA concentration with respect to particle size and PDI	146
5.8	Optimization of PVA concentration with respect to entrapment efficiency	146
5.9	Optimization of volume of organic phase for polymer with respect to particle size and PDI	147
5.10	Optimization of volume of organic phase for polymer with respect to entrapment efficiency	147
5.11	Optimization of volume of organic phase for drug with respect to particle size and PDI	148
5.12	Optimization of volume of organic phase for drug with respect to entrangent efficiency	148
5.13	Optimization of PLGA concentration with respect to particle	153
5.14	Optimization of PLGA concentration with respect to	153
5.15	Optimization of loading amount of drug with respect to particle size and PDI	154
5.16	Optimization of loading amount of drug with respect to entranment efficiency	154
5.17	Optimization of surfactant concentration with respect to particle size and PDI	155
5.18	Optimization of surfactant concentration with respect to entrapment efficiency	155
5.19	Optimization of PVA concentration with respect to particle size and PDI	156
5.20	Optimization of PVA concentration with respect to entrapment efficiency	156
5.21	Optimization of Polaxamer concentration with respect to	157
5.22	Optimization of Polaxamer concentration with respect to entrapment efficiency	157
5.23	Optimization of volume of organic phase for polymer with respect to particle size and PDI	158
	TOPOUT O PARACIC DEC ALLA IN	

5.24	Optimization of volume of organic phase for polymer with respect to entrapment efficiency	158	
5.25	Optimization of volume of organic phase for drug with respect to particle size and PDI for Pioglitazone		
5.26	Optimization of volume of organic phase for drug with respect to particle size and PDI for Rosiglitazone	159	
5:27	Optimization of volume of organic phase for drug with respect to entrapment efficiency of Pioglitazone		
5.28	Optimization of volume of organic phase for drug with respect to entrapment efficiency of Rosiglitazone		
5.29	FTIR spectrum of PIO-NP	170	
5.30	FTIR spectrum of Tf-PIO-NP	170	
5.31	FTIR spectrum of ROS-NP	171	
5.32	FTIR spectrum of Tf-ROS-NP	171	
5.33	TEM photomicrograph of PIO-NP	172	
5.34	TEM photomicrograph of Tf-PIO-NP	1 72	
5.35	TEM photomicrograph of ROS-NP	173	
5.36	TEM photomicrograph of Tf-ROS-NP	173	
5.37	Thermogravimetric analysis of Pioglitazone	174	
5.38	Thermogravimetric analysis of Rosiglitazone	174	
5.39	Thermogravimetric analysis of PLGA		
5.40	Thermogravimetric analysis of Tf-PIO-NP		
5.41	Thermogravimetric analysis of Tf-ROS-NP		
5.42	X-Ray diffractogram of polymer (PLGA)		
5.43	X-Ray diffractogram of Pioglitazone HCl 17		
5.44	X-Ray diffractogram of Pioglitazone-PLGA physical mixture 17		
5.45	X-Ray diffractogram of PIO-NP	178	
5.46	X-Ray diffractogram of Tf-PIO-NP		
5.47	X-Ray diffractogram of Rosiglitazone base		
5.48	X-Ray diffractogram of Rosiglitazone-PLGA physical mixture		
5.49	X-Ray diffractogram of ROS-NP		
5.50	X-Ray diffractogram of Tf-ROS-NP 1		
5.51	<i>In vitro</i> release profile of Pioglitazone loaded formulations		
5.52	<i>In vitro</i> release profile of Rosiglitazone loaded formulations		
6.1	Effect on particle size of optimized nanoparticulate		
	formulations of Pioglitazone and Rosiglitazone during 6 months storage at 5°C±2°C.	213	
6.2	Effect on particle size of optimized nanoparticulate		
	formulations of Pioglitazone and Rosiglitazone during 6 months storage at $25^{\circ}C+2^{\circ}C$ & 60+5% RH	213	
6.3	Effect on PDI of optimized nanonarticulate formulations of	214	
0.0	meet on the or optimized hanoparticulate formulations of	<u>~17</u>	

· ·

6.4	Effect on PDI of optimized nanoparticulate formulations of	
	Pioglitazone and Rosiglitazone during 6 months storage 25°C±2°C at 60±5% RH.	214
6.5	Effect on zeta potential of optimized nanoparticulate	
	formulations of Pioglitazone and Rosiglitazone during 6 months	215
	storage at 5°C±2°C.	
6.6	Effect on zeta potential of optimized nanoparticulate	
•	formulations of Pioglitazone and Rosiglitazone during 6 months storage at 25°C±2°C & 60±5% RH.	215
6.7	Effect on drug content of optimized nanoparticulate	
	formulations of Pioglitazone and Rosiglitazone during 6 months storage at 5°C±2°C.	216
6.8	Effect on drug content of optimized nanoparticulate	
	formulations of Pioglitazone and Rosiglitazone during 6 months	216
	storage at 25°C±2°C at 60±5% RH.	
7.1	Cytoprotective activity of various Pioglitazone formulations	
	(concentration equivalent to 0.5 μ M, 1.25 μ M and 5.0 μ M) after	230
	48 h incubation with β-Amyloid	
7.2	Cytoprotective activity of various Rosiglitazone formulations	
	(concentration equivalent to 0.5 μ M, 1.25 μ M and 5.0 μ M) after	230
	48 h incubation with β -Amyloid	
7.3	Photomicrograph of neuro-2a cells after 48 hrs incubation with	231
	PIO-S (equivalent to 5 μ M of Pioglitazone)	A. () A.
7.4	Photomicrograph of neuro-2a cells after 48 hrs incubation with	231
	PIO-NP (equivalent to 5 μ M of Pioglitazone)	202
7.5	Photomicrograph of neuro-2a cells after 48 hrs incubation with	232
- /	TF-PIO-NP (equivalent to 5 μ M of Pioglitazone)	
7.6	Photomicrograph of neuro-2a cells after 48 hrs incubation with	232
	ROS-NP (equivalent to 5 μ M of Pioglitazone)	
1./	Photomicrograph of neuro-2a cells after 48 hrs incubation with	233
70	ROS-NP (equivalent to 5 µM of Ploghtazone)	
7.0	The POS NE (organization to 5 uM of Bioglitzgone)	233-
81	Effect of amount of stanpous chlorida on labeling efficiency of	
0.1	Pioditazone and its nanonarticulate formulation with 9mTc	260
82	Effect of amount of stanpous chloride on labeling efficiency of	
مسرو ب	Rosiglitazone and its nanoparticulate formulation with 9 ^m Tc	260
8.3	Effect of pH on labeling efficiency of Pioglitazone and its	_
		261

8.4	Effect of pH on labeling efficiency of Rosiglitazone and its nanoparticulate formulation with ^{99m} Tc	261	
8.5	Effect of incubation time of stannous chloride on labeling		
	efficiency of Pioglitazone and its nanoparticulate formulation	262	
	with ^{99m} Tc		
8.6	Effect of incubation time of stannous chloride on labeling		
	efficiency of Rosiglitazone and its nanoparticulate formulation	262	
	with ^{99m} Tc		
8.7	Biodistribution of PIO-D (oral)	263	
8.8	Biodistribution of PIO-S (nasal)	263	
8.9	Biodistribution of PIO-NP (i.v.)	264	
8.10	Biodistribution of Tf-PIO-NP (i.v.)	264	
8.11	Biodistribution of different Pioglitazone formulations in brain		
8.12	Biodistribution of ROS-S (oral)		
8.13	Biodistribution of ROS-S (nasal)		
8.14	Biodistribution of ROS-S (i.v.)		
8.15	Biodistribution of ROS-NP (i.v.)		
8.16	Biodistribution of Tf-ROS-NP (i.v.)	267	
8.17	Biodistribution of different Rosiglitazone formulations in brain	268	
8.18	Gamma Scintigraphs of swiss albino mice after administration	260	
	of radiolabeled formulations at 30 min	209	
8.19	Gamma Scintigraphs of swiss albino mice after administration	77 0	
	of radiolabeled formulations at 1 Hr	270	
8.20	Gamma Scintigraphs of swiss albino mice after administration	071	
	of radiolabeled formulations at 2 Hr	· 2/1	
8.21	Gamma Scintigraphs of swiss albino mice after administration	272	
	of radiolabeled formulations at 6 Hr	<i>LI L</i>	
	·		

.

.

· ·

LIST OF INSTRUMENTS USED

Instrument	Company	
Refrigerated centrifuge	Sigma 3K30 refrigerated high speed laboratory centrifuge; Sigma Instruments, Osterode, Germany	
Zetasizer	Malvern Zetasizer 3000 HS _A Nanoseries Nano-ZS (Malvern Instruments Ltd, Worcestershire, UK)	
Thermogravimetric Analyzer	Exstar TG/DTA 6300	
pH meter	LabIndia PICO+ pH meter	
Vortex mixer	Spinix Vortex mixer	
Lyophilizer	DW1, 0-60E, Heto Dry Winner, Denmark	
Spectrophotometer	680 XR BioRad France	
Probe Sonicator	Sartorius Labsonic® M Probe Sonicator	
Microplate Reader	ELISA plate reader BioRad, 680 XR	
Vacuum Pump	Vacuum Pump F16, Bharat Vacuum Pumps, Bangalore	
Bath Sonicator	Bath Sonicator, DTC 503, Ultra Sonics	
Oven	Stability Oven, Shree Kailash Industries, Vadodara	
Analytical Balance	Analytical Balance – AX 120, EL 8300, Shimadzu Corporation, Japan	
Transmission Electron Microscope	Philips - Morgagni 268-D, Netherland	
X-Ray Diffractometer	Shimadzu XRD-6000, Japan	
Inverted Microscope	Olympus CKX-41 Inverted Microscope, Camera - DP12 fitted with adaptor	
Rotary vacuum evaporator	Buchi, German	
UV-Vis Spectrophotometer	Shimadzu UV 1601; Shimadzu, Kyoto, Japan UV- 1700 PharmaSpec	
FTIR	Bruker Alpha T FTIR	
Magnetic Stirrer	Spectralab Whirlmatic Mega Stirrer	