List of Figures		
Chapter 1	Review of Literature and Introduction	Page No.
Figure1.1	Molecular determinants of host specificity during nitrogen-	3
8	fixing symbiosis	
Figure 1.2	Rhizobia interacting with legumes (Haag et al., 2012). (WT:	5
	wild-type).	
Figure1.3	Nodulation involves the coordinated development of bacterial	5
	infection and nodule organogenesis	
Figure1.4	A model for the growth of rhizobial infection threads (ITs) in	8
	root hairs	
Figure1.5	The different N ₂ -fixing organisms and symbioses found in	9
	agricultural and terrestrial natural ecosystems	
Figure 1.6	Mechanism of growth promotion by phosphate solubilizing	12
	bacteria	
Figure 1.7	Schematic diagram of soil phosphorus mobilization and	22
	immobilization by bacteria	
Figure1.8	Simplified cycle of phosphorus in agriculture	25
Figure 1.9	P dynamics in the soil/rhizosphere-plant continuum.	26
Figure 1.10	Pathways and enzymes involved in organic acid biosynthesis	27
	by rhizobacteria	
Figure1.11	Mechanism of P solubilization by phosphate solubilizing	29
	bacteria	
Figure1.12	Master network reaction that was used as the basis for net-	31
	flux analysis	
Figure1.13	Simplified representation of the central carbon metabolism of	32
	E. coli.	
Figure1.14	Carbohydrate metabolism in pseudomonads. Key to the	34
	pathway	
Figure1.15	Glucose Metabolism in Bacillus subtilis	35

Figure 2.1	Restriction maps of the plasmids used in this study	69
		No.
Chapter 2	Materials and Methods	Page
rigure 1.51	Rhizobium strains	03
Figure 1 21	inoculants	63
Figure 1.30	Model for improved plant nutrient use efficiency with	61
Figure1.29	A holistic view of metabolic and cellular engineering	54
	factories (MCFs)	
Figure1.28	Design and engineering of pathways for microbial chemical	52
Figure 1.27	fluorescens and S. meliloti.	50
Figure 1 27	In vivo carbon flux distribution in <i>F_coli B_subtilis P</i>	50
rigure 1.20	olutamicum	4/
Figure 1.25	The PEP-Pyruvate-OAA node in aerobic <i>E. coll.</i>	40
F igure 1.27	aerobic bactería.	46
Figure 1.24	The enzymes at the PEP–pyruvate–oxaloacetate node in	42
	free living <i>B. japonicum USDA110</i> and (b) bacteroids	
Figure 1.23	Schematic representation of major differences between (a)	41
Figure 1.22	Metabolic pathways for <i>Rhizobium etli</i>	40
Figure1.21	In vivo carbon flux distribution in S. meliloti	40
Figure1.20	Carbohydrate metabolism in <i>S. meliloti</i>	39
	the TCA cycle.	
Figure 1.19	Possible integration of anaplerotic and bypass pathways with	38
Figure1.18	Reactions of the TCA cycle.	37
	R. meliloti	
Figure1.17	Outline of Possible pathways of Carbohydrate metabolism in	37
	trifolii strain 7000	
Figure 1.16	Pathways of glucose and fructose catabolism available to R.	36

Chapter 3	Effect of constitutive overexpression of ppc gene of Synechococcus elongatus PCC 6301 on production of organic acid in <i>B. japonicum</i> USDA110 and <i>M. loti</i> MAFF030669	Page No.
Figure 3.1	Summary of the effects of overexpression of TCA cycle genes in <i>E. coli</i> .	97
Figure 3.2	Glucose metabolism of <i>P. fluorescens</i> and media dependant alterations due to <i>S. elongatus</i> PCC 6301 <i>ppc</i> overexpression.	99
Figure 3.3	Restriction digestion pattern of plasmids containing <i>ppc</i> gene isolated from transformants of <i>B. japonicum USDA110</i> and <i>M. loti MAFF0300669 MAFF030669</i>	104
Figure 3.4	MPS phenotype of <i>B. japonicum USDA110</i> and <i>M. loti</i> <i>MAFF0300669 MAFF030669</i> strains harboring pAB3 plasmid.	105
Figure 3.5	Effect of ppc overexpression on extracellular pH and growth	107
Figure 3.6	P solubilization by (A) <i>B. japonicum USDA110</i> and (B) <i>M. loti MAFF0300669 MAFF030669</i> transformants on TRP medium.	109
Figure 3.7	Organic acid production from <i>B. japonicum USDA110and M.</i> <i>loti MAFF0300669 MAFF030669 ppc</i> gene: A and C : Gluconic, 2-keto gluconic, acetic and citric acids levels and B and D: Organic acid Yields	111
Figure 3.8	Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and ICL in (A) <i>B. japonicum USDA110</i> and (B) <i>M. loti</i> <i>MAFF0300669 MAFF030669 ppc</i> transformant.	112
Figure 3.9	Key metabolic fluctuations in <i>B. japonicum</i> <i>USDA110</i> USDA110 and <i>M. loti MAFF0300669</i> MAFF030669 overexpressing <i>ppc</i> gene.	118

Chapter 4	Effect of overexpression of E. coli cs gene on production of	Page
	organic acid in <i>B. japonicum</i> USDA110 and <i>M. loti</i>	No.
Figure 4.1	MAFF0300669 Effect of <i>E</i> , coli alt <i>A</i> gene overexpression on organic acid	123
rigure 4.1	Effect of E. con gua gene overexpression on organic acid	123
	secretion by P. Juorescens ATCC 13525.	
Figure 4.2	Activities of key carbon utilization enzymes in <i>P. fluorescens</i>	123
	ATCC 13525 overexpressing <i>E. coli gltA</i> gene.	
Figure4.3	Activities of key enzymes of carbon utilization in <i>P</i> .	124
	<i>fluorescens</i> 13525 co-expressing the <i>ppc</i> and <i>gltA</i> genes.	
Figure 4.4	Restriction maps of the plasmids used in this chapter.	127
Figure 4.5	Restriction Digestion pattern of plasmids containing cs gene	128
	isolated from transformants of <i>B. japonicum</i> USDA110 and	
	M. loti . MAFF030669.	
Figure 4.6	Restriction digestion pattern of plasmids containing cs gene	129
	isolated from transformants of analysis of M. loti	
	MAFF0300669.	
Figure 4.7	MPS phenotype of (A),(C) <i>B. japonicum</i> USDA110 and	130
	(B),(D) <i>M. loti</i> MAFF0300669 harboring pAB7 plasmid	
	expressing E. coli cs gene.	
Figure 4.8	Effect of cs gene overexpression on extracellular pH and	132
	growth profile of (A) <i>B. japonicum</i> USDA110 and (B) <i>M. loti</i>	
	MAFF0300669 .	
Figure 4.9	P solubilization by (A) B. japonicum USDA110 (B) M. loti	135
	MAFF030669 transformants on TRP medium.	
Figure 4.10	Organic acid production from <i>B. japonicum</i> USDA110 and	136
	M. loti MAFF030669 cs gene (A), (C) organic acids in mM	
	(Gluconic, 2-keto gluconic, acetic and citric acids); (B), (D)	
	Organic acid Yields .	
Figure 4.11	Activities of enzymes. A- B. japonicum USDA110 and M.	138
	loti MAFF030669 PPC, PYC, GDH, G-6-PDH, ICDH and	
	ICL in and cs transformant. (A): B. japonicum USDA110and	

	(B): <i>M. loti</i> MAFF0300669.	
Figure 4.12	Key metabolic fluctuations in <i>B. japonicum</i> USDA110 and	143
	M. loti MAFF030669 overexpressing NADH insensitive E.	
	coli cs gene.	
Chapter 5	Effect of overexpression of E. coli NADH insensitive	Page
	Y145F cs gene on production of organic acid in B.	No.
	japonicum USDA110 and M. loti MAFF030669	
152Figure	E. coli CS protein sequence showing the regulatory variant	146
5.1		
Figure 5.2	Route of communication between NADH binding sites and	146
	active sites in wild type hexameric E. coli CS	
Figure 5.3	Partial sequence of E. coli NADH insensitive cs gene	150
Figure 5.4	NCBI BLAST analysis of partial cs sequence.	151
Figure 5.5	EBI pair wise alignment of NADH insensitive and wild type	152
	cs gene showing the position of mutation.	
Figure 5.6	Citric acid levels and yields in <i>P. fluorescens</i> PfO-1 wild type	153
	and plasmid bearing strains Km, AB7 and YF.	
Figure 5.7	Key metabolic fluctuations in <i>P. fluorescens</i> PfO-1	154
	overexpressing NADH insensitive E. coli CS.	
Figure 5.8	Restriction map of the plasmid used in this chapter	156
Figure 5.9	Restriction Digestion pattern of plasmids containing pJNK3	157
	isolated from transformants of (A) B. japonicum	
	USDA110and (B) M. loti MAFF0300669	
Figure	MPS phenotype of <i>B.japonicum(a),(c)</i> and <i>M. loti</i>	158
5.10:	MAFF0300669 (b),(d) harboring pJNK3 plasmid expressing	
	<i>cs</i> gene	
Figure	Effect of E. coli NADH insensitive cs gene overexpression on	160
5.11	extracellular pH and growth profile of (A) B. japonicum	
	USDA110and (B) M. loti MAFF0300669 on TRP medium	
Figure 5.12	P solubilization by (A) B. japonicum, (B) M. loti	163

	MAFF0300669 MAFF030669 transformants on TRP medium.	
Figure 5.13	Organic acid production {(a) and (c)} and Yield {(b) and	164
	(d)} from <i>B. japonicum USDA110and M. loti</i> MAFF0300669	
	cs gene transformants, respectively.	
Figure 5.14	Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and	165
	ICL in B. japonicum USDA110and M. loti MAFF0300669	
	ppc transformants.	
Figure 5.15	Key metabolic fluctuations in <i>B. japonicum USDA110</i> and <i>M.</i>	168
	loti MAFF0300669 overexpressing NADH insensitive E. coli	
	<i>cs</i> gene.	
Figure 5.16	Key metabolic fluctuations in <i>Pseudomonas</i> overexpressing	169
	NADH insensitive E. coli cs gene.	
Chapter 6	Effect of overexpression of E. coli NADH insensitive	Page
	Y145F cs and Na+ dependant citrate transporter in B.	No.
	japonicum USDA110 and M. loti MAFF030669.	
Figure 6.1	<i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S.</i>	173
Figure 6.1	<i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells	173
Figure 6.1 Figure 6.2	japonicum USDA110 and M. loti MAFF030669.Basic metabolism and the electron transport chain (ETC) in S.cerevisiae cellsOxidation of substrates of plasma membrane dicarboxylate	173 174
Figure 6.1 Figure 6.2	japonicum USDA110 and M. loti MAFF030669.Basic metabolism and the electron transport chain (ETC) in S.cerevisiae cellsOxidation of substrates of plasma membrane dicarboxylatetransporter in S. cerevisiae	173 174
Figure 6.1 Figure 6.2 Figure 6.3	japonicum USDA110 and M. loti MAFF030669.Basic metabolism and the electron transport chain (ETC) in S.cerevisiae cellsOxidation of substrates of plasma membrane dicarboxylatetransporter in S. cerevisiaeStructural model for 2HCT family transporters (Lolkema,	173 174 178
Figure 6.1 Figure 6.2 Figure 6.3	japonicum USDA110 and M. loti MAFF030669.Basic metabolism and the electron transport chain (ETC) in S. cerevisiae cellsOxidation of substrates of plasma membrane dicarboxylate transporter in S. cerevisiaeStructural model for 2HCT family transporters (Lolkema, 2006).	173 174 178
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). 	173 174 178 179
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions 	173 174 178 179
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions Bacterial stress responses and Na⁺ homeostasis (Storz et al., 	173 174 178 179 180
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions Bacterial stress responses and Na⁺ homeostasis (Storz et al., 1996). 	173 174 178 179 180
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions Bacterial stress responses and Na⁺ homeostasis (Storz et al., 1996). Citric acid levels and yields in <i>P. fluorescens</i> PfO-1 	173 174 178 179 180 181
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions Bacterial stress responses and Na⁺ homeostasis (Storz et al., 1996). Citric acid levels and yields in <i>P. fluorescens</i> PfO-1 overexpressing citrate transporter. 	173 174 178 179 180 181
Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4 Figure 6.5 Figure 6.6 Figure 6.7	 <i>japonicum</i> USDA110 and <i>M. loti</i> MAFF030669. Basic metabolism and the electron transport chain (ETC) in <i>S. cerevisiae</i> cells Oxidation of substrates of plasma membrane dicarboxylate transporter in <i>S. cerevisiae</i> Structural model for 2HCT family transporters (Lolkema, 2006). Na⁺ efflux mechanisms in bacteria. (A). Aerobic and (B). Anaerobic conditions Bacterial stress responses and Na⁺ homeostasis (Storz et al., 1996). Citric acid levels and yields in <i>P. fluorescens</i> PfO-1 overexpressing citrate transporter. Activities of enzymes G-6-PDH, ICDH, ICL, PYC, and GDH 	173 174 174 178 179 180 181 181 182

Figure 6.8	Schematic representation of citric acid secretion in	183
	Citrobacter sp. DHRSS containing artificial citrate operon	
	(Yadav,2013).	
Figure 6.9	Organic acid production from <i>H. seropedicae</i> Z67	184
	transformants	
Figure 6.10	Restriction map of the plasmid used in this chapter (Wagh et	186
	al., 2013).	
Figure	Restriction digestion analysis of (A) B. japonicum USDA110	187
6.11	containing pJNK4 plasmid. (B) M. loti MAFF0300669	
	containing pJNK4 plasmid.	
Figure 6.12	MPS phenotype of <i>B. japonicum</i> USDA110and <i>M. loti</i>	188
	MAFF0300669 strains harboring pJNK4 plasmid.	
Figure 6.13	Effect of <i>E. coli</i> NADH insensitive <i>cs</i> gene and citrate	190
	transporter <i>citC</i> gene of <i>S. typhimorjum</i> gene overexpression	
	on extracellular pH and growth profile of (A) B. japonicum	
	USDA110 and (B) M. loti MAFF0300669, on TRP medium	
	with 50 mM glucose.	
Figure	P release by (A) B. japonicum USDA110 and (B) M. loti	192
6.14:	MAFF0300669 transformants on TRP medium.	
Figure 6.15	Organic acid production {(a) and (c)} and Yield {(b) and (d)}	194
	from <i>B. japonicum</i> USDA110 and <i>M. loti</i> MAFF0300669 cs	
	gene transformants, respectively.	
Figure 6.16	Activities of enzymes PPC, PYC, GDH, G-6-PDH, ICDH and	196
	ICL in <i>B. japonicum</i> USDA110 and <i>M. loti</i> MAFF0300669	
	ppc transformant.	
Figure 6.17	Key metabolic fluctuations in <i>B. japonicum</i> USDA110 and <i>M.</i>	198
	loti MAFF0300669 overexpressing NADH insensitive E. coli	
	cs gene along with citrate transporter citC gene of S.	
	typhimorium gene	
Chapter 7	Genomic integration of E. coli NADH insensitive cs along	Page
	with Na ⁺ dependent citrate transporter <i>citC</i> gene of	No.

	Salmonella typhimurium with vgb, egfp genes in B.	
	japonicum USDA110 M. loti MAFF030669 and S. fredii	
	NGR 234	
Figure 7.1	Strategy used for cloning of artificial citrate operon in	205
	pGRG36 containing vhb, egfp resulted in pJIYC.	
Figure 7.2	PCR amplification of YFcitC with constitutive lac promoter	206
Figure7.3	Restriction enzyme digestion pattern of pJIYC plasmid	207
	containing NADH insensitive Y145F and S. typhimurium	
	sodium citrate transporter operon under <i>lac</i> promoter.	
Figure 7.4	Confirmation of Genome integrants by PCR amplification of	207
	YF-citC from B. japonicum USDA110, M. loti MAFF0300669	
	MAFF030669 and S. fredii integrants:	
Figure 7.5	MPS phenotype of B. japonicum USDA110M. loti	209
	MAFF0300669 MAFF030669 and S. fredii integrants	
Figure 7.6	Extracellular pH and growth profile on glucose 50 mM, Tris-	211
	Cl 50 mM rock phosphate medium of B. japonicum	
	USDA110 integrant containing YFcitC, vhb, egfp	
Figure 7.7	Extracellular pH and growth profile on glucose 50 mM, Tris-	211
	Cl 50 mM rock phosphate medium of <i>M. loti MAFF0300669</i>	
	MAFF030669 integrant containing YFcitC, vgb and egfp.	
Figure7.8	Extracellular pH and growth profile on glucose 50 mM, Tris-	212
	Cl 50 mM rock phosphate medium of S. fredii integrant	
	containing YFcitC, vgb, egfp.	
Figure 7.9	P Solubilization by different integrants.	214
Figure7.10	Organic acid production by three integrants.	215
Figure7.11	Alterations in enzyme activities in <i>B. japonicum USDA110</i>	217
	integrants	
Figure 7.12	Alterations in enzyme activities in <i>M. loti</i> MAFF0300669	217
	MAFF030669 integrants.	

Figure 7.13	Alterations in enzyme activities in S. fredii integrants	217
Chapter 8	Effect of <i>Sinorhizobium fredii</i> NGR 234 genomic integrant containing <i>E. coli</i> NADH insensitive <i>cs</i> along with <i>S.</i> <i>typhimurium citC</i> , <i>vgb</i> and <i>egfp</i> gene cluster on growth promotion of Mung bean (<i>Vigna radiata</i>) plants	Page No.
Figure 8.1	Effect of <i>P. fluorescens</i> genomic integrants on shoot length, weight and P content and root length, weight and P content of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing	226
Figure 8.2	Effect of <i>P. fluorescens</i> genomic integrants on number of leaves, nodule number and weight of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing	227
Figure 8.3	Effect of <i>P. fluorescens</i> genomic integrants on enzyme activities of mung bean (<i>Vigna radiata</i>) at 45 Days after sowing.	227
Figure 8.4	Effect of genomic integrant on bacteria of Rhizospheric soil and bacteroids of nodules.	231
Figure 8.5	Effect of <i>S. fredii NGR 234</i> genomic integrant on nitrogenase activity of mung bean at 45 Days after sowing	232
Figure 8.6	Effect of <i>S. fredii</i> NGR 234 genomic integrant on shoot length and root length of mung bean at 20 Days after sowing	234
Figure 8.7	Effect of <i>S. fredii</i> NGR 234 genomic integrant on shoot length and root length of mung bean 45 Days after sowing	236
Figure 8.8	Effect of <i>S. fredii NGR 234</i> genomic integrant on chlorophyll content of mung bean at 45 Days after sowing	236
Figure 8.9	Effect of <i>S. fredii NGR 234</i> genomic integrant on enzyme activities of mung bean at 45 Days after sowing	242