

7.1 A survey of literature for Pentoxifylline indicated the estimation reported by the following methods, Viz., High-performance liquid chromatography electro spray ionization mass spectrometry, High-performance liquid chromatography, Capillary isotachophoresis.Gas chromatography-mass spectrometry, UV Spectro photometric method , Micellar electrokinetic chromatography, Gas chromatography-mass spectrometry. The brief information on above analytical methods are follows.

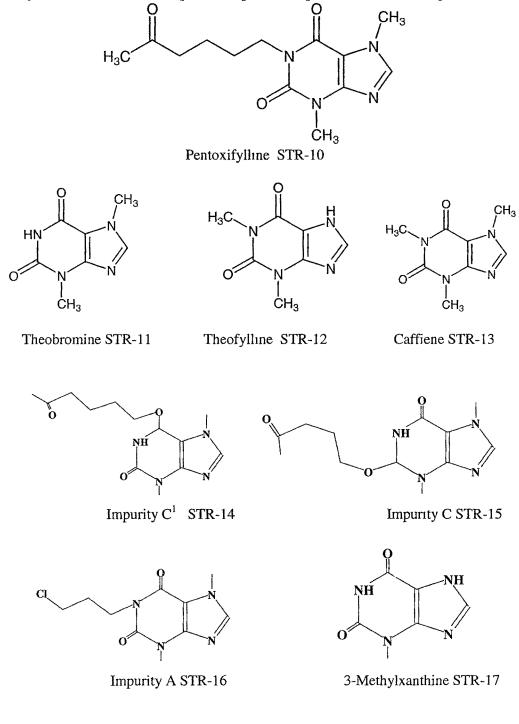
Wong JW,et al [202] have reported Simple high-performance liquid chromatographic method for determination of pentoxifylline in human plasma. Sastry CSP et al [203] have reported determination of pentoxifylline in pharmaceutical formulations using iodine as oxidizing agent.Dyke TM. et al [204] have reported Detection and determination of theobromine and caffeine in urine after administration of chocolate-coated peanuts to horses. Bhoir IC. et al [205] have reported Separation and estimation of seven vasodilators using packed column supercritical-fluid chromatography. Engelhart DA et al [206] have reported Diltiazem and pentoxifylline determination in postmortem specimens. Proksa,-B [207] have reported Separation of 1-alkyl-3,7-dimethylxanthines by capillary electrophoresis.

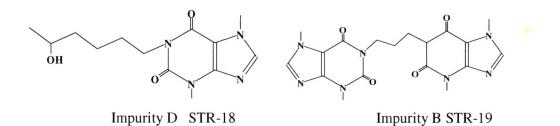
Liu ZY et al [208] have reported Studies of the release of long-lasting pentoxifylline sustained release tablets. Meyyanathan SN et al [209] have reported Spectrophotometric determination of pentoxifylline in its dosage forms. Korman M. et al [210] have reported Application of micellar electrokinetic chromatography to the quality control of pharmaceutical formulations: the analysis of xanthine derivatives.Marko V M et al [211] have reported Study of the solid-phase extraction of pentoxifylline and its major metabolite as a basis of their rapid low concentration gas-chromatographic determination in serum.

Mancinelli A et al [212] have reported Determination of pentoxifylline and its metabolites in human plasma by high-performance liquid chromatography with solid-phase extraction. Bauerova K et al [213] have reported Determination of pentoxifylline in serum by high-performance thin-layer chromatography.

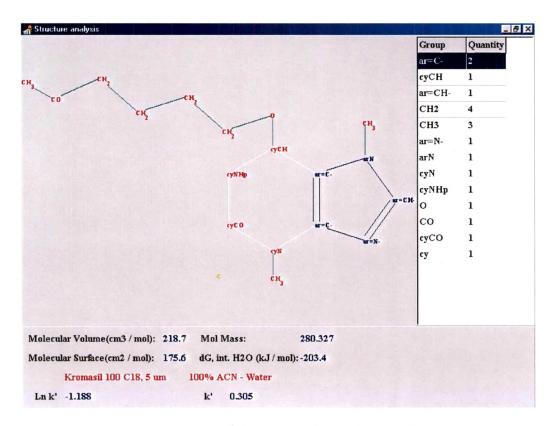
Lockemeyer MR et al [214] have reported Analysis of pentoxifylline [oxpentifylline] in rabbit plasma using a Hisep high-performance liquid chromatography column.Zarapkar SS et al [215] have reported Determination of pentoxi fylline in pharmaceutical preparations using gas chromatography .Sadana GS et al [216] have reported Quantitative high-performance liquid chromatographic determination of pentoxifylline in pharma -ceutical dosage forms. Sane RT et al [217] have reported High-performance liquid chromatographic determination of pentoxifylline in pharma-ceuticals.

Musch G. et al [218] have reported Determination of pentoxifylline and its 5-hydroxymetabolite in human plasma by solid-phase extraction and high-performance liquid chromatography with ultra-violet detection. Morton MR et al [219] have reported Lack of theophylline assay interference from pentoxifylline and its metabolites.Lambert WE. et al [220] have reported Simultaneous determination of pentoxifylline and three metabolites in biological fluids by liquid chromatography.Grasela DM et al [221] have reported Highperformance liquid-chromatographic analysis of pentoxifylline and 1-(5-hydroxy hexyl)-3,7-dimethylxanthine in whole blood.

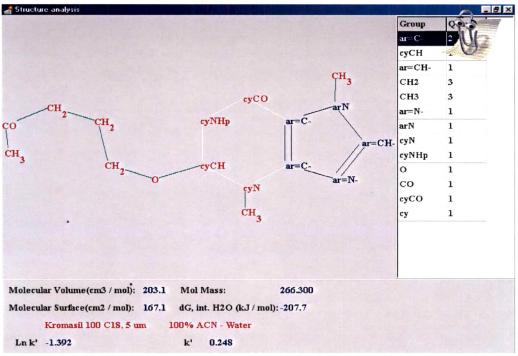

Garnier-Moiroux et al [222] have reported High-performance liquid-chromatographic determination of pentoxifylline and its hydroxy-metabolite in human plasma.Luke DR et al [223] have reported determination of pentoxifylline and a major metabolite, 3,7-dimethyl-1-(5-hydroxyhexyl) xanthine, by high-performance liquid chromatography.VonStetten O. et al [224] have reported Direct measurement of pentoxifylline and its hydroxy-metabolite from plasma using HPLC with column-switching techniques.Smith RV et al [225] have reported determination of pentoxifylline and its major metabolites in microbial extracts by thin-layer and high-performance liquid chromatography.

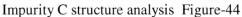

Chivers DA et al [226] have reported Simultaneous determination of pentoxifylline and its hydroxy-metabolite in plasma by high-performance liquid chromatography.

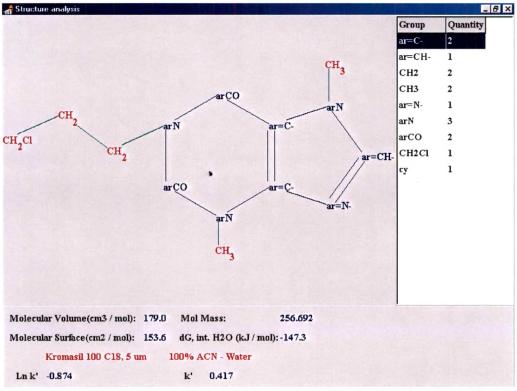
Even though there are several methods reported to estimate pentoxiphylline from plasma samples as well as matrices but no where sertraline separations and estimations from its related compound and process impurities are reported. Hence we have under taken this problem for current work. Developed HPLC method are validated thoroughly to check the suitability and corrective ness as per ICH guidelines

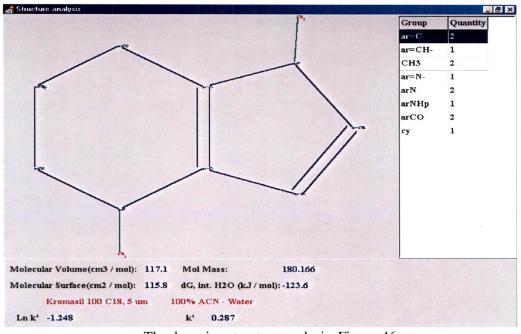

7.2 Method development for the analysis of related substances in Pentoxifylline by HPLC

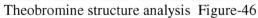
Pentoxifylline and its related compounds & process impurities structures are given below.

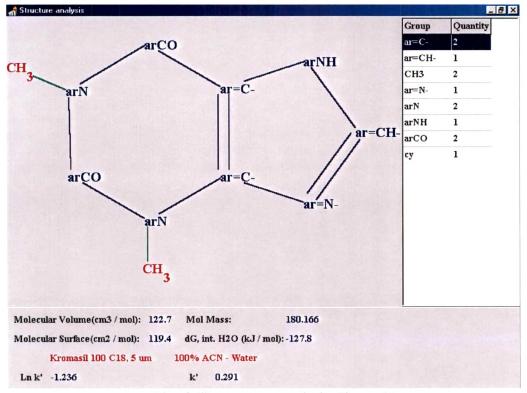


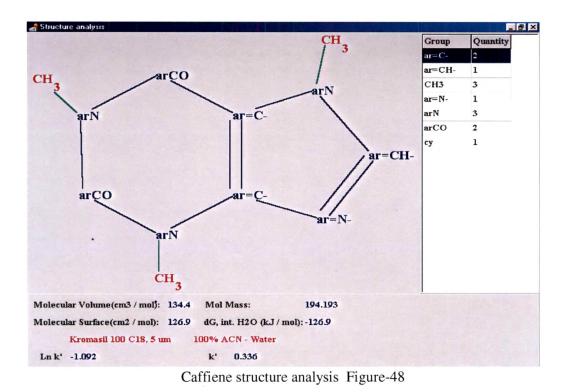


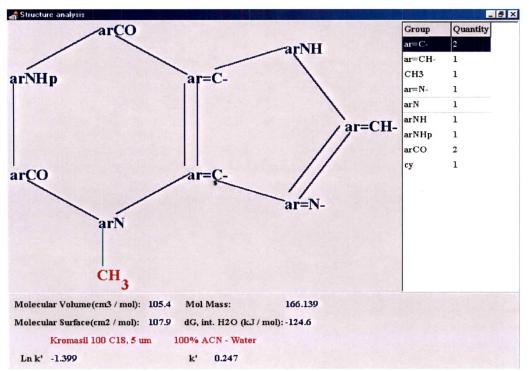

All structures are loaded into chromsword HPLC method development software to deduce structure analysis for method development. Figure-43 to 52 shows Pentoxifylline and its related compounds & process impurities structure analysis charts.

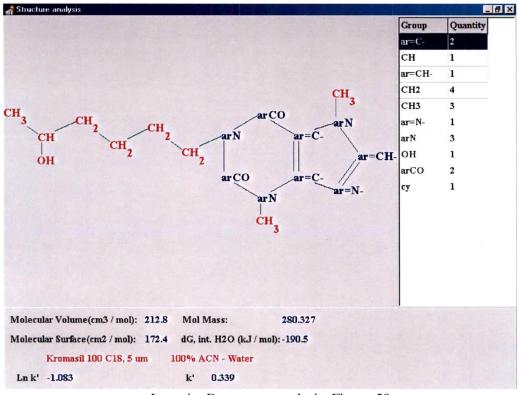

Impurity C¹ structure analysis Figure-43



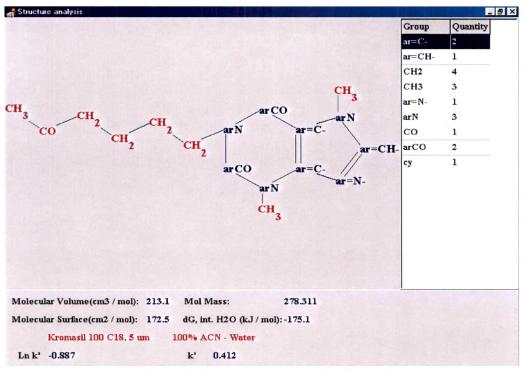


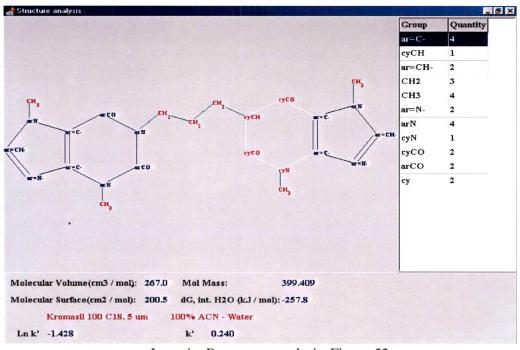

Impurity A structure analysis Figure-45





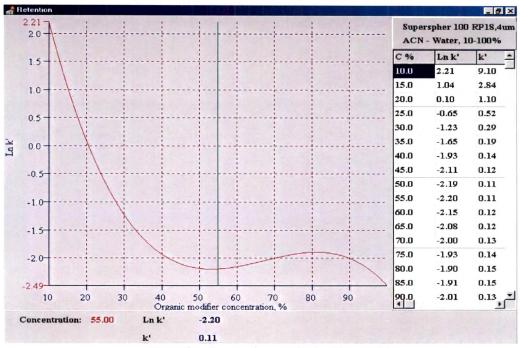
Theofylline structure analysis Figure-47




3-Methyl Xanthine structure analysis Figure-49

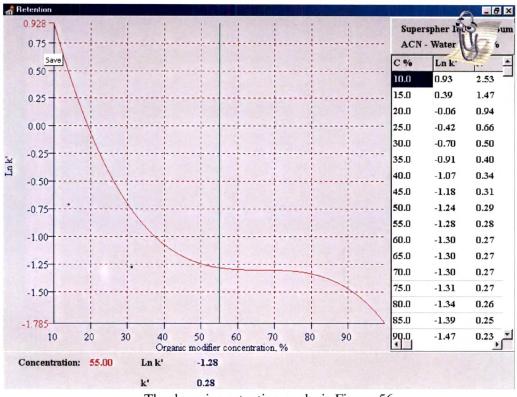
Impurity D structure analysis Figure-50

Pentoxifylline structure analysis Figure-51



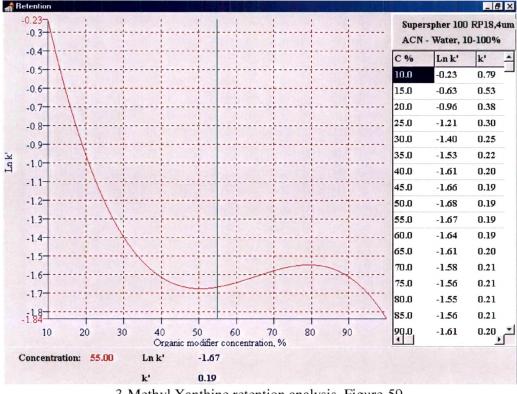
Impurity B structure analysis Figure-52

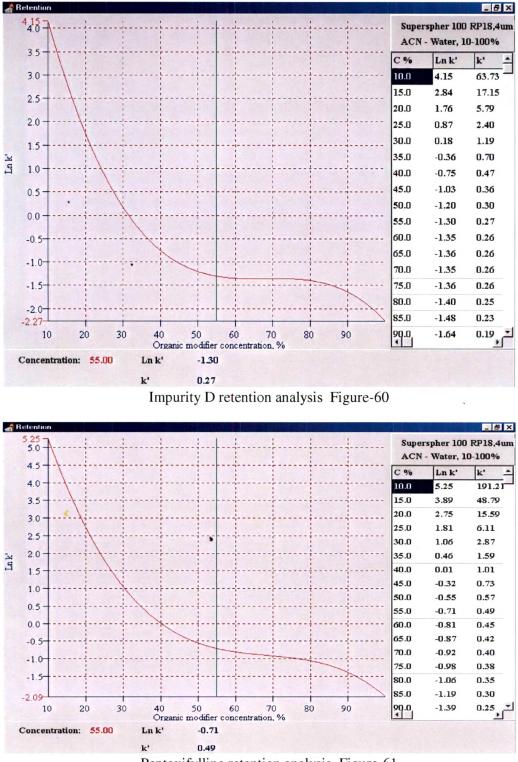

Figure-53 to 62 shows Pentoxifylline and its related compounds & process impurities retention analysis charts .

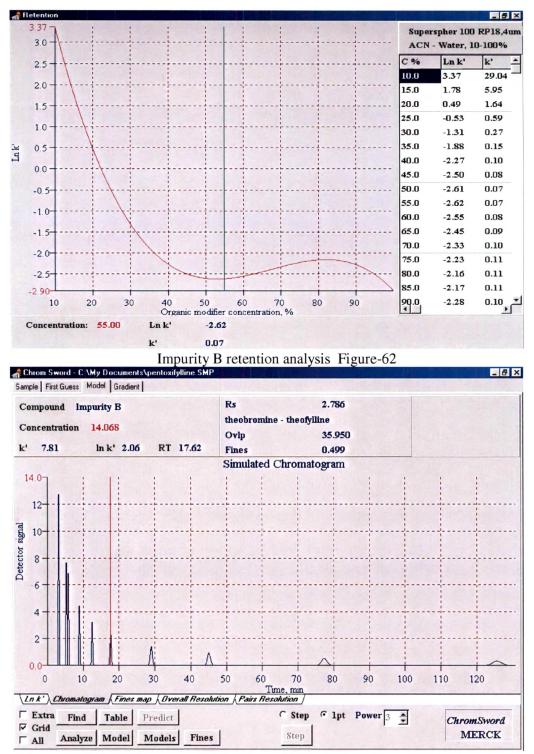

Impurity C¹ retention analysis Figure-53

Impurity C retention analysis Figure-54

Impurity A retention analysis Figure-55


Theobromine retention analysis Figure-56


Theofylline retention analysis Figure-57


Caffiene retention analysis Figure-58

3-Methyl Xanthine retention analysis Figure-59

Pentoxifylline retention analysis Figure-61

Simulated chromatogram Figure-63

Figure 63 shows the best possible simulated chromatogram. Chromatogram indicated theophylline and theobromine are eluting closely and two impurities are eluting at 78 min and 125. Hence gradient analysis was chosen to resolve all impurities within reasonable run time. Wavelength 280 nm was selected to monitor all impurities. Method is optimized and given below.

Analytical Method :

.

Reagents and chemicals :

1)	Perchloric acid	: AR grade
2)	Acetonitrile	: HPLC grade
3)	Methanol	: HPLC grade
4)	Water	: Mılli-Q grade

Buffer solution : Transfer 0.8 ml. of perchloric acid (70% w/v) into a 1000ml volumetric

flask Dilute upto the mark with water

Mobile phase A : Use Buffer solution as such. Filter and degas prior to use.
Mobile phase B : Mix 150 volumes of acetonitrile ,25 volumes of methanol and 25 volumes of tetrahydrofuran Filter and degas prior to use.

Diluent : Prepare a mixture containing methanol and water in the ratio of 1:1

System suitability:

<u>Solution 1</u> :Transfer about 10 mg, accurately weighed, each of 3-methylxanthine (3-MEX) and theobromine (THB) into a 10 ml volumetric flask. Dissolve in about 2 ml of 0.2 N aqueous NaOH (sonicate if necessary). Dilute to volume with diluent (1000 μ g/ml each of 3-MEX and THB).

Solution 2 :

Transfer about 10 mg, accurately weighed, each of theophylline (THP), caffeine, fmp. A, Imp.B, Imp.C, Imp D and pentoxifylline into a 10 ml volumetric flask. Dissolve in about 5 ml of diluent (sonicate if necessary) and 'dilute to volume with diluent [1000 μ g/ml each of theophylline (THP), caffeine, Imp. A, Imp.B, Imp.C, Imp.D and pentoxifylline].

Pipette out 1.0 ml each of solution 1 & solution 2 into a 10 ml volumetric flask. Dilute to volume with diluent.

Sample preparation :

Transfer about 50 mg accurately weighed pentoxiphylline sample in to a 50 ml volumetric flask. Dissolve in and dilute up to mark with water (1000 μ g/ml).

Standard solution preparation :

Prepare a solution containing about 2 μ g/ml of each impurity and pentoxiphylline individually (0.2% of sample concentration).

Chromatographic conditions :

Use a suitable high pressure liquid chromatography system equipped with a UV detector set to 280 nm and a column of 250 mm x 4 6mm containing 5μ C18 packing material (suggested column Inertsil C-18, GL Science, Japan).

The system is also equipped to deliver the two phases in a programmed manner as shown in the Table below :

Total flow rate : 1.0 ml / min

Time (in min.)	Mobile Phase A (% v/v)	Mobile Phase B (% v/v)
0	98	2
20	80	20
40	80	20
41	98	2
50	98	2

Procedure: Inject 20 μ l system suitability solution into the chromatograph set to above conditions and record the chromatograms upto 50 min. Test is valid only when the resolution between pentoxiphylline and Imp-D is not less than 1.0.

Inject 20 μ l of standard solution preparation in triplicate into the chromatograph set to above conditions and record the chromatograms upto 50 min. Calculate the average area of individual component and RSD. Test is valid only when the RSD is not more than 5.0 %.

Inject 20 μ l test preparation in duplicate in to the chromatograph set to above conditions and record the chromatograms upto 50 min. Calculate the amount of related

substances & process impurities using the formula given in calculations. Relative retention times of the impurities are :

Sr.No	Name of the component	Relative Retention
		time
1	3-Methyl Xanthine	0.40
2	Theobromine	0.48
3	Theophylline	0 56
4	Imp-A	0.64
5	Caffeine	0.66
6	Imp – C	0.84
7	Imp – B	0.94
8	Pentoxifylline	1.00
9	Imp – D	1.02

Calculations :

1) Calculate the percentage of Impurity, individually using the formula :

$$\begin{array}{ccc} C_{1m} & r_s \\ \hline \hline \\ C_S & r_{1m} \end{array} x 100$$

Where :

 C_s = Concentration of sample solution ($\mu g/ml$)

$$r_{im}$$
 = Detector response for impurity individually in standard solution

ii) Calculate the percentage of any other impurity, individually using the formula :

$$\begin{array}{ccc} C_P & r_s \\ \hline \hline \\ C_S & r_P \end{array} \quad x \quad 100$$

Where .

C_{P}	= Concentration of pentoxifylline in standard
	solution (µg/ml)

 C_S = Concentration of sample solution (µg/ml)

r_P = Detector response for pentoxifylline in standard solution

Limit of impurities : Any impurity, individually not more than 0.2 %.

7.3 Pentoxiphylline Validation Protocol

Purpose :The purpose of this document is to establish the precision, accuracy, linearity of detector response and ruggedness of the analytical method through number of scientific studies and discussions of the data

Scope :This method, upon validation, can be used for the analysis of related substances and process impurities in pentoxiphylline.

Analytical method: As per method given in section 7.2

7.3.1 The experiments designed to study are follows

- a System suitability
- b. Instrument precision
- c. Identification of individual component
- d. Solution stability
- e. Method precision
- f. Linearity and range
- g Accuracy
- h. Minimum detection limit
- 1 Minimum quantitation limit
- J Ruggedness of the method

7.3.2 Stock Solutions :

Diluent :Prepare sufficient quantity by mixing 1 volume of methanol with 1 volume of water.

Solution A : Transfer about 10 mg, accurately weighed, 3-MEX into a 100 ml volumetric flask. Dissolve by adding 2 ml of 0.2N NaOH (sonicate, if necessary) and dilute upto mark with water (about 100 μ g/ml).

Solution B : Transfer about 10 mg, accurately weighed, THB into a 100 ml volumetric flask. Dissolve by adding 2 ml of 0.2N NaOH (sonicate, if necessary) and dilute upto mark with water (about 100 μ g/ml).

Solution C : Transfer about 10 mg, accurately weighed, THP into a 100 ml volumetric flask. Dissolve in and dilute upto mark with diluent (about 100 μ g/ml).

Solution D : Transfer about 10 mg, accurately weighed, caffeine into a 100 ml volumetric flask. Dissolve in and dilute upto mark diluent (about 100 μ g/ml).

Solution E : Transfer about 10 mg, accurately weighed, Imp.A into a 100 ml volumetric flask Dissolve in and dilute upto mark with diluent (about $100 \mu g/ml$).

Solution F : Transfer about 10 mg, accurately weighed, Imp.B into a 100 ml volumetric flask. Dissolve in and dilute upto mark with diluent (about $100 \mu g/ml$).

Solution G : Transfer about 10 mg, accurately weighed, Imp.C into a 100 ml volumetric flask. Dissolve in and dilute upto mark with diluent (about $100 \mu g/ml$).

Solution H : Transfer about 10 mg, accurately weighed, Imp.D into a 100 ml volumetric flask. Dissolve in and dilute upto mark with diluent (about $100 \mu g/ml$).

Solution I : Transfer about 10 mg, accurately weighed, pentoxifylline into a 100 ml volumetric flask. Dissolve in and dilute upto mark with diluent (about $100 \ \mu g/ml$).

Solution J :Pipette out 5.0 ml each of impurity stock solution A to H into a 50 ml volumetric flask . Dilute to volume with diluent ($\mathbf{I}_{1}^{0} \mu g/ml$ of each impurity)

Solution K :Pipette out 5.0 ml each of stock solution A to I into a 50 ml volumetric flask.Dilute to volume with diluent. (10 μ g/ml of each impurity and 10 μ g/ml of pentoxifylline.

Standard solution /Solution L: Pipette out 2.0 ml of solution K into a 10 ml volumetric flask Dilute to volume with diluent. (2 μ g/ml of each impurity, individually and 2 μ g/ml of pentoxifylline).

7.3.3 System suitability :

System Suitability solution :

Prepare a system suitability solution as mentioned under the procedure

- i) Set up the system as mentioned under the chromatographic conditions.
- I. Inject 20 μ L of the system suitability solution in duplicate and record the chromatograms upto 50 min
- **II.** Calculate the resolution between pentoxifylline and Imp D peak

Acceptance limit : The mean resolution factor R between pentoxifylline and Imp D peak is not less than 1.0

7.3.4 Identification

Inject 20 μ L each of the impurity stock solutions A to I (about 100 μ g/ml), individually and record the chromatograms upto 50 min. Note the retention time of each component for identification

7.3.5 Instrument precision

System precision solution :

Transfer about 100 mg, accurately weighed, pentoxifylline WRS into a 100 ml volumetric flask. Pipette out 2 0 ml each of Stock Solution A to H into it. Dissolve in and dilute upto mark with diluent. (100 μ g/ml of pentoxifylline and 2 μ g/ml of each of impurity individually).

- i) Set up the system as mentioned under the chromatographic conditions.
- ii) Inject 20 μ L of the system precision solution six times and record the

chromatograms upto 50 min.

1v) Calculate the relative standard deviation for the detector response for each component individually Acceptance limit :RSD (%) of detector response for each component is not more than 50%

7.3.6 Solution stability :

- i) Inject 20 µl of the system precision solution in duplicate, periodically and record the chromatograms upto 50 min.
- ii) Calculate the relative standard deviation of the detector response for each component individually over the entire period.

Acceptance limit : RSD (%) of detector response for each component is not more than 5.0%

7.3.7 Method precision

- i) Prepare a sample solution as directed under the procedure (about 1000 μ g/ml).
- Set the chromatograhic conditions as mentioned under the method, inject 20 µl of the standard solution in duplicate and record the chromatograms up to 50 min.
- iii) Inject 20 µl of Standard Solution in duplicate and record the chromatograms upto 50 min. Use this for calculations
- iv) Inject 20 µl of the sample solution in duplicate and record the chromatograms upto 50 min
- v) Calculate the amount of the impurities present in the sample
- vi) Prepare six sets of this sample as directed under the method Spike impurities upto the target levels in each of the sample preparation.
- vii) Inject 20 μ l of each sample preparation in duplicate into the chromatograph set to the condition mentioned under the method and record the chromatograms upto 50 min .
- viii) Calculate the amount of each impurity from the six sets Substract the amount of any impurity already present. Calculate the RSD of each impurity percentage (corrected values) from the six sets

Acceptance limit : RSD (%) of the calculated impurities in the six sets ≤ 5.0 %

7.3.7 Linearity and range :

- i) Use solution K (mentioned under section 2.2) for preparing the following linearity solutions.
- ii) Linearity solutions.

Level	% of target	Vol. of. Solution K	Final Dilution	Final concentration of each impurity, individually and pentoxifylline
		ml	ml	µg/ml
L1	50	1.0	10.0	1.0
L2	75	1.5	10.0	1.5
L3	100	2.0	10.0	2.0
LA	125	2.5	10.0	2.5
L5	150	3.0	10.0	3.0

Table no.6.3.8.1 Dilution and concentration for Linearity study

- iv) Inject 20 µl each of the linearity solution, in triplicate, into the chromatographic system set to the conditions mentioned under the method and record the chromatograms upto 50 min.
- v) Calculate the mean and RSD (%) of the detector responses for each linearity level individually of each component.
- vi) Plot a graph of the concentration versus mean area count and perform mathematical regression analysis for each component individually.

Acceptance limits :

RSD (%) of area counts for individual components at each level ≤ 5.0 %

Plot of concentration versus detector response for each component is linear. The regression correlation coefficient $(r^2) \ge 0.99$

7.3.8 Accuracy : Use the Solution J (10 μ g/ml each of impurity as mentioned under

section 2.2) for preparing the following solutions.

i) Prepare five sets for five level (70, 85, 100, 115 and 130% of *arget concentration) recovery study by transferring about 10 mg, accurately weighed, pentoxifylline standard into five 10 ml volumetric flasks separately. Pipette out appropriate volumes of Solution J as shown in the table below and dilute to volume with mobile phase.

(Solution $J = 10 \mu g/ml$ of each impurity)

Level	% of target	Vol. of. Solution K	Final Dilution	Final concentration of each impurity, individually
		ml	ml	µg/ml
R1	70	1.4	10.0	1.4
R2	85	1.7	10 0	17
R3	100	2.0	10.0	2.0
R4	115	2.3	10.0	2.3
R5	130	2.6	10.0	2.6

 Table 7.3.9.1 Dilution and concentration for Accuracy study

- ii) Inject 20 μ l of standard solution, prepared as mentioned in section 2 3, in triplicate and record the chromatograms upto 50 min. Calculate the mean area counts of the components in the standard solution.
- iii) Inject 20 µl each of the recovery solution R1, R2, R3, R4 and R5 into the chromatograph in triplicate and record the chromatograms upto 50 min.
- iv) Calculate the mean and RSD (%) of the detector responses for each component from each recovery set.
- v) Calculate the amount of each spiked impurity in each set of the recovery sample and calculate the percentage recovery.

Acceptance limit :

Percentage recovery is not less than 95.0 and not more than 105.0 %.

RSD (%) of detector response for each component is ≤ 5.0 %.

7.3.9 Minimum Quantitation level and Minimum Detection level

- i) Prepare a stock solution for this study by pipetting out 10 ml of Solution K (10 μ g/ml each of impurity + pentoxifylline) into a 50ml volumetric flask. Dilute to volume with diluent [2 μ g/ml each component].(Solution L)
- ii) Prepare subsequent diluted solutions as shown in the table below and inject them in triplicate and record the chromatograms upto 50 min.
- iii) Calculate the RSD (%) of the triplicate injections for each level.

Table 7.3.9.1. Dilution and concentration for Limit of detection and limit of quantitation study

Level	Vol. Of soln L (ml)	Final dilution (ml)	Final concentration of each impurity, individually (µg/ml)
D1	5.0	10	1.000
D2	25	10	0.500
D3	10	10	0.250
D4	05	10	0.100
D5	0.2	10	0.050
D6	0 1	10	0.020
D7	0.1	25	0.010
D8	0.1	50	0.004

Acceptance limit :

The MQL of each component is the lowest concentration at which the RSD (%) of the triplicate injections ≤ 5.0 % The MDL of each component is that concentration at which the detector shows a positive

response

7.3.10 Ruggedness of the method :

A sample previously analysed for related substances is reanlaysed by another analyst independently by this method and the results are compared.

7.4 Experimental Data

7.4.1 Reagents and chemicals :

1	Perchloric acid (70% w/v)	•	AR grad (S.D	. Fine-Chem)
2.	Acetonitrile	:	HPLC grade	(Ranbaxy)
3	Methanol	:	HPLC grade	(Spectra Chem)
4	Water	:	Mıllı-Q grade	

7.4.2 Working standards and sample :

Pentoxifylline WRS⁺# PNT/B/190 (SPARC - Baroda)

Impurity A	: # OXP-Imp-A/lot-I (SPARC - Baroda)
Impurity B	: # OXP-Imp-B/lot-I (SPARC - Baroda.)
Impurity C	. # OXP-Imp-C/lot-I (SPARC - Baroda)

Impurity D	: # OXP-Imp-D/lot-I (SPARC - Baroda)		
Theobromine	: # OXP-THB/lot-I (SPARC Baroda.)		
Theofylline	. # OXP-THP/lot-I (SPARC Baroda.)		
3-Methyl xanthine	: # OXP-3-MEX/lot-I (SPARC Baroda.)		
Caffeine	: # OXP- Caffeine /lot-I (SPARC Baroda.)		
Pentoxifylline	· # PNT/288(SPIL,Panoli)		

7.4.3 Chromatographic system .

Column	$4.6\ mm$ x 25 cm, 5 μm , Inertsil C-18
	(GL. Science, Japan)
Detector ·	UV-280 nm
Injection volume	20 µl

The system is also equipped to deliver the two phases in a programmed manner as shown in the table below :

Total flow rate : 1 0ml / min

Time (in min.)	Mobile Phase A (per cent v/v)	Mobile Phase B (per cent v/v)
0	98	2
20	80	20
40	80	20
41	98	2
50	98	2

- Two Shimadzu LC-10AT_{vp} solvent delivery pumps with SIL-10AD_{vp}Autoinjector

- Shimadzu SPD-10Avp UV detector with CLASS vp software.

7.4.4 Mobile phase :

Mobile phase A

3 2 ml. of perchloric acid was transferred to a 5000 ml beaker. Add 4000 ml of water. Filtered and degassed This was used throughout the analysis

Mobile phase B

1500 volumes of acetonitrile ,250 volumes of methanol and 250 volumes of tetrahydrofuran were mixed in a beaker. Mixture was filtered and degassed and used for the analysis.

7.4.5 Stock Solutions :

Diluent : Prepared 2.0 lits. of diluent by mixing equal volumes of methanol and water. Filtered and degassed and used for solution preparations.

Solution A : 10.1 mg of 3-MEX was transferred into a 100 ml volumetric flask. 2 ml of 0.2N NaOH was added to dissolve completely and diluted upto mark with diluent (101 μ g/ml).

Solution B : 10.3 mg of THB was transferred into a 100 ml volumetric flask.. 2 ml of 0.2N NaOH was added to dissolve completely and diluted upto mark with diluent (103 μ g/ml).

Solution C: 10.0 mg of THP was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent ($100 \mu g/ml$).

Solution D : 10.0 mg of caffeine was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent (100 μ g/ml).

Solution E : 10.1mg of Imp-A was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent $(101\mu g/ml)$.

Solution F : 9.9 mg of Imp-B was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent (99 μ g/ml).

Solution G : 9.9 mg of Imp-C was transferred into a 100 ml volumetric flask. Dissolved in and diluted upto mark with diluent (99 μ g/ml).

Solution H : 10.0 mg of Imp-D was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent (100 μ g/ml).

Solution I : 10.0 mg of pentoxifylline was transferred into a 100 ml volumetric flask.. Dissolved in and diluted upto mark with diluent $(100 \ \mu g/ml)$.

Solution J:

5.0 ml each of impurity stock solution A to H were pipetted out into a 50 ml volumetric flask . Diluted to volume with diluent (10 μ g/ml of each impurity).

Component	3- MEX	THB	THP	Caffeine	Imp. A	Imp B	Imp.	Imp.
Conc. (µg/ml)	10.1	10. 3	10.0	10.0	10. 1	9.9	9.9	10.0

Solution K:

5.0 ml each of stock solution A to I were pipetted out into a 50 ml volumetric flask. Diluted to volume with diluent (10 μ g/ml of each impurity and 10 μ g/ml of pentoxifylline).

Component	3-MEX	THB	THP	Caffeine	Imp. A	Imp. B	Imp.C	Imp.D	PNT
Conc. (µg/ml)	10.1	10.3	10.0	10.0	10.1	9.9	9.9	10.0	10.0

Standard solution /Solution L:

2.0 ml of solution K was pipetted out into a 10 ml volumetric flask. Diluted to volume with diluent. (2 μ g/ml of each impurity, individually and 2 μ g/ml of pentoxifylline).

7.4.6 System suitability :

System Suitability solution :

<u>Solution 1</u> :9.8 mg 3-methylxanthine (3-MEX) and 9.9 mg theobromine (THB) were transferred into a 10 ml volumetric flask. Dissolved in about 2 ml of 0.2 N aqueous NaOH and diluted to volume with diluent.

<u>Solution 2</u>: 10.2 mg theophylline (THP),9.8 mg caffeine, 9.9 mg Imp. A, 10.1 mg Imp.B,10.1 mg Imp.D and 10.2 mg pentoxifylline were transferred into a 10 ml volumetric flask. Dissolved in and diluted to volume with diluent

<u>Solution 3</u>. 5.0 mg of Imp.C was transferred into a 5 ml volumetric flask. Dissolved in and dilute to volume with diluent Pipette out 1.0 ml each of solution 1, solution 2 & solution 3 into a 10 ml volumetric flask. Diluted to volume with diluent.

i) Set up the system as mentioned under the chromatographic conditions.

- ii) Injected 20 μ l of the system suitability solution in duplicate and recorded the chromatograms upto 50 min.
- iii) Calculated the resolution between pentoxifylline and Imp.D peak.

Acceptance limit : The mean resolution factor R between pentoxifylline and Imp.D peak is not less than 1.0

7.4.7 Identification

Injected 20 μ l each of the impurity stock solutions A to I (about 100 μ g/ml), individually in duplicate and recorded the chromatograms upto 50 min. Noted the retention time of components for identification.

7.4.8 Instrument precision

System precision solution :

Transferred 100.1 mg, of pentoxifylline WRS into a 100 ml volumetric flask. Pipetted out 2.0 ml each of Stock Solution A to H into it. Dissolved in and diluted upto mark with diluent. (1000.1 μ g/ml of pentoxifylline and about 2 μ g/ml of each of impurity individually).

Vol. of stock solution A to H (ml)	Wt. of PNT	Final dilution (ml)		Final Con	centration	S
		ml	3-MEX µg/ml	THB µg/ml	THP µg/ml	Caffeine µg/ml
2.0	100.1	100	2.020	2.060	2.000	2.000

Table 7.4.8.1 Dilutions & concentrations for system precision

Contd....

Vol. of stock solution A to H (ml)	Wt. of PNT	Final dilution (ml)		Final	Concentr	ations	
			Imp.A µg/ml	Imp.B µg/ml	Imp.C µg/ml	Imp.D µg/ml	PNT µg/ml
2.0	100.1	100	2.020	1.980	1 980	2.000	1001.0

- i) Set up the system as mentioned under the chromatographic conditions.
- ii) Injected 20 μ l of the system precision solution for six times and recorded the chromatograms upto 50 min.
- iii) Calculated the relative standard deviation for the detector response for each component.

Acceptance limit :

RSD of detector response for each component is not more than 5 0 %

7.4.9 Solution stability :

- i) Injected 20 µL of the system precision solution in duplicate, periodically and recorded the chromatograms upto 50 min.
- Calculated the relative standard deviation for the detector response for each component over the period.

Acceptance limit :

RSD (%) of detector response for each component is not more than 5.0 %

7.4.10 Method precision

i) Prepared a sample solution as directed under the procedure (about 1000 µg/ml)

ii) Set the chromatographic conditions as mentioned under the method, injected 20

 μ L of the standard solution in duplicate and recorded the chromatograms upto 50 min.

iii) Injected 20 µl of standard solution in triplicate and recorded the chromatogramsupto 50 min. Used this for calculations.

iv) Injected 20 μ l of the sample solution in duplicate and recorded the chromatograms upto 50 min

v) Calculated the amount of the impurities present in the sample

vi) Prepared six sets of this sample as directed under the method. Spiked impurities upto the target levels in each of the sample preparation

Set	Wt. of Sample (mg)	Final Dilution (ml)	Conc. of Sample (µg/mL)	Obs	erved Resu	lts in percer	itage
				3-MEX	THB	THP	Caffeine
M1	10.1	10.0	1010	2.020	2.060	2.000	2.000
M2	10.2	10.0	1020	2.020	2.060	2.000	2.000
M3	10.4	10.0	1040	2.020	2.060	2.000	2.000
M4	10.0	100	1000	2.020	2.060	2.000	2.000
M5	10.1	10.0	1010	2.020	2.060	2.000	2.000
M6	10.2	10.0	1020	2.020	2 060	2.000	2.000

Table 7.4.10.1 : Method Precision

Contd. ..

~

•

Set	Wt. of Sample (mg)	Final Dilution (ml)	Sample Conc	Observed Results in percentage					
			(µg/mL)	Imp.A	Imp.B	Imp.C	Imp.D		
M1	10 1	10.0	1010	2.020	1.980	1.980	2.000		
M2	10.2	10.0	1020	2.020	1 980	1.980	2.000		
M3	104	10 0	1040	2 020	1.980	1 980	2.000		
M4	10.0	10.0	1000	2.020	1.980	1.980	2.000		
M5	10.1	10.0	1010	2.020	1.980	1.980	2.000		
M6	10 2	10.0	1020	2.020	1.980	1.980	2.000		

vii) Injected 20 μ l of each sample preparation in duplicate into the chromatograph set to the condition mentioned under the method and recorded the chromatograms upto 50 min .

viii) Calculated the amount of each impurity from the six sets. Calculated the RSD (%) of each impurity percentage from the six sets.

Acceptance limit :

RSD of the calculated impurities in the six sets should be $\leq 5.0\%$.

7.4.11 Linearity and range :

- i) Used Solution K for preparing the following linearity solutions.
- ii) Linearity solutions.

Level % of Vol. of. Final target solution dilution Final Concentrations K 3-THB THP ml ml Caffeine MEX µg/ml µg/ml µg/ml µg/ml 50 L1 1.0 10.0 1.010 1.030 1.000 1.000 L2 75 15 10.0 1 515 1.545 1.500 1.500 L3 100 2.0 10.0 2.020 2.060 2.000 2.000 LA 125 2.5 10.0 2.525 2.575 2.500 2.500 L5 3.090 150 3.0 10.0 3.030 3.000 3.000

Table 7.4.11.1 Dilutions & concentrations for Linearity study

Contd....

Level	% of target	Vol. of. Soln. K	Final Dilution	Final Concentrations						
		ml	ml	Imp.A µg/ml	Imp.B µg/ml	Imp.C µg/ml	Imp.D µg/ml	PNT µg/ml		
L1	50	1.0	10.0	1 010	0.990	0.990	1.000	1.000		
L2	75	1.5	10.0	1 515	1.485	1.485	1.500	1.500		
L3	100	2.0	10.0	2 0 2 0 2 0	1.980	1.980	2.000	2.000		
LA	125	25	10.0	2 525	2.475	2.475	2.500	2.500		
L5	150	3.0	10.0	3.030	2.970	2.970	3.000	3.000		

- iii) Injected 20 µl each of the linearity solution, in triplicate, into the chromatographic system set to the conditions mentioned under the method and record the chromatograms upto 50 min.
- iv) Calculated the mean and RSD (%) of the detector responses for each linearity level, individually, for each component.
- v) Plotted a graph of the concentration versus mean area count and performed mathematical regression for each component individually.

Acceptance limits :

RSD (%) of area counts at for each level for individual components ≤ 5.0 %. Plot of concentration versus detector response for each component is linear. The regression correlation coefficient (r²) ≥ 0.99

7.4.12 Accuracy :

Used Solution J for preparing the following solutions.

i) Prepared five sets for five level (70, 85, 100, 115 and 130% of target concentration) recovery study by transferring about 10 mg, accurately weighed, pentoxifylline standard into five 10 ml volumetric flasks separately. Pipetted out appropriate volumes of Solution J as shown in the Table below and diluted to volume with mobile phase.

Solution J

Component	3-MEX	TH B	THP	Caffiene	Imp.A	Imp.B	Imp.C	Imp.D
Conc.	10 1	10.	10.0	10.0	10.1	9.9	9.9	10.0
(µg/ml)		3						

Table 7.4.12.1 Dilutions & concentrations for Accuracy study

۰,

level	% of target	Vol. of. Solution J	Wt of pentoxi- fylline	Final Dilution	Fi	nal Concen	trations(µg/n	nl)
		` ml	mg	ml	3-MEX µg/ml	THB µg/ml	THP µg/ml	Caffeine µg/ml
R1	70	1.4	10.5	10	1.414	1.442	1.400	1.400
R2	85	1.7	10.0	10	1.717	1.751	1.700	1.700
R3	100	2.0	10.2	10	2.020	2.060	2.000	2.000
R4	115	2.3	9.9	10	2.323	2.369	2.300	2.300
R5	130	2.6	10.3	10	2.626	2.678	2.600	2.600

Contd....

Sr. No.	Level % of target	Vol. of. Soln. J	Wt of pentoxi fylline	Final Diluti on		Final Con	centration	s (µg/ml)	
		ml		ml	Imp.A µg/ml	Imp.B µg/ml	Imp.C µg/ml	Imp.D µg/ml	PNT µg/ml
R 1	70	1.4	10.5	10	1.414	1.386	1.386	1.400	1050
R2	85	1.7	10.0	10	1.717	1.683	1.683	1.700	1000
R3	100	2.0	10.2	10	2.020	1.980	1.980	2.000	1020
R4	115	2.3	9.9	10	2.323	2.277	2.277	2.300	990
R5	130	2.6	10.3	10	2 626	2 574	2.574	2.600	1030

- ii) Injected 20 µl of standard solution, prepared as mentioned 3.6, in triplicate and recorded the chromatograms upto 50 min. Calculate the mean area counts of the standard.
- iii) Injected 20 µl each of the recovery solution R1, R2, R3, R4 and R5 into the chromatograph in triplicate and recorded the chromatograms upto 50 min.
- iv) Calculated the mean and RSD (%) of the detector responses for each set.
- v) Calculated the amount of each spiked impurity in each set of the recovery sample and calculated the percentage recovery.

Acceptance limit :

- a) Percentage recovery not more than 95.0 and not less than 105.0 %.
- b) RSD (%) of detector response for each component is not more than 50%.

7.4.13 Minimum Quantitation level and Minimum Detection level

- Prepared a stock solution for this study by pipetting out 10 ml of Solution K (10 µg/ml each of impurity + pentoxifylline as mentioned under section 3.6) into a 50ml volumetric flask. Diluted to volume with diluent [about 2 µg/ml each component]-MDL stock solution.
- Prepared subsequent diluted solutions as shown in the Table below and injected them in triplicate and recorded the chromatograms upto 50 min.

Table 7.4.13.1 Dilutions & concentrations for Minimum Quantitation level and Minimum Detection level

Level	Vol. of MDL stock soln K (ml)	Final Dilution (ml)		Final Conce	ntrations(µg/m	ul)				
		`	3-MEX THB THP Caffeine							
D1	5.0	10	1.010	1.030	1.000	1.000				
D2	2.5	10	0.505	0 5 1 5	0.500	0.500				
D3	10	10	0 202	0.206	0.200	0 200				
D4	0.5	10	0.101	0.103	0.100	0.100				
D5	0.2	10	0.040	0.041	0.040	0.040				
D6	0.1	10	0.020	0.020	0.020	0.020				
D7	0.1	25	0.008 0.008 0.008 0.008							
D8	0.1	50	0.004	0.004	0.004	0 004				

Contd....

Level	Vol. of soln L (ml)	Final Dil. (ml)		Final Co	oncentrations(µg/ml)	
			Imp.A	Imp.B	Imp.C	Imp.D	PNT
D1	5.0	10	1 010	0.990	0.990	1.000	1.000
D2	2.5	10	0.505	0.495	0.495	0.500	0.500
D3	10	10	0.202	0.198	0.198	0.200	0.200
D4	05	10	0.101	0 099	0.099	0 100	0.100
D5	02	10	0.040	0.039	0 039	0.040	0 040
D6	0.1	10	0.020	0 0 1 9	0.019	0.020	0.020
D7	0.1	25	0.008	0 007	0 007	0.008	0 008
D8	0.1	50	0 004	0.003	0 003	0.004	0 004

iii) Injected 20 µl each of the recovery solution R1, R2, R3, R4 and R5 into the chromatograph in triplicate and recorded the chromatograms upto 50 min.

iv) Calculated the RSD (%) of the triplicate injections for each level.

Acceptance limit :

The MQL of each component is the lowest concentration at which the RSD (%) of the triplicate injections not more than 5.0 %.

The MDL of each component is that concentration at which the detector shows a positive response.

7.4.14 Ruggedness of the method :

A sample previously analysed for related substances was re-analyzed by another analyst independently by this method and the results are compared.

Acceptance limit :

The difference in the results of the two analysis is not more than 5.0 % of the impurity limit

7.5 Results and Discussions :

7.5.1 Identification :

20 μ l of Solution A to Solution I are injected individually and the chromatograms recorded up-to 50 min.

<u>Results & discussion</u> :

Figure-123 to 125, 130 to 135 shows typical chromatograms of individual components

Component		<u>Approx. RT</u>
3-Me-Xanthine	:	12.3 min
Theobromine	:	14.5 min
Theophylline	:	17.2 min
Imp-A	:	19.7 min
Caffeine	:	20.1 min
Imp-C	•	25.3 min
Imp-B	•	28.6 min
Pentoxifylline	:	30 2 min
Imp-D	•	30 8 min.

Figure-136 shows typical chromatogram showing separation of all individual components.

The above results show that all the components are clearly separated and identifiable.

7.5.2 System suitability :

Before starting a set of analysis, the system suitability solution is injected in duplicate. The resolution between the Pentoxifylline and Imp-D is calculated

Results & discussion :

Figure-121 shows a blank chromatogram of pentoxifylline study Figure-122 shows a system suitability chromatogram of pentoxifylline study

The Resolution factor R between Pentoxifylline and Imp-D = 1.41 [Limit : NLT 1.0]As the resolution meets the system suitability requirements the chromatographic system was used for further studies

7.5.3 Instrument precision

System Precision Solution :

- i) Set up the system as mentioned under the chromatographic conditions.
- ii) Injected 20 µL of the system precision solution six times and recorded the chromatograms upto 50 min

.

Individual area counts and RSD (%) values are shown in Table below :

Results and discussion :

Figure -122 shows a typical system precision chromatogram.

Injection	Detector Response (Area counts)							
	3-MEX	THB	THP	Caffeine				
1	125811	130778	117967	125771				
2	126072	129672	117786	125554				
3	125831	129895	118458	126021				
4	126481	129958	118400	126379				
5	127024	130252	118326	126333				
6	127186	131002	118194	126415				
Mean	126400.80	130259.50	118188.5	126078.8				
SD (±)	598.66	527.09	263.57	358.12				
RSD (%)	0.47	0.40	0.22	0.28				

Table 7.5.3.1 : Instrument precision

Contd...

Detector Response (Area counts)							
Imp.A	Imp.B	Imp.C	Imp.D	PNT			
96133	96664	70573	42644	36702695			
96084	96574	70512	44447	36640732			
96343	97134	70323	42611	36730516			
96634	96950	71048	43071	36782756			
96654	96845	70555	44134	36763299			
96730	97632	70938	44045	36860334			
96429.67	96966.5	70658.17	43492	36746722			
	96133 96084 96343 96634 96654 96730	Imp.A Imp.B 96133 96664 96084 96574 96343 97134 96634 96950 96654 96845 96730 97632	Imp.A Imp.B Imp.C 96133 96664 70573 96084 96574 70512 96343 97134 70323 96634 96950 71048 96654 96845 70555 96730 97632 70938	Imp.AImp.BImp.CImp.D961339666470573426449608496574705124444796343971347032342611966349695071048430719665496845705554413496730976327093844045			

SD (±)	281.88	382.50	276.36	812.71	74720.58
RSD (%)	0.29	0.39	0.39	1.87	0.20

Acceptance limit :

RSD not more than 5.0 %.

7.5.4 Method Precision :

Impurity found in PNT/288 only Imp.C = 0.027 % Results and discussion :

Table 7.5.4.1 : Method Precision

Set	Wt. of Sample (mg)	Final Dilution (ml)	Sample Concent ration	Observed Results in percentage					
			(µg/ml)	3-MEX	THB	THP	Caffeine		
M1	10.1	10	1010	0.1973	0.1997	0.1981	0.2066		
M2	10.2	10	1020	0.1993	0.2029	0.2001	0.2090		
M3	104	10	1040	0.2005	0.2032	0.2011	0.2102		
M4	10.0	10	1000	0.1902	0.1925	0.1914	0.1999		
M5	10.1	10	1010	0.2012	0.2037	0 2020	0.2108		
M6	10.2	10	1020	0.2031	0.2063	0.2035	0.2126		
Mean	1			0.1986	0 2013	0.1993	0.2081		
RSD	(%)			2.2893	2.4009	2.158	2.1717		

Contd....

Set	Wt. of Sample (mg)	Final Dilution (ml)	Sample Concent ration	Observed Results in percentage					
			(µg/ml)	Imp.A	Imp.B	Imp.C*	Imp.D		
M 1	10.1	10	1010	0.1986	0.1978	0.2273	0.2119		
M2	10.2	10	1020	0.2006	0.2006	0.2314	0.2148		
M3	10.4	10	1040	0 2019	0.2015	0.2336	0.2141		
M4	10.0	10	1000	0.1920	0.1916	0 2200	0.2040		
M5	10.1	10	1010	0.2023	0.2017	0.2331	0.2141		
M6	10.2	10	1020	0.2038	0.2038	0.2361	0.2040		
Mean				0.1998	0.1995	0.2302	0.2104		
RSD ((%)			2.117	2.171	2.854	2.430		

* Corrected values (subtracting % impurity found in the sample = 0.027 %)

The above results are well within the acceptance limits and indicates instrument precision. Figure-126 shows typical chromatogram of method precision study. study

[Limit : RSD % impurities calculated from the six sets is NMT 5.0 %]

7.5.5 Linearity and Range :

The linearity of detector (UV) response for impurities was determined by preparing and injecting solutions in the concentration range of 50-150 % of limit conc. are of 3-Me-Xanthine, Theobromine, Theophylline, Caffeine, Imp.A, Imp.C, Imp.B, Pentoxifylline, Imp.D.

Results and discussion :

Figure-127 shows typical linearity chromatogram for various impurities.

Figure-137 to Figure-145 shows typical linearity plots for various impurities

The results of individual impurities is shown in Table 7.5.5.1 to 7 5.5.9.

Acceptance limits :

RSD (%) of area counts at for each level for individual components not more than 5.0 % Plot of concentration versus detector response for each component is linear. The regression correlation coefficient (r^2) not less than 0.99

Level	Detector response (area counts)								
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)				
L1	62858	62500	62751	62703	0.293				
L2	92163	99678	95797	95879	3.919				
L3	124255	125243	125699	125065	0.590				
L4	158887	165694	162730	162437	2.101				
L5	188042	186307	185596	186648	0.674				
Slope		and and the second s			62266.9				
Intercept					767.20				
Correlation co	efficient (r ²)				0.9968				

Table 7.5.5.1 : Linearity of 3-MEX

Level	Detector response (area counts)								
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)				
L1	64347	63618	63940	63968	0.571				
L2	94682	101764	97543	97996	3.365				
L3	127737	127673	128210	127873	0.229				
LA	163144	169128	166080	166117	1.801				
L5	193407	190246	189579	191077	1.070				
Slope				62590.0					
Intercept				470.6					
Correlation co	efficient (r ²)		······································	0.9969					

Table 7.5.5.2 : Linearity of THB

Table 7.5.5.3 : Linearity of THP

Level		Detector response (area counts)								
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)					
L1	58790	58357	58528	58558	0.372					
L2	86414	93161	89351	89642	3.774					
L3	116650	116733	117317	116900	0.311					
L4	149207	154405	152133	151915	1.715					
L5	176927	174003	173842	174804	1.062					
Slope		***************************************		58953	T					
Intercept				457.80						
Correlation co	pefficient (r ²)			0.9970						

Table 7.5.5.4 : Linearity of Caffeine

Level		Detector response (area counts)								
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)					
L1	56615	56138	56312	56355	0.428					
L2	82996	89737	85653	86128	3.942					
L3	111787	111986	112682	112151	0.419					
LA	142620	147894	145814	145442	1.827					
L5	169054	166255	166030	167113	1.008					
Slope				56166						
Intercept				1105.8						
Correlation co	befficient (r^2)			0.9969						

Level		Detector	response (area	counts)	
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)
L1	46455	46151	46259	46288	0.333
L2	68122	74093	70579	70931	4.231
L3	91837	92003	92486	92108	0.366
LA	117350	122095	120007	119817	1.985
L5	139116	137105	136575	137598	0 974
Slope		······································	•••••••••	45842	
Intercept		746.0			
Correlation co	pefficient (r ²)			0.9967	

Table 7.5.5.5 : Linearity of Imp.A

Table 7.5.5.6 : Linearity of Imp.B

Level	Detector response (area counts)							
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)			
L1	49042	50754	50242	50012	1.757			
L2	71454	-	71091	71272	0.360			
· L3	95647	96043	96885	96191	0.657			
LA	122160	120874	122676	121903	0.761			
L5	143632	142477	142155	142754	0.544			
Slope			•	47700	1			
Intercept				1980.4				
Correlation co	pefficient (r^2)			0.9987				

Table	7.5	.5.7	:	Line	arity	of	Imp.	С

Level	Detector response (area counts)					
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)	
L1	32039	32019	31956	32004	0.135	
L2	47167	51038	48799	49001	3.966	
L3	63566	63919	64238	63907	0.526	
L4	81411	84876	83432	83239	2.091	
L5	96378	95243	95096	95572	0.734	
Slope		32600				
Intercept				195.0		
Correlation co	efficient (r ²)			0.9967		

Level	Detector response (area counts)						
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)		
L1	40032	39738	39921	39897	0.372		
L2	59031	63585	60868	61161	3.746		
L3	79255	79444	80181	79626	0.615		
LA	102076	105752	104388	104405	2.239		
L5	120242	118823	118401	119155	0.809		
Slope	40352						
Intercept	144.8						
Correlation co	0.9957						

Table 7.5.5.8 : Linearity of Imp.D

Table 7.5.5.9 : Linearity of pentoxifylline

Level	Detector response (area counts)						
	Inj. 1	Inj. 2	Inj. 3	Mean	RSD (%)		
L1	40986	41390	41815	41397	1.001		
L2	60325	66331	62343	62999	4.851		
L3	79860	80174	80863	80299	0.639		
L4	101960	106567	104300	104275	2.209		
L5	120706	119120	118646	119490	0.903		
Slope		1	*****	39492 4			
Intercept					2707.20		
Correlation co		0.9963					

7.5.6 Accuracy :

.

Recovery study was performed at 70, 85, 100, 115 and 130 % levels of 0.2 % each of 3-Me-Xanthine, Theobromine, Theophylline, Imp-A, Caffeine, Imp-C, Imp-B, Pentoxifylline, Imp-D).

Figure- 128 shows a typical chromatogram of recovery study.

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.414	13989	98.93
R2	85	1.717	1.6806	97.88
R3	100	2.020	1.9392	96.00
R4	115	2.323	2.2273	95.88
R5	130	2.626	2.5443	96.89
Mean		97.116		
RSD (%)		1.332		

Table 7.5.6.1 : Recovery of 3-MEX from pentoxifylline

Table 7.5.6.2 : Recovery of Theophylline from pentoxifylline

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.400	1.3871	99.08
R2	85 🦄	1.700	1.6636	97.86
R3	100	2.000	1.9498 ,	97.49
R4	115 ·	2.300	2.2112	96.14
R5	130	2.600	2.5571	98.35
Mean				97.784
RSD (%)				1.119

٠.

6.3 : Recovery of Theobromine from pentoxifylline

Sr. No.	Levet	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.442	1.4390	. 99.79
R2	85	1.751	1.7263	98.59
R3	100	2.060	2.0406	97.60
R4	115	2.369	2.2932	96.80
R5	,130	2.678	2.6501	98.96
Mean	- - -			98.348
RSD (%)		1.189		

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.400	1.4070	100.50
R2	85	1.700	1.6891	99.36
R3	100	2.000	2.0110	100.55
R4	115	2.300	2.2726	98.81
R5	130	2.600	2.5766	99.10
Mean	99.664			
RSD (%)	0.813			

7.5.6.4 : Recovery of caffeine from pentoxifylline

,

Table 7.5.6.5 : Recovery of Imp.A from pentoxifylline

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery == Amt found x 100 Amt. added
R1	70	1.414	1.4223	100.59
R2	85	1.717	1.7007	99.05
R3	100	2.020	1.9701	97.53
R4	115	2.323	2.2143	95 32
R5	130	2.626	2.5501	97.11
Mean		97 92		
RSD (%)		2.041		

Table 7.5.6.6	: Recovery of	Imp.B from	pentoxifylline
······································			

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.386	1.4367	103.66
R2	85	1.683	1.7037	101.23
R3	100	1.980	2.0241	102 23
R4	115	2.277	2.2560	99.08

R5	130	2 574	2.5763	100.09
Mean				101.258
RSD (%)	1.768			

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R 1	70	1.386	1.3764	99.31
R2	85	1.683	1.7338	103.02
R3	100	1.980	2.0133	101.68
R4	115	2.277	2.2888	100.52
R5	130	2.574	2.6100	101.40
Mean		101.186		
RSD (%)		1.364		

Table 7.5.6.7 : Recovery of Imp.C from pentoxifylline

Table 7.5.6.8	: Recovery of	Imp.D from	pentoxifylline

Sr. No.	Level	Actual amount added (µg/ml)	Amount recovered (µg/ml)	% Recovery = Amt found x 100 Amt. added
R1	70	1.400	1.4165	101.18
R2	85	1.700	1.6929	99 58
R3	100	2 000	1.9432	97.016
R4	115	2.300	2.3375	101.63
R5	130	2.600	2.6728	102.80
Mean	fer- na manageri iza an dikana man	100.470		
RSD (%)		2.171		

[Limit : Recovery - 95.0 % - 105.0 %]

7.5.7 Limit of Detection and Quantitation :

5.0 ml of solution L was taken in a 50 ml volumetric flask. This was used as MQl solution. Further dilutions were made and injected in triplicate into the chromatography. Table 7.5.7.1 to 7.5.7.9 shows the results of the study.

Figure-129 shows typical chromatogram for LOD/LOQ study of various impurities

Results and discussion :

Table 7.5.7.1 : Limit of Detection and Limit of Quantitation Study (3-MEX)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.0100	55395	57048	55534	55992	1.6374
D2	0 5050	27538	27668	27808	27671	0.4879
D3	0.2020	11409	11436	11599	11481	0.8953
D4	0.1010	5858	5700	5671	5743	1.7524
	0.0404	2316	2690	2172	2392	11.1747
	0.0202	1865	1504	1459	1609	13.8289
D7	0.00808	273	777	548	532	47.3747
D8	0.00404	ND	ND	ND		-

Table 7.5.7.2 : Limit of Detection and Limit of Quantitation Study (THP)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.03000	52681	53387	52591	52886	0.8242
D2	0.515	26663	26298	26306	26422	0.7889
D3	0.206	10640	10689	10758	10695	0.5542
D4	0.103	5443	5283	5306	5344	1.6187
	0.0412	2290	2417	2296	2334	3.0695
	0.0206	1678	1441	1536	1551	7.6868
D7	0.00824	493	628	621	580	13.0887
D8	0.00412	ND	ND		-	-

Table 7.5.7.3 : Limit of Detection and Limit of Quantitation Study (THB)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.000	56140	57743	56472	56785	1.4900
D2	0.500	28028	28850	28845	28574	1.6558
D3	0.200	12086	11845	12202	12044	1.5120
D4	0.100	6291	6794	6254	6446	4.6794
	0.04	3299	3485	5171	3985	25 8797
	0.02	5668	4047	3860	4525	21.9728 *
D7	0.008	2926	3404	584	1508	65.4844 *
D8	0.004	ND	ND	ND	-	_

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.000	49369	50626	49495	49830	1.3891
D2	0.500	24723	24846	25087	24885	0.7440
D3	0.200	10408	10541	10634	10527	1.0789
D4	0.100	5318	5492	5516	5442	1.9855
	0.04	2363	2572	2585	2506	4.9702
	0.02	1857	1710	1746	1771	1.3265
D7	0.008	897	1016	1021	978	7.1771
D8	0.004	ND	ND	ND	-	-

Table 7.5.7.4 : Limit of Detection and Limit of Quantitation Study (caffeine)

Table 7.5.7.5 : Limit of Detection and Limit of Quantitation Study (IMP-A)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.01	40341	41404	40442	40729	1.4406
D2	0.505	20177	20302	20364	20281	0.4696
D3	0.202	8116	8209	8318	8214	1.23084
D4	0.101	4077	3978	4005	4020	1.2730
	0.0404	1680	1818	1702	1733	4.2775
	0.0202	1109	976	1064	1049	6.4447
D7	0.00808	342	403	431	392	11.60925
D8	0.00404	ND	ND	ND		-
				1		

Table 7.5.7.6 : Limit of Detection and Limit of Quantitation Study (IMP-B)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	0.99	42026	43158	42366	42516	1.36615
D2	0.495	20472	20477	20857	20602	1.07198
D3	0.198	8321	8389	8367	8359	0.41510
D4	0.099	3874	3740	3807	3807	1.7599
	0.0396	1486	1644	1469	1533	6.2951
	0.0198	614	618	806	679	16.15036
D7	0.00792	ND	ND	ND	-	-
D8	0.00396	ND	ND	ND	-	-

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	0.99	28148	28868	28296	28437	1.3371
D2	0.495	13798	13885	13983	13888	0.6664
D3	0.198	5543	5642	5632	5605	0.9722
D4	0.099	2595	2562	2442	2533	3.1787
	0.0396	1002	1077	1029	1036	3.6666
	0.0198	698	594	627	639	8.3081
D7	0.00792	ND	ND	ND	-	_
D8	0 00396	ND	ND	ND	-	-

Table 7.5.7.7 : Limit of Detection and Limit of Quantitation Study (IMP-C)

Table 7.5.7.8	: Limit of Detection	and Limit of Q	uantitation Study (IMP-D)

Level	Conc. (µg/ml)	Inj. 1	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.0	35691	36373	35584	35882	1.927
D2	0.5	18179	18382	18665	18408	1.3259
D3	0.2	7369	7389	7415	7424	1.0584
D4	0.1	3935	3730	3771	3812	2.8456
	0.04	1687	1880	1764	1777	5.4673
	0 02	1515	1198	1449	1387	12.055 *
D7	0.008	ND	ND	ND	-	-
D8	0.004	ND	ND	ND	-	-

Table 7.5.7.9 :	Limit of Detection	and Limit of Quantitation	Study (pentoxifylline)

Level	Conc. (µg/ml)	Inj. I	Inj. 2	Inj. 3	Mean area	RSD (%)
D1	1.0	39706	41191	39027	39974	2.7685
D2	0.5	30009	32886	32497	31797	4.9089
D3	0.2	10169	10506	10938	10537	3.6580
D4	0.1	9969	8438	7965	8790	11.9162
	0.04	7583	10954	7624	8720	22.814 *
	0.02	12776	7865	10856	10499	23.5726 *
D7	0.008	5134	7858	5892	6294	22.3353 *
D8	0 004	ND	ND	ND	-	-

* values are not considered because of improper integration .

The limit of quantitation and detection for each impurity is as follows :

	Limit of quantitation		Limit of detection	
	(µg/ml)	(%)	(µg/ml)	(%)
3-Me-Xanthine	0.1010	0.0101	0.00808	0.00080
Theobromine	0.1000	0.0100	0.00800	0.00080
Theophylline	0.0412	0.0041	0.00824	0.00082
Imp-A	0.0404	0.0040	0 00808	0.00080
Caffeine	0.0200	0.0020	0.00800	0.00080
Imp-C	0.0396	0.0039	0.01980	0.00198
Imp-B	0.0990	0.0099	0.01980	0.00198
Pentoxifylline	0.2000	0.0200	0.00800	0.00080
Imp-D	0.1000	0.0100	0.02000	0.00200

Table 7.5.7.10 : Limit of Detection and Limit of Quantitation Summary

7.5.8 Ruggedness :

Method ruggedness is established by a sample previously analyzed for related substances is re analyzed by another analyst independently by this method and the results are compared

Ruggedness-I	Ruggedness-II
Analyst : ALP	Analyst : NRP

	Pentoxifylline B.No: PNT/288		Pentoxifylline B.No: PNT/288		
	By calculation	By area normalization	By calculation	By area normalization	
3-Me-Xanthine	ND	ND	ND	ND	
Theobromine	ND	ND	ND	ND	
Theophylline	ND	ND	ND	ND	
Imp-A	ND	ND	ND	ND	
Caffeine	ND	ND	ND	ND	
Imp-C	0.0253	0.02	0.0272	0.02	
Imp-B	ND	ND	ND	ND	
Pentoxifylline	ND	ND	ND	ND	
Imp-D	ND	ND	ND	ND	

7.6 Summary and Conclusions

Acceptance lin	Actual results			
System suitability Resolution between Pentoxifylline & Imp-D	NLT 1.0	1.2 to 1.4		
		3-MEX	Theobromine	Theophylline
Precision Instrument - RSD (%) of Detector Response for each	≤ 5.0 %	0.4736	0.4048	0.2230
impurity Method - RSD (%) of each Impurity %	≤ 5.0 %	2.2873	2.4009	2.1580
Linearity and Range Correlation coefficient (r ²) RSD (%) of detector responses	≥ 0.99 ≤ 5.0 %	0.997 3.9196	0.997 3.6355	0.997 3.7737
Accuracy Percentage recovery	95.0 % - 105.0 %	97.116	98.348	97.784
Minimum quantitation level RSD (%) at MQL	≤ 5.0 %	1.7524	4.6794	3.0695

Contd..

		Caffeine	Imp-A	Imp-B
Precision		0.0040	0.0000	2.20.44
Instrument - RSD (%) of Detector Response for each	≤ 5.0 %	0.2840	0.2923	0.3944
impurity			-	
Method - RSD (%) of each	≤ 5.0 %	2.17 7	2.1170	2.1715
Impurity %				
Linearity and Range				
Correlation coefficient (r^2)	≥ 0.99	0.997	0.997	0.999
RSD (%) of detector	≤ 5.0 %	3.9424	4.2309	1.7570
responses				
Accuracy		i		
Percentage recovery	95.0 % -	99.664	97.92	101.258
<u>,</u>	105.0 %			
Minimum quantitation				
level				
RSD (%) at MQL	$\leq 50\%$	4.3265	4.2775	1.7599

Contd. ..

		Imp-C	Imp-D	Pentoxifylline
Precision				
Instrument - RSD (%) of	≤ 5.0 %	0.3911	1.8686	0.2033
Detector Response for each				
impurity				
Method - RSD (%) of each	≤ 5.0 %	2.8544	2.430	-
Impurity %				
Linearity and Range				
Correlation coefficient (r^2)	≥099	0.997	0.996	0.996
RSD (%) of detector	≤ 5.0 %	3.9660	3.7460	4.8514
responses				
Accuracy				
Percentage recovery	950%-	101.186	100 47	-
	105.0 %			
Minimum quantitation				
level				
RSD (%) at MQL	≤ 5.0 %	3 6666	2.8456	3.6580

The results of the study indicates that this method for related substances and process impurities in pentoxifylline is precise, accurate, linear in detector response and rugged

7.7 Recommendations And Limitations

- 1. This method is recommended for the analysis of pentoxifylline samples for the related substances and process impurities .
- This method shows precision, linearity and accuracy for all known impurities like 3-Me-Xanthine, Theobromine, Theophylline, Imp-A, Caffeine, Imp-C, Imp-B, Imp-D.