

DEVELOPMENT OF NEW ANALYTICAL METHODS FOR SOME RECENT DRUGS

SUMMARY SUBMIITED TO THE MAHARAJA SAYAJIRAO UNIVERSITY OF BARODA

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (PHARMACY)

BY Lakshmi Prasad Alaparthi M.Pharm

GUIDED BY DR. (MRS.) RAJANI GIRIDHAR

M.Pharm, Ph.D.,

Reader, Pharmaceutical Chemistry

PHARMACY DEPARTMENT, FACULTY OF TECHNOLOGY AND ENGINEERING, THE M. S. UNIVERSITY OF BARODA, BARODA.

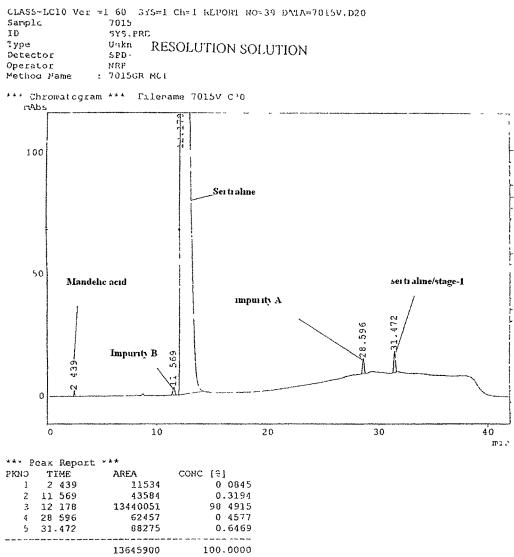
April, 2006

The subject of impurities evaluation of pharmaceutical compounds has been insufficiently addressed in scientific literature up to this time. As a matter of fact Because of the apparent negativity attached to this word in the pharmaceutical world. Hence we have taken this problem and developed related substances and process impurities in some advance drugs. I had not directly jumped in to the work due to the complex nature and insufficiently addressed in scientific literature. We wish to address all types of impurities but we realized problem is too complex. Hence we have decided to cover organic related substances and process impurities estimation by High Performance Liquid Chromatography as front end technique.

In Chapter -1, I had discussed in detail about different types of possible impurities with respect to literature and compendial terminology. Fundamentals of chromatography are covered in Chapter -2.

In **chapter -3**, I compiled fundamentals of High Performance Liquid Chromatography. Molecular basis of chromatographic fundamentals are covered to promote successful application of chromatographic techniques in pharmaceutical sciences At the end of the compilation entire subject has become so complicated due to detailed discussions of molecular basis.

For simplifying fundamentals **Chapter-4** is covered some important concepts with pictures.


In Chapter-5, detailed literature of Sertraline search published was presented to prove the novelty of current work Related substances method development of sertraline was performed with aid of software and some experiments Here structure analysis and retention analysis was derived with the help of Chromsword software. Optimized method was validated for the correctness of intended use . Validation summary and one typical chromatogram showing separation of all components is given below for quick reference.

,	Acceptance limit	Actual results				
System suitability Resolution between Impurity B & sertraline	NLT 3.0 %	3.59, 3.4, 3.				
		Mandelic acid	Impurity B	Impurity A	Sertra line /I	
Precision						
Instrument - RSD of	≤ 5.0 %	0.5%	0 5%	1.11%	06%	
Detector Response for each						
impurity						
Method - RSD of each	≤ 5.0 %	1 47%	1.88%	0 61%	1.37%	
Impurity %						
Linearity and Range						
Correlation coefficient (r^2)	≥ 0 99	0.9993	0.999	0.9992	0.997	
RSD of detector responses	≤ 5.0 %	max.	max	max.	max.	
		0.83%	2.84%	1.82%	3 12%	
Accuracy						
Percentage recovery	95.0 % -	100.41%	100 25%	100.36%	102 14	
	105.0 %				%	
Minimum quantitation		0 076%	0.038%	0.039%	0.075%	
level						
Minimum detection level]	0 008%	0.008%	0.008%	0.008%	

Sertraline related substances method validation Summary

The results of the study indicates that this method for related substances in sertraline is precise, accurate, linear in detector response and rugged.Sertraline related substances typical chromatogram is given below

Sertraline assay method was developed on a simple isocratic system to suite many small Manufacturers how ever specificity study performed during validation indicated Developed method is stability indicating and robust method. Summary of Method Validation is given below with typical representative chromatogram.

Sr. No.	Acceptance criteria	Observed value	Limit
1.	System suitability and reproducibility	RSD = 0 204 %	RSD . NMT 2 0 %
2	Accuracy	Recovery = 99.36 % RSD = 1 29 %	Recovery : 98.0 % - 102.0 % RSD NMT 2.0 %
3	Linearity range	Correlation coefficient (r^2) = 0.9995	Correlation coefficient (r ²) NLT 0 999
4.	Precision	RSD : 0 127 %	RSD : NMT 2.0 %
5.	Ruggedness	Variation = -0.06%	Variation . $\pm 0.5\%$

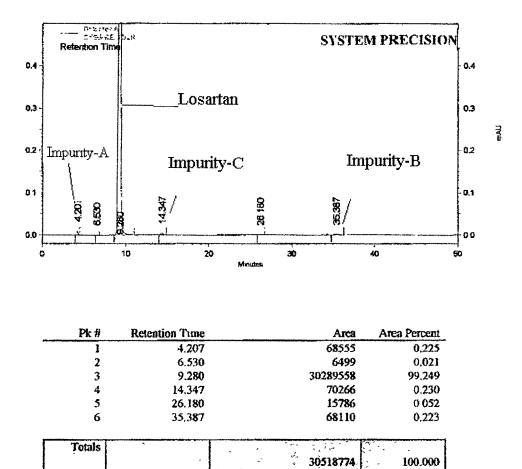
Summary of Sertraline assay method validation

All these observations indicate that this method for assay of Sertraline is specific, accurate, precise and is also stability indicating.

In **Chapter-6**, detailed literature search related to Losartan analytical methods published is presented to prove the novelty of current work. Related substances method development of Losartan was performed with aid of software and some experiments. Here structure analysis and retention analysis was derived with the help of Chromsword software However software was failed in predicting correct condition due to closeness between impurities and Losartan. Successful HPLC method was developed to resolve all impurities to base to base separation. Optimized method was validated for the correctness of intended use . Validation summary and one typical chromatogram showing separation of all components is given below for quick reference

Summary of Losartan related substances method validation

	Accepta -nce criteria	Actual results		
System suitability Resolution between Losartan/Imp-C & Losartan	NLT 5	15.22		
-		Losartan/ Imp-A	Losartan/ Imp-B	Losartan/ Imp-C
Precision Instrument - RSD of Detector Response for each	≤ 5.0 %	2.56 %	1.31 %	1.98 %
impurity Method - RSD of each Impurity %	≤ 5.0 %	0 85 %	0 79 %	2 05 %
Linearity and Range Correlation coefficient (r ²) RSD of detector responses	≥ 0 99 ≤ 5 0 %	0 994	0.996	0.996
Accuracy Percentage recovery	95.0 % - 105 0 %	100 38 %	99 36 %	99.30 %
Minimum quantitation		0.252µg/ml	0.522µg/ml	0 501µg/ml
level RSD at MQL	≤ 5.0 %	0.85 %	3 68 %	2 88 %


The results of the study indicate that this method for related substances in Losartan is precise, accurate, linear in detector response and rugged Typical HPLC chromatogram is Given below.

,

CLASS-VP V5.02 Area % Report

C:\CLASS-VP\METHODS\HPLCMET-11\8009LRSVLmet
C:\CLASS-VP\DATA\HPLC-11\138009L.D08.dat
SYSTEM
5/13/99 11:53:02 PM
5/15/99 11:51:15 AM

Losartan RS validation

Losartan related substances method was taken to for assaying losartan and found suitable but run time and concentration of losartan reduced for optimum results. Optimized method was validated for the correctness of intended use. Validation summary and one typical chromatogram showing separation of all components is given below for quick reference.

Sr. No.	Acceptance criteria	Observed value	Limit
1.	System suitability and reproducibility	RSD = 0.17 %	RSD : NMT 2.0 %
2	Accuracy	Recovery = 99 698 % RSD = 0.82 %	Recovery : 98.0 % - 102.0 % RSD NMT 2.0 %
3	Linearity range	Correlation coefficient (r^2) = 0 9996	Correlation coefficient (r ²) NLT 0.999
4	Precision	RSD 0.156 %	RSD · NMT 2 0 %
5.	Ruggedness	Variation = -0.23%	Variation $\pm 0.5 \%$

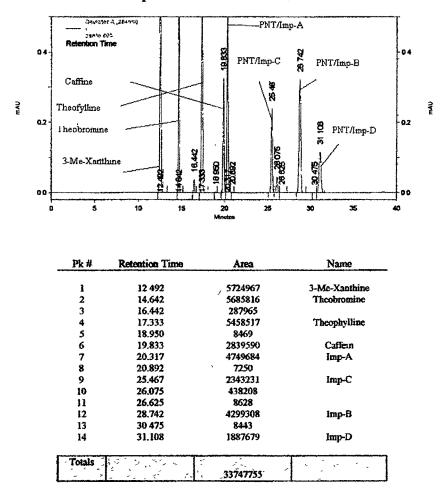
Summary of Losartan assay method validation

All these observations indicate that this method for assay of losartan potassium is specific, accurate, precise and is also stability indicating.

In Chapter-7, detailed literature search related to Pentoxifylline analytical methods published is presented to prove the novelty of current work. Eventhough this drug is little old, related substances and process impurities monitoring HPLC method is not published. Hence I had developed a HPLC method where all impurities of pentoxifylline was addressed. Development was performed with aid of software and some experiments Here structure analysis and retention analysis was derived with the help of Chromsword software. However software was failed in predicting correct condition due to closeness between impurities Successful HPLC method was developed to resolve all impurities to base to base separation. Optimized method was validated for the correctness of intended use. Validation summary and one typical chromatogram showing separation of all components is given below for quick reference

Shimadzu CLASS-VP V5.03 Area % Report

 Method Name:
 C:\CLASS-VP-ver5.03\METHODS\HPLC-11\Pentoxy.met


 Data Name:
 C:\YDC\pento.d03

 Acquired:
 7/1/99 6:46:44 PM

 Seq.Name
 :
 C:\CLASS-VP-ver5.03\SEQUENCE\HPLC-11\Pento-stabi.seq

 Sample name:
 I

All component mix for identification

Typical HPLC chromatogram of Pentoxifylline 1s given above.

Acceptance limit		Actual results		
System suitability Resolution between Pentoxifylline & Imp-D	NLT10		1.2 to 1.4	
		3-MEX	Theobromine	Theophylline
Precision Instrument - RSD (%) of Detector Response for each	≤ 5.0 %	0.4736	0.4048	0.2230
Impurity Method - RSD (%) of each Impurity %	≤ 5.0 %	2.2873	2.4009	2 1580
Linearity and Range Correlation coefficient (r ²) RSD (%) of detector responses	≥ 0.99 ≤ 5.0 %	0.997 3.9196	0.997 3.6355	0.997 3.7737
Accuracy Percentage recovery	95.0 % - 105.0 %	97.116	98.348	97.784
Minimum quantitation level RSD (%) at MQL	≤ 5.0 %	1.7524	4.6794	3.0695

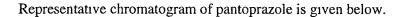
Summary of Pentoxifylline related substances method validation

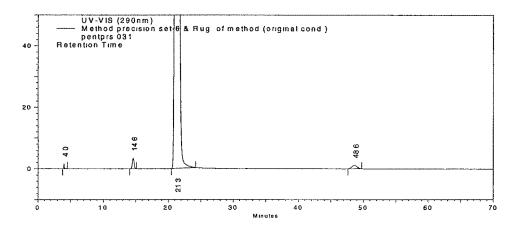
-

Contd

		Caffeine	Imp-A	Imp-B
Precision Instrument - RSD (%) of	≤ 5.0 %	0.2840	0.2923	0.3944
Detector Response for each impurity	,			
Method - RSD (%) of each Impurity %	≤ 5.0 %	2.177	2.1170	2.1715
Linearity and Range				
Correlation coefficient (r^2)	≥0.99	0.997	0 997	0.999
RSD (%) of detector	≤ 5.0 %	3.9424	4.2309	1.7570
responses				
Accuracy				
Percentage recovery	95.0 % -	99.664	97.92	101.258
	105.0 %			
Minimum quantitation				
level				
RSD (%) at MQL	≤ 5.0 %	4.3265	4.2775	1.7599

Contd ..


		Imp-C	Imp-D	Pentoxifylline
Precision				
Instrument - RSD (%) of	≤ 5.0 %	0 3911	1 8686	0.2033
Detector Response for each				
impurity				
Method - RSD (%) of each	$\leq 50\%$	2 8544	2.430	
Impurity %				
Linearity and Range				
Correlation coefficient (r^2)	≥ 0.99	0.997	0.996	0.996
RSD (%) of detector	≤ 5.0 %	3.9660	3 7460	4 8514
responses				
Accuracy				
Percentage recovery	950%-	101.186	100 47	-
	105.0 %			
Minimum quantitation				
level				
RSD (%) at MQL	≤ 5.0 %	3.6666	2.8456	3.6580


The results of the study indicate that this method for related substances and process impurities in pentoxifylline is precise, accurate, linear in detector response and rugged.

A survey of literature for Pantoprazole indicated the estimation reported by the following methods, V1z., High-performance liquid chromatography-electrospray ionization mass spectrometry, High-performance liquid chromatography, Capillary isotachophoresis.Gas chromatography-mass spectrometry, UV Spectrophotometric method , Micellar electrokinetic chromatography, Gas chromatography-mass spectrometry The brief information on above analytical methods are follows. Detailed summary of literature is discussed in **Chapter-8**. Related substances method development of sertraline was performed with aid of software and some experiments. Here structure analysis and retention analysis was derived with the help of Chromsword software. Optimized method was validated for the correctness of intended use. Validation summary and one typical chromatogram showing separation of all components is given below for quick reference.

Acceptance limit			Actual result	5
System suitability				
Resolution between pantoprazole impurity A and pantoprazole sodium	NLT 20.0			
		Pantoprazole impurity A	Pantoprazole impurity B	Pantoprazole sodium
Precision				
Instrument precision - RSD (%) of Detector Response for pantoprazole impurity B and pantoprazole sodium	≤ 5.0 %	1.88 %	0.42 %	2.89 %
Method precision - RSD (%) of pantoprazole impurity A	≤ 5.0 <i>%</i>	3.90 %	1.10 %	-
Linearity and Range				
Coefficient of correlation (r)	≥0.99	1.000	1.000	1.000
RSD (%) of detector responses	≤ 5.0 %	0.82 % max.	0 34 % max.	1.26% max.
Accuracy				
Percentage recovery	95.0 % - 105.0 %	102.01 %	101.96 %	~
Minimum quantitation level (%)	≤50%	0.025 %	0.025 %	0.013 %
Minimum detection level (%)		0.013	0.013	0.006%
Ruggedness		Difference NM	T 10.0 % of impi	arity limit
Original condition		0.214	0.203	
Change in analyst		0.212	0.214	
Change in column		0.210	0.213	
Change in column temperature		0.214	0.211	
Change in mobile phase composition		0.204	0.206	
Change in instrument		0.204	0.224	

The results of the study indicates that this method for related substances in pantoprazole sodium is precise, accurate, linear in detector response and rugged.

Simple ammonium dihydrogen orthophosphate buffer and acetonitrile mixture is taken to optimize assay method.

Sr. No.	Acceptance criteria	Observed value	Limit
1.	System suitability	1 87	Tailing factor NMT 2 5
	Tailing factor of		
	pantoprazole peak		
3.	Linearity range	Linear regression $(r^2) =$	Linear regression (r ²)
		0.9999	NLT 0.999
4.	Instrument Precision	RSD . 1.63 %	RSD : NMT 2.0 %
5.	Method precision	Assay .99 48%	
	_	RSD 0.125 %	RSD .NMT 20 %
6.	Ruggedness	Variation = 0.11%	Variation : $\pm 0.5\%$

Summary of Pantoprazole assay method validation :

All these observations indicate that this method for assay of pantoprazole is specific, accurate, precise and also stability indicating.

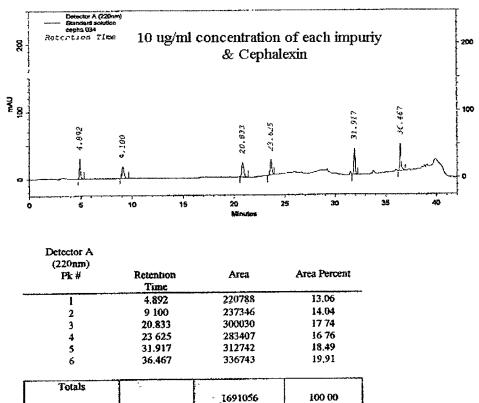
In **Chapter-9**, detailed literature search related to Cephalexin analytical methods published is presented to prove the novelty of current work Even though this drug is old, related substances and process impurities monitoring HPLC method was not published. Hence I had developed a HPLC method where all impurities of Cephalexin were addressed Development was performed with aid of software and some experiments Here structure analysis and retention analysis was derived with the help of Chromsword software. However software was failed in predicting correct condition due to closeness between impurities Successful HPLC method was developed to resolve all impurities to base to base separation. Optimized method was validated for the correctness of intended use. Validation summary and one typical chromatogram showing separation of all components is given below for quick reference.

Acceptance limit		Actual results		
System suitability				
Resolution between	NLT 4.0		4.98 to 6.4	
Delta ADCA and Phenyl				
acetic acid.				
		α-Phenyl	7-ADCA	Δ^2 -7-ADCA
	,	glycine		
Precision				
Instrument - RSD (%) of	≤50%	0.65	0.66	0.51
Detector Response for each				
impurity				
Method - RSD (%) of each	≤ 5.0 %	1.35	1.34	1.56
Impurity %				
Linearity and Range				
Correlation coefficient (r)	≥0.99	0.9992	0.9995	0.9997
RSD (%) of detector	≤ 5.0 %	2.90	2.86	3.25
responses				
Accuracy				
Percentage recovery	95.0 % -	101.43 %	101.00 %	100.64 %
<i>. .</i>	105.0 %			
Minimum quantitation		0 03 %	0.03 %	0.06 %
level (in %)				
RSD (%) at MQL	≤ 5.0 %			

Cephalexin related substances method validation summary

Contd..

		Phenyl acetic acid	7-PADCA	Cephalexin
Precision				
Instrument - RSD (%) of	≤ 5.0 %	1.63	0.77	0.47
Detector Response for each				
impurity				
Method - RSD (%) of each	≤ 5.0 %	3.78	1.78	-
Impurity %				
Linearity and Range				
Correlation coefficient (r)	≥ 0.99	0.9985	0.997	0.9997
RSD (%) of detector	≤ 5.0 %	4.02	2.15	2.80
responses				


Accuracy Percentage recovery	95 0 % - 105 0 %	98.94 %	100.16 %	-
Minimum quantitation		0 25 %	0 13 %	0 25 %
level				
RSD (%) at MQL	≤ 5.0 %			

The results of the study indicate that this method for related substances and process impurities in cephalexin is precise, accurate, linear in detector response and rugged Representative chromatogram of pantoprazole is given below

```
Shimadzu CLASS-VP V5.03 Area % Report
```

Method Name: C:\CLASS-VP\METHODS\cephalexin.met Data Name : C:\CLASS-VP\VLdata\Cepha\cepha.034 Acquired : 10/11/2000 6:34:02 PM Sample name : Standard solution

Standard solution

All references related to current work is given in References section

At last but not the least, representative method validation chromatograms were presented in Appendix section