
Chapter 8

Real Time
and Embedded
Implementation of
Hybrid Algorithm

151

•A
'ti

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

Since the complete implementation of the hybrid algorithm proposed here has a great

computational complexity, it is necessary to test the possibility of implementing it in a real time

and embedded environment. As the developed algorithm is at a primary research level, it is

needed to perform tests on a flexible platform that allows the implementation of the hon-

optimized algorithms with a reasonable effort. The algorithm is first tried for real time

implementation on PC using SIMULINK. For dedicated hardware implementation the DSP

platform using 32-bit floating point processor TMS320C6713 from Texas Instruments is

selected. DSK 6713 from Spectrum Digital Incorporation is used for implementing algorithm on

the TMS320C6713 DSP. The Code Composer Studio Integrated Development Environment

version 3.3 (CCS IDE V3.3) from Texas Instruments is used as compiler and debugger. This!tooI

is invoked from MATLAB using RTW and Target Support Package TC6 toolboxes. Various

profiling results are obtained and compared in this chapter.

8.1 Typical Setup for Developing Models
Figure 8.1 presents a block diagram of the typical setup for developing models, along

with the input and output connected to the C6713 DSK [1],

Fig. 8.1 Typical hardware and software setup for developing models

8.2 Real Time Implementation of Hybrid Approach on PC
Figure 8.2 presents a block diagram of real time PC implementation of hybrid algorithm.

The data buffering and windowing, hybrid algorithm and overlap-add blocks represent sub­

systems used to implement the overall speech enhancement system. In the set up the ailidio

device (microphone) catch up the noisy speech signal from real environment. It digitizes' the

monophonic speech signal with 8 KHz sampling rate and 16 bits/sampie resolution. The

152

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

buffering and windowing block frames the incoming data into a frame of 256 samples with 50%

overlap and windowed using Hamming window. The RASTA algorithm is non-causal and

requires future frames for filtering; which throws the challenge for real time implementation. So

a sub-frame concept is used to overcome it. Here the framed data is divided into four sub-frames

each consists of 64 samples. The matrix concatenate block is used to make a 64 x 4 data block

from four 64 x 1 sub-frame. It is shown in figure 8.3. After proper framing the 256 point FFT is

taken and from complex spectrum the magnitude is taken for further processing and phase is

given for reconstruction with enhanced magnitude. The hybrid algorithm sub-system performs

the speech enhancement operation using the combine RASTA and STSA approach described in

chapter 6. Figure 8.4 shows the internal blocks of the sub-system. The entire hybrid algorithm is

incorporated as an embedded MATLAB function. Finally from noisy phase and enhanced

magnitude the enhanced complex spectrum is obtained for a frame. After 256 point IFFT

operation, the overlap-add synthesis is performed to reconstruct the signal in time domain.

Figure 8.5 shows the internal blocks to obtain overlap-add synthesis. The enhanced speech can

be heard on speaker or headphone. The amplitude of output speech can be controlled by setting

the gain value in the block before the wave device block (speaker/headphone).

REAL TIME PC IMPLEMENTATION OF HYBRID ALGORITHM

Fig. 8.2 SIMULINK block for real time implementation of hybrid algorithm on PC

T53

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

— harming

CD—►
mi

1 /\

Complex to
Magnitude-Angle phase out

Submatrix3

Submatrix2

Fig. 8.3 Internals of sub-system data buffering and windowing

Fig. 8.4 Internals of sub-system hybrid algorithm

154

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

Delay Selector!

Fig. 8.5 Internals of sub-system overlap-add synthesis

Figure 8.6 shows the time domain waveform of clean speech, noisy speech corrupted by

airport noise of 5dB and enhanced speech using the real time hybrid algorithm. It is self

explanatory from this figure that the background noise is completely eliminated from the speech.

Fig. 8.6 Waveforms of clean, noisy and enhanced speech using real time hybrid algorithm

155

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

8.3 SIMULINK Profile Results
The Profiler allows running a program and then looking at how long each block took

to execute. The profiler captures data while the model runs and identifies the parts of model

requiring the most time to simulate. With this information one can concentrate on optimizing the

sections of code that take up the most time. Figure 8.7 shows the SIMULINK profile results for

the hybrid algorithm.

Simulink Profile Report: Summary
Report generated 20-Jun-2011 16:56:31

Total recorded time 5-90 s
Number ol Block Methods: 53
Number ol Internal Methods: 3
Number ot Nonvirtua Subsystem Methods: 3
Clock precision: 0.00000005 o
Clock Spood: 2166 MHz
To write this data as MMSETASTAPCProfi cData n the base wcrapaco click here

Function List

Name Time cans Time call Seif rime
Location (musf use MATL AB Web
Brows?' fo viewi

sin 5 89683780 IOC 0% i 5 89663780000 1 Of000000 nr-% MM.Sk KASIA_HC

Modelinitialit© 5.30642440 64.6% i 3 80642440000 3 6C642440 54 6% MMSk_KAb1A_P U

ModelT©rminat© 1.16440/40 1<j.6% 1 1." 544C/4UUUU 1 1^440/40 19 6% MMSE_RASTA_PC

ModclBxccute 0.93600600 15.9% 1 0.936CC600000 D 04680030 0 6% MMSE_RASTA_PC

MMSE_RASTA_PC (Output) 0.87360560 1-1.8% 166 0.00''65225185 D03120020 3 6% MMSE_RASTA_PC

Ma jorOutputa 0.87360560 h.8<k 166 0.00*62225185 DOCOOOOOO 0 0% MMSE RASTA_rC

MM3E RASTA PC/Hybrid 0.73320470 12.4% 12C 0.00561508492 D015G0010 0 2%
MMSE RASTA PC/Hybrid

Algorithm/Main lcop (Output) Algor_thro/Main loop

MUSE RASTA PC/Hybrrd MMSE_RASTA_PC/HVbr 13
Algorithm/Mam loop/ 0./1 f60460 12.2% 126 0.0056562 /46U J/1/6046U 122% Algorithm/Main loop/
SFunction (Output) SEur.ct l on

tMSE RASTA PC/Data Buffering MMSE_RASTA_rc/Cata Dufferine
and Windowing/Ccxnplex to 0.04600030 C.0% 12€ O.OOOC7143095 D 04600030 0C% and Wmdowinq/Ccrnplex to

Maqnitude-Anqle (Output) Maqr. i t j de- Angle

MMSE_RASTA_PC/NOlsy Audio 0 015600-0 C 3% 63 0 00024762063 .101560010 0 3%
MMSE RAST?_PC/NOlS7 PUd-0

sourc©/Random source (Output) r. nnrr© / R^rdorr '.mrr©

Ma jorUpdate 0.01560010 (J.3% 1b<# 0.00008254021 J01560010 0 3% MMS E_RASTA_PC

MMSE RASTA PC/Overlap and 0.01560010 C.3% 12€ 0.00015381032 D01560010
MMSE_RASTA_PC/Overlap and

Add/Sum (Output} Add/Sum

MM3E RASTA PC/Maqnrtude-Anqle 0.015000-0 C.3% 12€ 0.00012381032 D01500010
MM£E_RASTA_rC/McgnituCe Anqle

to Ccnplex (Output) zd Conplex

MMSE_RASTA_PC/Manual 0 01.5600 0 C 3% 1 ocoooooo Of-%
MMSE .RASTA. PC/Mcnual

svitch/switchControl (Output) Switch'swltcticor.trol

MMSE RASTA DC/Hyfcnd 0.015600*0 C.3% 126 0.00012381032 D01560010 0 3%
mms k_KAb. i a_pc /Hybrid

Algorithm/Counter (Output) Algor -1hm/Counter

Fig. 8.7 SIMULINK profile results of hybrid algorithm

156

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

The model initialize, terminate and execute times are not a major concerned for real time

implementations. The Main loop of the hybrid algorithm occupies the majority of execution time

as expected. Form figure 8.7 it is 12.4%. The other blocks require comparatively less time.

Hence the main loop function of the hybrid algorithm is the major concern for embedded

implementations. It can be concluded here that with the given complexity of the hybrid algorithm

it is suitable for real time implementation on PC. It is interesting to see the same profiling results

when the algorithm is downloaded on dedicated hardware.

8.4 Real Time Implementation of Hybrid Approach on DSK6713
Figure 8.8 presents a diagram for real time implementation of hybrid algorithm on

DSK6713. It differs from the previous block only by I/O which is C6713 DSK ADC and DAC

here. The link and procedure for downloading this model on the kit has been already described in

chapter 7.

C6713DSK

Mic In
C6713 DSK

ADC
In1

Out1

Mag_out

Phase_out

window

Data Buffering
and

Windowing

FFT

FFT
Magnltude-An tie

n—^|______| RelatiiRelational
Operator

X>“l

in1
fn2 _In3 0ut1 H
!n4

Re(u)

Inverse
Short-Time FFT

Complex to
Real-lmag

C0713DSK
DAC

Hybrid Algorithm

Fig. 8.8 SIMULINK block for real time implementation of hybrid algorithm on DSK6713

8.5 Profiling Results for DSK 6713 Implementation
Target Support Package TC6 software [2] supports DSP/BIOS features as options when

code is generated for target and some ways it is possible to use the real-time operating system

(RTOS) features of DSP/BIOS in the application. As a part of the Texas Instruments eXpressDSP™

technology, TI designed DSP/BIOS to include three components:

157

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

• DSP/BIOS Real-Time Analysis Tools — these tools and windows within Code

Composer Studio IDE are used to view program as it executes on the target in real-time.

• DSP/BIOS Configuration Tool — enables to add and configure any and all DSP/BIOS

objects that used to instrument the application. This tool is used to configure interrupt

schedules and handlers, set thread priorities, and configure the memory layout on DSP.

• DSP/BIOS Application Program Interface (API) — lets to use C or assembly language

functions to access and configure DSP/BIOS functions by calling any of over 150 API

functions. Target Support Package TC6 software uses the API to access DSP/BIOS.

These components can be linked into application, directly or indirectly referencing only

functions that need for the application to run efficiently and optimally. Only functions that

specifically reference become part of the code base. Others are not included to avoid adding

unused code to the project. In addition, after adding one or more functions from DSP/BIOS, the

configuration tool helps to disable feature that do not need later, letting to optimize the program

for speed and size.

While generating code that includes the DSP/BIOS options DSP/BIOS objects become

part of the generated code. With these in place the profiling option in Target Support Package

TC6 software can be used to check the performance of application running on target, gauge

performance and find bottlenecks. To generate code that includes DSP/BIOS options, the Target

Preferences block must select DSP/BIOS from the Operating system list on the Board Info pane.

By selecting profile real-time task execution in the RTW software options, it inserts statistics

(STS) object instrumentation at the beginning and end of the code for each atomic subsystem in

the model. After the code has been running for a few seconds on target, the profiling results from

target can be retrieved and it displays the information in a custom HTML report. Code profiling

works only on atomic subsystems in the model. By designating subsystems of the model as
!

atomic, each subsystem is forced to execute only when all of its inputs are available. Waiting for

all the subsystem inputs to be available before running the subsystem allows the subsystem code

to be profiled as a contiguous segment. Nested subsystems are profiled as part of their parent

systems—the execution time reported for the parent subsystem includes the time spent in !any

profiled child subsystems. When the model is configured to use single-tasking mode, all atomic

subsystems in the model are profiled and appear in the report. However, all systems and

158

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

subsystems do run once before the program terminates. This allows obtaining profiling results

for all systems. The following tasks compose the process of profiling the code generated.

1. Enable DSP/BIOS for the code.

2. Enable profiling in the Real-Time Workshop software.

3. Create atomic subsystems to profile in the model.

4. Build, download, and run the model.

5. Use profile to view the MATLAB profile report.

The report shows the amount of time spent computing each subsystem, including outputs

and updates of code segments, and provides links that open the corresponding subsystem in the

SIMUL1NK model. Following are the definitions of report entries.

• System name

Provides the name of the profiled model.

• Number of iterations counted

The number of interrupts that occurred between the start of model execution and'the

moment the statistics was obtained.

• CPU clock speed

The instruction cycle speed of the digital signal processor.

• Maximum time spent in this subsystem per interrupt

The amount of time spent in the code segment corresponding to the indicated subsystem

in the worst case. Over all the iterations measured, the maximum time that occurs is

reported here. Since the profiler only supports single-tasking solver mode, no calculation

can be preempted by a new interrupt. AH calculations for all subsystems must complete
within one interrupt cycle, even for subsystems that execute less often than the fastest

rate.

• Maximum percent of base interval

The worst-case execution time of the indicated subsystem, reported as a percentage of the

time between interrupts. \

• STS objects

Profiling uses STS objects to measure the execution time of each atomic subsystem. One

STS object can be used to profile exactly one segment of code. Depending on how RtW

generates code for each subsystem, there may be one or two segments of code for the

159

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

subsystem; the computation of outputs and the updating of states can be combined or

separate.
Using the above mentioned settings the report obtained for DSK6713 implementation of

the model is shown in figure 8.9.

Profile Report

Simulink model: MMSE RASTA DSK BIQS.mdl

Target: C6713DSK

Report of profile data from Code Composer Studio (tm)

04-Aug-2011 13:25:37

Timing constants

Base sample time J16 ms

CPU clock speed1' 225 MHz

Profiled Simulink Subsystems

System name MMSE RASTA DSK BIOS

STS object stsSys8_OutputUpdate

Maximum time spent in this

subsystem
301.5 ms (1884% of base interval)

Average time spent in this

subsystem
60.68 ms (379% of base interval)

Number of iterations counted 498

Fig. 8.9 Profile report of real time implementation of hybrid algorithm on DSK6713

160

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

System name
MMSE RASTA DSK BIOS/Hvbrid

Algorithm

STS object stsSys5_OutputUpdate

Maximum time spent in this

subsystem
286.7 ms (1791% of base interval)

Average time spent in this

subsystem
45.95 ms (287% of base interval)

Number of iterations counted 498

System name
MMSE RASTA DSK BIOS/Hvbrid

Algorithm/Main looo

STS object stsSys4_OutputUpdate

Maximum time spent in this

subsystem
286.2 ms (1788% of base interval)

Average time spent in this

subsystem
45.48 ms (284% of base interval)

Number of iterations counted 498

System name MMSE RASTA DSK BIOS/ADC

STS object stsSysOOutputUpdate

Maximum time spent in this

subsystem
15.9 ms (99% of base interval)

Average time spent in this

subsystem
124.4 ps (0.777% of base interval)

Number of iterations counted 250

Fig. 8.9 Profile report of real time implementation of hybrid algorithm on DSK6713 (cont.)

1161

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

System name
MMSE RASTA DSK BIOS/Data Buffering

and Windowing

STS objects stsSys2_Output, stsSys2_Update

Maximum time spent in this

subsystem
11.14 ms (69% of base interval)

Average time spent in this

subsystem
10.83 ms (67% of base interval)

Number of iterations counted 499

System name MMSE RASTA DSK BIOS/STFT

STS object stsSys7_OutputUpdate

Maximum time spent in this

subsystem
2.774 ms (17.3% of base interval)

Average time spent in this

subsystem
2.663 ms (16.6% of base interval)

Number of iterations counted 499

System name MMSE RASTA DSK BIOS/ISTFT

STS objects stsSys6_Output, stsSys6_Update

Maximum time spent in this

subsystem
1.2 ms (7.5% of base interval)

Average time spent in this

subsystem
1,126 ms (7.04% of base interval)

Number of iterations counted 498

Fig. 8.9 Profile report of real time implementation of hybrid algorithm on DSK6713 (cont.)

162

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

System name MMSE RASTA DSK BIOS/DAC

STS object stsSys 1 _OutputUpdate

Maximum time spent in this

subsystem
69.51 ps (0.434% of base interval)

Average time spent in this

subsystem
54.19 ps (0.339% of base interval)

Number of iterations counted 249

System name
MMSE RASTA DSK BIOS/FRAME

INDEXING

STS object sts Sys3_OutputU pdate

30.93 ps (0.193% of base interval)
Maximum time spent in this

subsystem

Average time spent in this

subsystem
14.79 ps (0.0924% of base interval)

Number of iterations counted 499

Notes
1. The CPU clock speed is assumed to be 225 MHz. If your board uses a different clock spfeed,

then you must specify the correct CPU clock speed in the Target Preferences Block.

2. STS timing objects associated with subsystem profiling are configured for a host-side

operation of 4*x, reflecting the numerical relationship between CPU clock cycles and high-

resolution timer clicks. Therefore, STS Max, Total, and Average measurements are correctly
i

reported in units of "instructions" or "CPU clock cycles".

3. This page is best viewed with the MATLAB Help Browser, which allows the system names to

link to the corresponding subsystems in the Simulink model.

Fig. 8.9 Profile report of real time implementation of hybrid algorithm on DSK6713 (cotat.)

163

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

Looking at the report the hybrid algorithm block occupies 284% average time of the base

sample time. That is the constraint for the DSK6713 implementation of the same model which

has no problem at all when runs on PC. The output speech obtained is obviously no longer as per

the requirements. The algorithm needs some optimizations before its implementation on

DSK6713. The comparison of both these implementations is shown in table 8.1.

Function/Block PC Implementation DSP Implementation
CPU clock speed 2166MHz 225MHz

Average Execution Time
Input 0.3% 0.78%
Data buffering/windowing 0.8% 6.7%
Hybrid algorithm (Main loop) 12.4% 284%
Overlap-add 0.3% 7.04%
Output 0.3% 0.34%

Table 8.1 Profile results comparison

8.6 CCS Profiling Results for DSK 6713 Implementation
To create an efficient application, it is needed to focus on performance, power, code size,

or cost depending upon goals. Application code analysis is the process of gathering and

interpreting data about factors that influence an application’s efficiency. CCS IDE provides

profile tool to help in analyzing the code [3]. These profiling are incorporated for use with a

simulator (C6713 device cycle accurate simulator with little endian is used in the application),

and will not function properly with a DSK hardware configuration. This activity measures' the

total cycles consumed by entire application and calculates the total code size of application. The

settings for the same are described in [3]. Using this summary of the profiling of the program

loaded in simulator is obtained and described in table 8.2. To optimize performance it is required

to decrease stall cycles and increase hit ratio of various cache memories. However it requires a

complex tuning process.

164

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

Event Count Percentage

Total Cycles 423782
NOP cycles 26392 49.71
Stall Cycles 370688 87.47
LIP Stall Cycles 201339 47.51
LID Stall Cycles 218253 51.50
Instructions decoded 45214
Instructions executed 40015 88.50
Instructions conditioned false 5199 11.50
Execute Packets 32699
Branches taken 6924
Total Loads 2697
Total Stores 6643
Instruction cache references 19370
Instruction cache hits 15979 82.49
Instruction cache misses 3391 17.51
Data cache references 9340
Data cache reads 2697 28.88
Data cache writes 6643 71.12
Data cache hits 552 5.91
Data cache read hits 293 10.86
Data cache write hits 259 3.90
Data cache misses 8788 94.09
Data cache read misses 2404 89.14
Data cache write misses 6384 96.10
L2 cache references 14
L2 cache data reads 0 0.00
L2 cache data writes 0 0.00
L2 cache instruction reads 14 100.00
L2 cache hits 1 7.14
L2 cache data read hits 0 0.00
L2 cache data write hits 0 0.00
L2 cache instruction hits 1 7.14
L2 cache misses 13 92.86
L2 cache data read misses 0 0.00
L2 cache data write misses 0 0.00
L2 cache instruction misses 13 92.86
L2 SRAM references 4497
L2 SRAM data reads 14 o.3i ;
L2 SRAM data writes 4376 97.31
L2 SRAM instruction reads 107 2.38

Table 8.2 CCS profile summary of hybrid algorithm

165

Chapter 8 Real Time and Embedded Implementation of Hybrid Algorithm

8.7 Summary
This chapter has described the real time implementation of hybrid algorithm on PC as

well as DSK6713 through SIMULINK. The profiling results are obtained and described. For PC

implementation the algorithm works fine and gives the real time enhanced speech output. But for

DSK6713 implementation it is not the case. The enormous resources available on PC me

responsible for the better performance. For DSK implementation as already indicated the main

loop requires optimization as the execution can’t be completed within base sample time. More

powerful platform like media processor DM6437 may provide the desired result. Further
optimization of the code can be done through the algorithm tuning process1.

1A paper entitled “Real Time and Embedded Implementation of Hybrid Algorithm for Speech Enhancement” is
accepted for presentation in IEEE World Congress on Information and Communication Technologies (WICT 2011)
Co-organized by Machine Intelligence Research Labs (MIR Labs) and University of Mumbai, Mumbai.

166

