## References

#### References

- Douglas O'Shaughnessy, Speech Communications, 2<sup>nd</sup> Ed., University press (India) Ltd., Hydrabad, 2001.
- [2] Thomas F. Quatieri, Discrete-time Speech Signal Processing, 1<sup>st</sup> Indian reprint, Pearson education signal processing series, Delhi, 2004.
- [3] J.Benesty, S.Makino, J.Cheng, Speech Enhancement, Springer series of signals and communication technology, Heidelberg, 2005.
- [4] A.M.Kondoz, Digital Speech, 2<sup>nd</sup> Ed., Wiley India Pvt. Ltd., New Delhi, 2007.
- [5] L.R.Rabiner, R.W.Schafer, Digital Processing of Speech Signals, 1<sup>st</sup> Ed., Pearson Education, Delhi, 2004.
- [6] N.Magotra, Y.Yang, R.Whitman, P.Kasthuri, "Real time speech enhancement for wireless communication systems," Thirty first Asilomar Conf. on Signals, Systems and Computers, Vol. 1, pp. 159-63, November 1997.
- [7] M.P.Cooke, "Making sense of everyday speech: a glimpsing account," Speech Separation by Humans and Machines, Edited by P.Divenyi, New York, 2004.
- [8] T.V.Ramabadran, J.P.Ashley, M.J.McLauglin, "Background noise suppression for speech enhancement and coding," IEEE Workshop on Speech Coding for Telecommunications Proceedings, 1997.
- [9] J.S.Lim, A.V.Oppenheim, "Enhancement and bandwidth compression of noisy speech," in Proc. IEEE, Vol. 67, pp.-1586-1604, December 1979.
- [10] S.F.Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. ASSP-27, pp.-113-120, April 1979.
- [11] M.Berouti, R.Schwartz, J.Makhoul, "Enhancement of speech corrupted by acoustic noise," ICASSP'79, Vol.4, pp. 208-211, April 1979.
- [12] S.Kamath, P.Loizou, "A multi-band spectral subtraction method for enhancing speech corrupted by colored noise," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2002.
- [13] B.L.Sim, Y.C.Tong, J.S.Chang, C.T.Tan, "A parametric formulation of the generalized spectral subtraction method," IEEE Trans. on Speech and Audio Processing, Vol. 6,no. 4, pp. 328-337, July 1998.
- [14] R.J.McAulay, M.L.Malpass, "Speech enhancement using a soft decision noise suppression filter," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 28, pp. 137-145, 1980.

- [15] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error short time spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-32,no. 6, pp. 1109-1121, December 1984.
- [16] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error log spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-33, no. 2, pp. 443-445, April 1985.
- [17] P.Scalart, J.V.Filho, "Speech enhancement based on a priori signal to noise ratio estimation," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 96, pp. 629-632, May 1996.
- [18] P.Wolfe, S.Godsill "Simple alternatives to the Ephrahim and Malah suppression rule for speech enhancement," in Proc. 11<sup>th</sup> IEEE Workshop Statistical Signal Processing, 2001, pp. 496-499, 2001.
- [19] P.Vary, "Noise suppression by spectral magnitude estimation-mechanism and theoretical limits," Signal Processing, Vol. 8, pp. 387-400, 1985.
- [20] Md. Rashidul Islam, Hasibul Haque, M.Q. Apu, Md. Kamrul Hasan, "On the estimation of noise from pause regions for speech enhancement using spectral subtraction," in Proc. 3<sup>rd</sup> International Conference on Electrical and computer Engineering ICECE 2004, Dhaka, Bangladesh, pp. 402-405, December 2004.
- [21] Kotta Manohar, Preeti Rao, "Speech enhancement in non-stationary noise environments using noise properties," Speech Communication, Vol. 48, pp. 96-109, 2006.
- [22] A.Rezayee, S.Gazor, "An adaptive KLT approach for speech enhancement," IEEE Trans. Speech and Audio processing, Vol. 9, pp. 87-95, February 2001.
- [23] M.Gabrea, "Robust adaptive Kalman filtering based speech enhancement algorithm," in Proc. IEEE ICASSP 2004, vol. 1, pp-I301-304, May 2004.
- [24] J.H.Chang, S.Gazor, N.S.Kim and S.K.Mitra, "Multiple statistical models for soft decision in noisy speech enhancement," Pattern Recognition, Vol. 40, pp. 11123-34, March 2007.
- [25] S.Manikandan, "Speech enhancement based on wavelet de-noising," ACAD journal, Vol.17, part 1/P7, 2006.
- [26] X.Shen, L.Deng, "Discrete  $H_{\infty}$  filter design with application to speech enhancement," in Proc. IEEE ICASSP'95, pp.1504-1507, 1995.
- [27] Mingyang Wu, DeLiang Wang, "A two stage algorithm for enhancement of reverberant speech," in Proc. IEEE ICASSP 2005, pp. 1085-88, 2005.
- [28] Zhaozhang Jin, DeLiang Wang, "Learning to maximize signal-to-noise ratio for reverberant speech segregation," in Proc. IEEE ICASSP 2009, pp. 4689-92, 2009.

- [29] Serajul Haque, Roberto Togneri, Anthony Zaknich, "Auditory Features for Speech Recognition and Enhancement," VDM Verlag Dr, Müller Aktiengesellschaft & Co., Germany, 2009.
- [30] N.Virag, "Single channel speech enhancement based on masking properties of the human auditory system," IEEE Trans. Speech and Audio Processing, Vol. 7, pp. 126-37, March 1999.
- [31] Hynek Hermansky, Nelson Morgan "RASTA processing of speech," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.2, pp. 578-589, October1994.
- [32] H.Hermanskey, E.A.Wan, C.Avendano, "Noise suppression in cellular communications," 2<sup>nd</sup> IEEE workshop on Interactive Voice Technology for Telecommunications Applications IVTT 94, Kyoto, Japan, September 1994.
- [33] Hynek Hermansky, Nelson Morgan, Hans-Gunter Hirsch, "Recognition of speech in additive and convolutive noise based on RASTA spectral processing," IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-93, 1993.
- [34] H.Hermansky, E.A.Wan, C.Avendano, "Speech enhancement based on temporal processing," International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95, 1995.
- [35] Carlos Avendano, Hynek Hermansky, "On the properties of temporal processing for speech in adverse environments," in Proc. WASPA'97, Mohonk, New York, 1997.
- [36] A.Hu, P.Loizou, "Subjective comparisons of speech enhancement algorithms," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, May 2006.
- [37] R.Singaram, P.Guru Raghavendran, S.Shivaramakrishnan, R.Srinivasan, "Real time speech enhancement using Blackfin processor BF533," Journal of Instrumentation Society of India, Vol. 2, pp.67-79, November 2004.
- [38] Chung-Hsien Yang, Jia-Ching Wang, Jhing Fa Wang, Chung Hsien Wu, Kai Hsing Chang, "Design and implementation of subspace based speech enhancement under in-car noisy environments," IEEE Trans. Vehicular Technology, Vol. 57, pp. 1466-79, May 2008.
- [39] Creighton Doraiswami, "Real time implementation of an adaptive filter for speech enhancement," in Canadian Conference on Electrical and Computer Engineering, Vol. 4, pp. 2201-2204, May 2004.
- [40] The NOIZEUS database.

Available: http://www.utdallas.edu/~loizou/speech/noize. Accessed on 30-10-2009.

[41] 3GPP2 Specifications.

Available: http://www.3gpp2.org/Public\_html/specs/index.cfm. Accessed on 01-08-2009.

- [42] MATLAB R2009a: Documentation CD The Mathworks Inc.
- [43] User Guide: Using MATLAB7.8 (R2009a) The Mathworks Inc.
- [44] User Guide: Using SIMULINK The Mathworks Inc.

- [45] User Guide: Creating Graphical User Interfaces The Mathworks Inc.
- [46] User Guide: Real Time Workshop ToolBox (use with MATLAB) The Mathworks Inc.
- [47] User Guide: Target Support Package TC6 ToolBox (use with MATLAB) The Mathworks Inc.
- [48] User Guide: Embedded IDE Link CC ToolBox (use with MATLAB) The Mathworks Inc.

- Douglas O'Shaughnessy, Speech Communications, 2<sup>nd</sup> Ed., University press (India) Ltd., Hydrabad, 2001.
- [2] Thomas F. Quatieri, Discrete-time Speech Signal Processing, 1<sup>st</sup> Indian reprint, Pearson education signal processing series, Delhi, 2004.
- [3] J.Benesty, S.Makino, J.Cheng, Speech Enhancement, Springer series of signals and communication technology, Heidelberg, 2005.
- [4] A.M.Kondoz, Digital Speech, 2<sup>nd</sup> Ed., Wiley India Pvt. Ltd., New Delhi, 2007.
- [5] L.R.Rabiner, R.W.Schafer, Digital Processing of Speech Signals, 1<sup>st</sup> Ed., Pearson Education, Delhi, 2004.
- [6] P.Krishnamoorthy, S.R.Mahadeva Prasanna, "Processing noisy speech for enhancement," IETE Journal of Technical Review, Vol. 24, no. 5, pp. 351-57, September-October 2007.
- [7] P.Krishnamoorthy, S.R.Mahadeva Prasanna, "Temporal and spectral processing methods for processing of degraded speech: a review," IETE Journal of Technical Review, Vol. 26, Issue 2, pp. 137-48, March-April 2009.
- [8] T.V.Ramabadran, J.P.Ashley, M.J.McLauglin, "Background noise suppression for speech enhancement and coding," IEEE Workshop on Speech Coding for Telecommunications Proceedings, 1997.
- [9] 3GPP2 Specifications.
  Available: http://www.3gpp2.org/Public html/specs/index.cfm. Accessed on 01-08-2009.
- [10] J.H.Chang, S.Gazor, N.S.Kim, S.K.Mitra, "Multiple statistical models for soft decision in noisy speech enhancement," Pattern Recognition, Vol. 40, pp. 11123-34, March 2007.
- [11] Chung-Hsien Yang, Jia-Ching Wang, Jhing Fa Wang, Chung Hsien Wu, Kai Hsing Chang, "Design and implementation of subspace based speech enhancement under in-car noisy environments," IEEE Trans. Vehicular Technology, Vol. 57, pp. 1466-79, May 2008.
- [12] A.Rezayee, S.Gazor, "An adaptive KLT approach for speech enhancement," IEEE Trans. Speech and Audio processing, Vol. 9, pp. 87-95, February 2001.
- [13] M.Gabrea, "Robust adaptive Kalman filtering based speech enhancement algorithm," in Proc. IEEE ICASSP 2004, vol. 1, pp.301-304, May 2004.

#### References

#### Chapter 10

- [14] X.Shen, L.Deng, "Discrete  $H_{\infty}$  filter design with application to speech enhancement," in Proc. IEEE ICASSP'95, pp.1504-1507, 1995.
- [15] N.Virag, "Single channel speech enhancement based on masking properties of the human auditory system," IEEE Trans. on Speech and Audio processing, Vol. 7, pp. 126-37, March 1999.
- [16] Mingyang Wu, DeLiang Wang, "A two stage algorithm for enhancement of reverberant speech," in Proc. IEEE ICASSP 2005, pp. 1085-88, 2005.
- [17] Zhaozhang Jin, DeLiang Wang, "Learning to maximize signal-to-noise ratio for reverberant speech segregation," in Proc. IEEE ICASSP 2009, pp. 4689-92, 2009.
- [18] M.P.Cooke, "Making sense of everyday speech: a glimpsing account," in Speech Separation by Humans and Machines," Edited by P.Divenyi, New York, 2004.
- [19] Hynek Hermansky, Nelson Morgan "RASTA processing of speech," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.2, pp. 578-589, October 1994.
- [20] Simon Haykin, Thomas Kailath, Adaptive Filter Theory, 4th Ed., Pearson Education, Delhi, 2005.
- [21] S.M.Kuo, Woon Seng Gun, Digital Signal Processors Architectures, Implementation and Applications, 1<sup>st</sup> Ed., Pearson Education, Delhi,2005.

- Douglas O'Shaughnessy, Speech Communications, 2<sup>nd</sup> Ed., University press (India) Ltd., Hydrabad, 2001.
- [2] Thomas F. Quatieri, Discrete-time Speech Signal Processing, 1<sup>st</sup> Indian reprint, Pearson education signal processing series, Delhi, 2004.
- [3] J.Benesty, S.Makino, J.Cheng, Speech Enhancement, Springer series of signals and communication technology, Heidelberg, 2005.
- [4] A.M.Kondoz, Digital Speech, 2<sup>nd</sup> Ed., Wiley India Pvt. Ltd., New Delhi, 2007.
- [5] L.R.Rabiner, R.W.Schafer, Digital Processing of Speech Signals, 1<sup>st</sup> Ed., Pearson Education, Delhi, 2004.
- [6] J.S.Lim, A.V.Oppenheim, "Enhancement and bandwidth compression of noisy speech," in Proc. IEEE, Vol. 67, pp.-1586-1604, December 1979.
- [7] S.F.Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. ASSP-27, pp.-113-120, April 1979.
- [8] M.Berouti, R.Schwartz, J.Makhoul, "Enhancement of speech corrupted by acoustic noise," ICASSP'79, Vol.4, pp. 208-211, April 1979.
- P.Vary, "Noise suppression by spectral magnitude estimation-mechanism and theoretical limits," Signal Processing, Vol. 8, pp. 387-400, 1985.

- [10] S.Kamath, P.Loizou, "A multi-band spectral subtraction method for enhancing speech corrupted by colored noise," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2002.
- [11] B.L.Sim, Y.C.Tong, J.S.Chang, C.T.Tan, "A parametric formulation of the generalized spectral subtraction method," IEEE Trans. on Speech and Audio Processing, Vol. 6,no. 4, pp. 328-337, July 1998.
- [12] R.J.McAulay, M.L.Malpass, "Speech enhancement using a soft decision noise suppression filter," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 28, pp. 137-145, 1980.
- [13] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error short time spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-32, no. 6, pp. 1109-1121, December 1984.
- [14] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error log spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-33, no. 2, pp. 443-445, April 1985.
- [15] P.Scalart, J.V.Filho, "Speech enhancement based on a priori signal to noise ratio estimation," in Proc. IEEE International conference on Acoustics, Speech and Signal Processing ICASSP 96, pp. 629-632, May 1996.
- [16] P.Wolfe, S.Godsill "Simple alternatives to the Ephrahim and Malah suppression rule for speech enhancement," in Proc. 11<sup>th</sup> IEEE workshop Statistical signal processing, 2001, pp. 496-499, 2001.
- [17] A.Hu, P.Loizou, "Subjective comparisons of speech enhancement algorithms," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 153-156, May 2006.
- [18] O.Cappe, "Elimination of the musical noise phenomenon with the Ephrahim and Malah noise suppressor," IEEE Trans. on Speech and Audio Processing, Vol. 2, No.2, pp. 346-349, 1994.
- [19] Md. Rashidul Islam, Hasibul Haque, M.Q. Apu, Md. Kamrul Hasan, "On the estimation of noise from pause regions for speech enhancement using spectral subtraction," in Proc. 3<sup>rd</sup> International Conference on Electrical and Computer Engineering ICECE 2004, Dhaka, Bangladesh, pp. 402-405, December 2004.
- [20] R.Singaram, P.Guru Raghavendran, S.Shivaramakrishnan, R.Srinivasan, "Real time speech enhancement using Blackfin processor BF533," Journal of Instrumentation Society of India, Vol. 37, No.2, pp. 67-79, November 2004.
- [21] B.Jawerth, W.Sweldens, "An overview of wavelet based multi resolution analysis," SIAM Review, Vol. 36, no. 3, pp. 377–412, 1994.

- [22] D.L.Donoho, "De-noising by soft-thresholding," IEEE Trans. on Information Theory, Vol. 41, no. 3, pp. 613–627, May 1995.
- [23] D.L.Donoho, I.M.Johnstone, "Ideal spatial adaptation by wavelet shrinkage," Biometrika, Vol. 81, no. 3, pp. 425–455, 1994.
- [24] I.M.Johnstone, B.W.Silverman, "Wavelet threshold estimators for data with correlated noise," Journal of Royal Statistics Society, Vol. 59, pp. 319-351, 1997.
- [25] M.Bahoura and J.Rouat, "Wavelet speech enhancement based on the Teager energy operator," IEEE Signal Processing Letters, Vol.8, no.1, pp. 10-12, 2001.
- [26] V.Balakrishnan, Nash Borges, Luke Parchment, "Wavelet de-noising and speech enhancement," Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore.
- [27] S.Manikandan, "Speech enhancement based on wavelet de-noising," Academic Open Internet Journal on www.acadjournal.com Vol. 17, 2006.
- [28] W.Voiers, "Interdependencies among measures of speech intelligibility and speech quality," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 703-705, 1980.
- [29] Y.Hu, P.Loizou, "Evaluation of objective quality measures for speech enhancement," IEEE Trans. on Audio, Speech, and Language Process., Vol. 16, no. 1, pp. 229–238, January 2008.
- [30] S.Dimolitsas, "Objective speech distortion measures and their relevance to speech quality assessments," in Proc. IEEE International Conference on Vision, Image and Signal Processing, pp. 317-324, 1989.
- [31] J.H.L.Hansen, B.Pellom, "An effective quality evaluation protocol for speech enhancement algorithms," in Proc. International Conference on Spoken Language Process, pp. 2819–2822, December 1998.
- [32] S.Wang, A.Sekey, A.Gersho, "An objective measure for predicting subjective quality of speech coders," IEEE Journal of Selected Areas of Communication, Vol. 10, no. 5, pp. 819-829, 1992.
- [33] D.Klatt, "Prediction of perceived phonetic distance from critical band spectra," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 7, pp. 1278-1281, 1982.
- [34] M.Karjalainen, "Sound quality measurements of audio systems based on models of auditory perception," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 9, pp. 132-135, 1984.
- [35] J.G.Beerends, A.P.Hekstra, A.W.Rix, M.P.Hollier, "Perceptual evaluation of speech quality (PESQ) the new ITU standard for end-to-end speech quality assessment part II -psychoacoustic model," Journal of Audio Engineering Society, Vol. 50, no. 10, pp. 765–778, October 2002.

#### References

- R.Singaram, P.Guru Raghavendran, S.Shivaramakrishnan, R.Srinivasan, "Real time speech enhancement using Blackfin processor BF533," Journal of Instrumentation Society of India, Vol. 37, No.2, pp. 67-79, November 2004.
- [2] S.F.Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. ASSP-27, pp.-113-120, April 1979.
- [3] M.Berouti, R.Schwartz, J.Makhoul, "Enhancement of speech corrupted by acoustic noise," ICASSP'79, Vol.4, pp. 208-211, April 1979.
- [4] S.Kamath, P. Loizou, "A multi-band spectral subtraction method for enhancing speech corrupted by colored noise," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2002.
- [5] P.Scalart, J.V.Filho, "Speech enhancement based on a priori signal to noise ratio estimation," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 96, pp. 629-632, May 1996.
- [6] R.J.McAulay, M.L.Malpass, "Speech enhancement using a soft decision noise suppression filter," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 28, pp. 137-145, 1980.
- [7] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error short time spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-32,no. 6, pp. 1109-1121, December 1984.
- [8] Y.Ephrahim, D.Malah, "Speech enhancement using a minimum mean square error log spectral amplitude estimator," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.ASSP-33, no. 2, pp. 443-445, April 1985.
- [9] MATLAB R2009a: Documentation CD The Mathworks Inc.
- [10] User Guide: Using MATLAB7.8 (R2009a) The Mathworks Inc.
- [11] User Guide: Creating Graphical User Interfaces The Mathworks Inc.
- [12] B.Grundlehner, J.Lecocq, R.Balan, J.Rosca, "Performance assessment method for speech enhancement systems," in Proc. 1<sup>st</sup> Annual IEEE BENELUX/DSP Valley Signal Processing Symposium, 2005.
- [13] Y.Hu, P.C.Loizou, "Subjective comparison and evaluation of speech enhancement algorithms," Speech Communication, Vol. 49, pp. 588–601, 2007.
- [14] IEEE Subcommittee, IEEE recommended practice for speech quality measurements, IEEE Trans. on Audio Electroacoustics, Vol. 17, Issue 3, pp. 225-246, September 1969.

- [15] H.Hirsch, D.Pearce, "The AURORA experimental framework for the performance evaluation of speech recognition systems under noisy conditions," in Proc. ISCA ITRW ASR 2000, pp. 181-188, 2000.
- [16] ITU, PESQ and objective method for end-to-end speech quality assessment of narrowband telephone networks and speech codecs, ITU-T recommendation P.862, 2000.
- [17] ITU-T, Objective measurement of active speech level, ITU-T recommendation P.56, 1993.
- [18] The NOIZEUS database. Available: http://www.utdallas.edu/~loizou/speech/noize. Accessed on 30-10-2009.
- [19] The composite objective measures software.Available: http://www.utdallas.edu/~loizou/speech/software.html. Accessed on 17-12-2009.

- T.V.Ramabadran, J.P.Ashley, M.J.McLauglin, "Background noise suppression for speech enhancement and coding," IEEE Workshop on Speech Coding for Telecommunications Proceedings, 1997.
- [2] 3GPP2 Specifications (2007). Available: http://www.3gpp2.org/Public\_html/specs/index.cfm
- [3] J.Benesty, S.Makino, J.Cheng, Speech Enhancement, Springer series of signals and communication technology, 2005.
- [4] Hynek Hermansky, Nelson Morgan "RASTA processing of speech," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol.2, pp. 578-589, Oct.1994.
- [5] H.Hermanskey, E.A.Wan, C.Avendano, "Noise suppression in cellular communications," 2<sup>nd</sup> IEEE workshop on Interactive Voice Technology for Telecommunications Applications IVTT 94, Kyoto, Japan, Sept. 1994.
- [6] Hynek Hermansky, Nelson Morgan, Hans-Gunter Hirsch, "Recognition of speech in additive and convolutive noise based on RASTA spectral processing", IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-93, 1993.
- [7] H.Hermansky, E.A.Wan, C.Avendano, "Speech enhancement based on temporal processing", International Conference on Acoustics, Speech, and Signal Processing, ICASSP-95, 1995.
- [8] Carlos Avendano, Hynek Hermansky, "On the Properties of Temporal Processing for Speech in Adverse Environments", in Proc. WASPA'97, Mohonk, New York, 1997.
- [9] MATLAB R2009a: Documentation CD The Mathworks Inc.
- [10] User Guide: Using MATLAB7.8 (R2009a) The Mathworks Inc.
- [11] The NOIZEUS database.

Available: http://www.utdallas.edu/~loizou/speech/noize. Accessed on 30-10-2009.

- [12] N. Jayant, J. Johnston, R.Safranek, "Signal compression based on models of human perception," in Proc. IEEE, Vol. 81, no. 10, pp. 1385-1422, October 1993.
- [13] Thomas F. Quatieri, Discrete-time Speech Signal Processing, 1<sup>st</sup> Indian reprint, Pearson education signal processing series, Delhi, 2004.
- [14] D.Donahue, I.Johnson, "Ideal de-noising in an orthonormal basis chosen from a library of bases,"
  C.R. Academy of Science, Paris, France, Vol.1, no. 319, pp. 1317-1322, 1994.
- [15] Douglas O'Shaughnessy, Speech Communications, 2<sup>nd</sup> Ed., University press (India) Ltd., Hydrabad, 2001.
- [16] D.Sen, D.H.Irving, W.H.Holmes, "Use of an auditory model to improve speech coders," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 2, pp. 411-414, April 1993.
  - [17] A.Czyzewski, R.Krolikowski, "Noise reduction in audio signals based on the perceptual coding approach," in Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New York, October 1999.
- [18] S.Govidasamy, "A psychoacoustically motivated speech enhancement system," M.E. Thesis, MIT, Dept. of Electrical Engineering and Computer Science, January 2000.
- [19] N.Virag, "Single channel speech enhancement based on masking properties of the human auditory system," IEEE Trans. on Speech and Audio Processing, Vol. 7, pp. 126-37, March 1999.
- [20] S.Gstafsson, P.Jax, P.Vary, "A novel psychoacoustically motivated audio enhancement algorithm preserving background noise characteristics," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Vol. 1, pp. 397-400, May 1998.

- The NOIZEUS database.
  Available: http://www.utdallas.edu/~loizou/speech/noize. Accessed on 30-10-2009.
- [2] Y.Hu, P.C.Loizou, "Subjective comparison and evaluation of speech enhancement algorithms," Speech Communication, Vol. 49, pp. 588–601, 2007.
- [3] IEEE Subcommittee, IEEE recommended practice for speech quality measurements, IEEE Trans. on Audio Electroacoustics, Vol. 17, Issue 3, pp. 225-246, September 1969.
- [4] D.Goodman, R. Nash, "Subjective quality of the speech transmission conditions in seven different countries," IEEE Trans. on Communication, Vol. 30, no. 4, pp. 642-654, 1982.
- [5] ITU, Methods for the subjective assessment of small impairments in audio systems including multichannel sound systems, ITU-R recommendation BS.1116-1, 1997.

- [6] ITU, Subjective performance assessment of telephone band and wideband digital codecs, ITU-T recommendation P.830, 1998
- [7] The AIR database with MATLAB code.

Available: http://www.ind.rwth-aachen.de/en/research/speech-and-audio-processing/aachenimpulse-response-database/. Accessed on 10-01-2011.

## Chapter 7.

[1] TMS320C6713 datasheet.

Available: www.ti.com. Accessed on 24-04-2010.

- [2] User Guide: CCS IDE V3.3 Texas Instruments.
- [3] User Guide: Using SIMULINK The Mathworks Inc.
- [4] User Guide: Real Time Workshop ToolBox (use with MATLAB) The Mathworks Inc.
- [5] User Guide: Target Support Package TC6 ToolBox (use with MATLAB) The Mathworks Inc.
- [6] User Guide: Embedded IDE Link CC ToolBox (use with MATLAB) The Mathworks Inc.

## **Chapter 8**

- S.M.Kuo, B.H.Lee, W.Tian, Real Time Digital Signal Processing: Implementations and Applications, 2<sup>nd</sup> Ed., John Wiley & Sons Ltd., West Susex, England, 2006.
- [2] User Guide: Target Support Package TC6 ToolBox (use with MATLAB) The Mathworks Inc.
- [3] User Guide: CCS IDE V3.3 Texas Instruments.

- E.Plourde, B.Champagne, "Multidimensional STSA estimators for speech enhancement with correlated spectral components," IEEE Trans. on Signal Processing, Vol. 59, no. 7, pp. 3013-3024, July 2011.
- [2] R.Okamoto, Y.Takahashi, H.Saruwatari, K.Shikano, "MMSE STSA estimator with nonstationary noise estimation based on ICA for high-quality speech enhancement," in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP- 2010, pp. 4778-4781, 2010.
- [3] E.Plourde, B.Champagne, "Further analysis of the  $\beta$ -order MMSE STSA estimator for speech enhancement," in Proc. Canadian Conference on Electrical and Computer Engineering, CCECE 2007, pp. 1594-1597, 2007.
- [4] B.J.Borgstrom, A.Alwan, "A unified framework for designing optimal STSA estimators assuming maximum likelihood phase equivalence of speech and noise," IEEE Trans. on Audio, Speech and Language Processing, Vol. 19, no. 8, pp. 2579-2590, 2011.

[5] Prof. Dr. Walter Kellermann, Acoustic source localization based on independent component analysis.

Available: http://www.lms.lnt.de/research/activity/audio/topics/local. Accessed on 06-06-2011.

[6] Hakon Strande, program manager, Microsoft Corporation, Microphone array support in windows longhorn.

Available: http://download.microsoft.com/download/9/8/f/98f3fe47-dfc3-4e74-92a3-088782200 fe7/twen05009\_winhec05.ppt. Accessed on 06-06-2011.

[7] Stacey Moser, Texas Instruments, Cancel noise in your mobile phones and headphones, 02-06-2011.

Available: http://www.mobiledevdesign.com/tutorials/cancel-noise-mobile-phones-headphones-0611. Accessed on 19-08-2011.

1