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6. In-vivo Pharmacokinetic and Biodistribution Studies

6.1 Introduction

Colloidal drug carriers such as nanoparticies and liposomes can be used to improve the 

therapeutic index of both established and new drugs by modifying their distribution, 

thus increasing their efficiency and/or reducing their toxicity. This is because the drug 

distribution then follows the carrier, rather than depending on the physicochemical 

properties of the drug (Muller et al., 2000). The effectiveness of drug delivery systems 

can be attributed to their small size, reduced drug toxicity to other organs, controlled 

drug release and modification of drug pharmacokinetics and biodistribution. Tumor 

vasculature has been described as "leaky" due to the presence of interendothelial 

junctions and transendothelial channels, which for several tumor models have been 

reported to have sizes ranging between 0.2 and 1.2 pm (Hobbs et al., 1998; Yuan et al., 

1995). Therefore, it has been demonstrated that the use of colloidal systems improves 

tumor therapy due to enhanced permeability and retention effect (EPR) within the 

tumor site (Maeda et al., 2000). Targeting ligands can be further attached to the carrier 

surface to improve therapeutic outcomes via active targeting. Rat models implanted 

with C6 glioma cells have been widely utilized for assessment of new therapeutic 

modalities. In the present study male SD rats were subcutaneously implanted with C6 

glioma cells. The tumor induced rats were used for pharmacokinetic and biodistribution 

studies.

6.2 Animals

All experiments were previously approved by the Committee for the Purpose of Control 

and Supervision of Experiments on Animals (CPCSEA), India. Male Sprague Dawley (SD) 

rats 4-5 weeks old and weighing 250-300 gms were obtained from Sun Pharma 

Advanced Research Company Ltd., Vadodara. The animals were acclimatized to the 

surroundings for a week. Food and water were provided ad libitum.
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6.3 Methods

6.3.1 Implantation of tumor cells

One day before the implantation of tumor cells, hair on the backside were removed by 

shaving. C6 rat glioma cells were harvested by trypsinization and resuspended in growth 

medium. 5 X 106 cells were injected sub-cutaneously into the back of the rats and 

allowed to grow. Size of the tumor was measured by vernier callipers. The volume of 

the tumor was calculated as -ab2 (a=iong diameter, b=short diameter) (Ueda et al., 

1994).

6.3.3 Pharmacokinetic and Biodistribution studies

The rats implanted with C6 rat glioma cells were used for pharmacokinetics and 

biodistribution studies. The animals were anaesthetized with ether. PTX solution and 

PTX loaded in different NPs formulations was administered intravenously via the tail vein 

at a dose of 20mg/kg body weight. Each group consisted of 3 animals. The blood 

samples were collected from the retro-orbital plexus of rat eye, at 0.5,1,2,4,8,12 and 24 

hrs post-injection into anticoagulant (3%w/v sodium citrate solution) treated vials. The 

collected blood was centrifuged at 3000 rpm for 10 minutes at 4°C in a cooling 

centrifuge (Sigma, Osterode, Germany) to isolate the plasma. At 1, 2, 4 and 24 hrs post 

injection rats were euthanized and different organs (liver, spleen, lungs, kidneys, heart 

and tumor) were isolated and homogenized in distilled water at 5%w/v. The 

homogenate was centrifuged at 7000rpm for 10 minutes at 4°C in a cooling centrifuge to 

collect clear tissue homogenate. Isolated plasma was stored at -70°C until analysed. 

The samples were analysed as described in Analytical methods by HPLC.

6.3.4 Statistical analysis

Pharmacokinetic parameters were calculated using Kinetica®4.4 (Innaphase, 

Philadelphia, PA, USA) applying non-compartmentai kinetics for IV bolus. All data are 

reported as mean ± SD (standard deviation). Statistical evaluations were made using 

ANOVA and differences greater than p<0.05 were considered significant.
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6.4 Results and Discussion 

6.4.1 Tumor formation

5 million C6 rat glioma cells were injected into the sub-cutaneous region of SD rats on 

back side. Tumors were palpable at day 10 which were visible at around 14-15th day in 

all the rats. The results indicate that the success rate for tumor implantation of C6 

glioma cells was 100% in male SD rats. The tumor volume was found to be 751 ± 35 

mm3 at day 15 (n=36).

(B)

Figure 6.1: A) Normal rat B) Rat with a subcutaneous C6 glioma
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6.4.2 Pharmacokinetics and Biodistribution

The results of pharmacokinetic and biodistribution of PTX solution and PTX NPs after iv 

administration in SD rats are presented in Table 1 and 3. The plasma AUC {0-»24S, AUC 

(0->oo), MRT and ti/2 of PTX solution and NPs are presented in Table 2. Plasma 

concentration Vs time profiles are shown in Figure 1. Tissue concentration Vs time 

profiles are shown in Figure 2 (a-f). From the plasma concentration profiles after iv 

administration it is clearly evident that the PTX in solution form in rapidly cleared from 

blood whereas, PTX loaded in different NPs formulations are retained in blood for longer 

time periods indicating the long circulation properties of drug loaded NPs. These findings 

are indicative of the increased residence time and slower elimination of drug in the form 

of nanoparticles. This increase in the residence time may be attributed to decreased 

opsonisation from blood due to smaller size of nanoparticle (<200nm) (Moghimi et al., 

1993) and hydrophilicity of the surface of NPs which imparts stealthiness. Hydroxyl 

groups of residual PVA on surface of PLGA NP; free -OH groups and Tf on Tf conjugated 

PLGA NPs (Sahoo et al. 2002), -OH groups of Pluronic®P85 on Pluronic®P85 coated PLGA 

NPs (Batrakova et al., 2004), -OH groups of Poloxamer 188 on PBCA and GTS SLN 

(Moghimi et al., 2000) which provides a stealth effect. Significant differences (P<0.05) 

among the results of various pharmacokinetic parameters were observed after i.v. 

administration of PTX solution and PTX NPs. The plasma AUQo-}~>), MRT and ti/2 of PTX 

loaded into NPs was found to.he significantly higher than PTX in solution. The MRT of 

PTX-PLGA NPs, Pluronic®P85 coated PTX-PLGA NPs, Tf conjugated PTX-PLGA NPs, PTX- 

PBCA NPs and PTX-GTS SLN was found to be 2.68, 3.0, 3.76, 3.11 and 3.13 folds higher 

than PTX solution respectively. The high values of MRT and ti/2for NP formulations are 

indicative of slow clearance and long blood circulation of drug loaded nanoparticles. 

Also the half-life of PTX increased when PTX was formulated into nanoparticles. The ti/2 

of PTX in PTX-PLGA NPs, Pluronic®P85 coated PTX-PLGA NPs, Tf conjugated PTX-PLGA 

NPs, PTX-PBCA NPs and PTX-GTS SLN was found to be 1.88, 2.06, 2.58, 2.10 and 2.15 

times higher than PTX in solution. The AUC(0^~) of PTX in PTX-PLGA NPs, Pluronic®P85 

coated PTX-PLGA NPs, Tf conjugated PTX-PLGA NPs, PTX-PBCA NPs and PTX-GTS SLN was 

found to be 3.34, 3.61, 5.09,4.06 and 4.2 times higher than PTX in solution.
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Figure 6.2: Plasma PTX concentration Vs time profiles for PTX solution and NPs

A major portion of the injected dose was found in the organs of the reticuloendothelial 

system (RES) i.e. liver, spleen and lungs. The amount of PTX in the liver was found to be 

less in case of PTX encapsulated into NPs than PTX in solution form. The lower 

accumulation PTX in the liver in case of nanoparticles compared to solution may be due 

to the hydrophilicity associated with the nanoparticle surface, as mentioned earlier. 

Further, in case of conjugated NPs, transferrin as reported could have masked the 

recognization sites on the surface of colloidal systems thereby reducing the liver uptake 

(Litzinger et al. 1994, V. Soni et al,, 2008). Opposite trend was observed in case of 

spleenic uptake. The overall uptake of PTX NPs in comparison to PTX solution increased 

in the spleen after intravenous administration as depicted in Table 3. This may be 

attributed to the retention of nanoparticles in the reticular fibre meshwork and the 

macrophages in red pulp of spleen resulting in high accumulation (Litzinger et al. 1994). 

These results indicate the major role of liver and spleen in the clearance of drug in 

solution and nanoparticle formulations.
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PTX concentration in spleen at different time points
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Figure 6.4: Spleen PTX concentrations after i.v. administration in rats at dose of

20mg/kg.

Figure 6.3: Liver PTX concentrations after i.v. administration in rats at dose of

20mg/kg.
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PTX concentration in kidneys at different time points
250.00
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Figure 6.6: Kidney PTX concentrations after i.v. administration in rats at dose of

20mg/kg.

Figure 6. 5: Lung PTX concentrations after i.v. administration in rats at dose of

20mg/kg.
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PTX concentration in tumor at different time points
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PTX concentration in heart at different time points
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Figure 6.8: Tumor PTX concentrations after i.v. administration in rats at dose of

20mg/kg.

Figure 6.7: Heart PTX concentrations after i.v. administration in rats at dose of

20mg/kg.

C
on

ce
nt

ra
tio

n 
{u

g/
gm

)
C

on
ce

nt
ra

tio
n 

(u
g/

gm
)

186



Chapter 6: In-vivo Pharmacokinetic and Biodistribution Studies

PTX is mainly metabolized in the kidneys. The distribution pattern of PTX NPs and PTX 

solution in kidneys indicate higher values for solution than the NPs initially upto 2 hrs 

due to rapid clearance of PTX in solution which is supported by lower plasma 

concentrations. At 24 hrs post injection the concentration of PTX in kidneys was more in 

case of NPs confirming the higher elimination half life for PTX encapsulated in 

nanoparticles. Also the t2/2 for drug in NPs is greater than in solution. The higher 

accumulation of PTX NPs than PTX solution was observed in the lungs. This enhanced 

deposition is resulted due to the size of the nanoparticles. The concentration of PTX in 

heart in case of NPs was significantly lower than that in solution indicating a potential 

reduction in cardiotoxicity in comparison to the drug solution.

Tumor tissue is the major tissue under investigation in the present study. The 

distribution profile of PTX solution and NPs in subcutaneous C6 glioma after i.v. 

administration in rats is shown in Table 3 and tumor AUC (o-»24), AUC MRT and ti/2 

of PTX solution and NPs are presented in Table 4. The tumor accumulation of free PTX 

was significantly (p<0.05) low at ail time points in comparison to PTX NPs. PTX in 

solution gets effluxed out of the C6 glioma cells by Pgp (C6 glioma cells express P- 

glycoproteins (Pgp) responsible for multidrug resistance) and hence tumor PTX 

concentration of free PTX is much less than PTX NPs (Lamprecht et al., 2006). When PTX 

in incorporated into the NPs the Pgp cannot recognise PTX hence it does not get effluxed 

out. Hence, a greater concentration of PTX in tumor is achieved in case of NPs. Highest 

concentration of PTX in tumor was found in case of Tf-PTX-PLGA NPs at 2 hrs. This may 

be due to the active targeting via transferrin (Sahoo et al., 2004). Targeting of 

anticancer agents via Tf receptors which are over-expressed by 2- to 10-folds in most of 

the cancer cells have been demonstrated as an effective approach for treatment of 

multidrug resistant tumors. Increased concentration of PTX in tumor with NPs 

demonstrates their use in multidrug resistant tumors.

The tumor AUC (0->») of PTX-PLGA NPs, Pluronic®P85 coated PTX-PLGA NPs, Tf 

conjugated PTX-PLGA NPs, PTX-PBCA NPs and PTX-GTS SLN was found to be 6.77, 7.71, 

15.79, 8.14 and 8.9 folds higher than PTX solution respectively. The tumor AUC of 

Pluronic®P85 coated PTX-PLGA NPs and Tf conjugated PTX-PLGA NPs was found to be
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1.13 and 2.33 folds higher than PTX-PLGA NPs respectively. The MRT of PTX in tumors in 

case of PTX-PLGA NPs, Pluronic®PS5 coated PTX-PLGA NPs, Tf conjugated PTX-PLGA NPs, 

PTX-PBCA NPs and PTX-GTS SLN was found to be 6.8, 4.85, 9.03, 5.95 and 7 folds higher 

than PTX solution respectively. This can be attributed to inhibition of the drug efflux by 

membrane Pgp. P!uronic®P85 coated NPs show a greater accumulation of PTX in 

tumour in comparison to uncoated PLGA NPs because of the Pgp inhibitory activity of 

the Piuronic®P85 (Batrakova et al., 2001). Also in case of PTX PBGA NPs and PTX GTS SLN 

due to the surface hydrophilicity because of Poloxamer 188 and due to its Pgp inhibitory 

activity (Batrakova and Kabanov, 2008) a greater concentration of PTX is found in 

comparison to the solution. Also, polymeric nanoparticies having hydrophilic surface 

imparts these NPs long circulating properties and decreased opsonisation in the blood, 

in addition, the plasma half-time of intravenously injected nanoparticies can be 

relatively long due to limited uptake by the liver and spleen (Lee et al., 2003; Yoo and 

Park, 2004). This reduced uptake by the liver and spleen has been exploited for the 

treatment of solid tumors because the prolonged circulation of nanoparticies allows 

them to accumulate and extravasate within tumor tissue. Extravasation, which allows an 

enhanced permeation and retention (EPR) effect, is achieved due to the disorganized 

vascularization and defective vascular architecture induced in rapidly growing cancers 

(Matusumura and Maeda, 1986). Therefore, drug delivery using polymeric nanoparticies 

is an effective strategy for passive tumor targeting (Kwon et al 1985; Yokoyama et al., 

1990; Hashizume et al., 2000). In case of active targeting via Tf the NPs conjugated to Tf 

are selectively taken up by the tumor cells by the Tf receptors present on the surface of 

the tumor cell. Hence, targeting via Tf is an effective strategy for active targeting.

6.5 Conclusions

From the present study we can conclude that PTX loaded polymeric NPs and SLNs can be 

used to enhance the blood circulation time in comparison to PTX solution. Moreover, 

NPs and SLNs of PTX retain the drug in the tumor tissue for significantly longer time in 

comparison to the drug in solution due to the EPR effect and in case of targeted NPs due 

to the receptor mediated endocytosis. The drug loaded into polymeric NPs and SLNs 

could be effective in clinical practise for treatment of MDR tumors as the drug is
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retained for longer times in the tumor tissue bypassing the Pgp present on the tumor 

cell membrane in case of C6 rat gliomas.
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