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5.1 INTRODUCTION

Artificial neural networks (ANNs) technology is a group of computer methods for 

modeling and pattern recognition, functioning similarly to the neurons of the brain. The 

brain learns from its experience. In the brain, a biological neuron receives inputs from 

many external resources, combines them, performs a non-linear operation, and then 

makes a decision based on the final results. The ANNs are a type of mathematical model 

that simulates the biological nervous system and draws on analogues of adaptive 

biological neurons. A major advantage of ANNs compared to statistical modeling is that 

they do not require rigidly structured experimental designs and can map functions using 

historical or incomplete data.

Over the past decade, neural networks have received a great deal of attention among 

scientists and engineers and they are being touted as one of the greatest computational 

tool ever developed. Much of this excitement is due to the apparent .ability of neural 

networks to emulate the brain’s ability to leam by example which is in term enables 

network to make decision and draw conclusion, when presented with complete 

information. Moreover, at some primitive level, neural network seem able to imitate 

brain’s creative process to adapt to novel situation. It is a very good statistical tool for 

many numeric as well as non numeric calculation. It closely resembles the neural systems 
of animal in its performance1.

ANNs are known to be a powerful tool to simulate various non-linear systems and have 

been applied to numerous problems of considerable complexity in many field including 

engineering, psychology, medicinal chemistry and pharmaceutical research. They are 

good recognizers of patterns and robust classifiers, with the ability to generate when 

making decision based on imprecise input data.
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5.2 ARTIFICIAL NEURAL NETWORKS MODELING

Artificial neural networks are computer methods that simulate learning and generalization 

behavior of the human brain through data modeling and pattern recognition for completed 

multidimensional problems. A significant difference between an ANN model and a 

statistical model is that the ANN can generalize the relationship between independent and 

dependent variables without a specific mathematical function. Thus, an ANN works well 

for solving nonlinear problems of multivariate and multiresponse systems. An artificial 

neural network is a biologically inspired computational model designed to simulate 

neurological processing ability of human brain. The ANN mimics working of human 

brain. The ANN seem to fulfill cherished dream of scientist develop machines that can 

think like human beings. The ANN is formed from hundreds of single units, artificial 

units, artificial neurons, connected with coefficients (weights) which constitute the neural 

structure. They are also known as processing units (PE) as they process information. As 

average brain contains about 100 billion neuron, each of which has 1000-10000 

connections with each other neurons. Neurons consist of a cell body which includes 

nucleus that controls the cell activity, many fine treads, dendrites, that carry information 

into cell, and one longer thread known as the axon which carries the signal away (figure

yq

Figure 5.1. Conceptual structure of a biological neuron.
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Impulses pass along the axon to the synapses, the junction between one neuron and the 

next one. The signals are passed from one to the next in all or none fashion. Neurons are 

organized in a fully connected network and act like messenger in receiving and sending 

impulses. The result is an intelligent brain capable of learning, prediction and 

recognition. There are many types of neural networks designed by now and new ones are 

invented every week but all can be described by the transfer functions of their neurons, 

by learning rule, and by the connection formula. Error back-propagation network 
developed by Rumehart et al. is most widely and successfully applied architecture2. The 

error back propagation network consists of input layer, one or more hidden layers and 

one output layer. The input layer provides data from the external world. The mapping of 

input data by neural network into interpretable results is done by a representative signal 

generated by output layer. The ability of neural networks to classify information 

separated by non-linear boundaries depends on hidden layers. The units in neighboring 

layers are fully connected to synapses. The neuron, building component of ANN receives 

many signals as weighted process variables from the response of other units. The 

strengths of connections between two units are called “weight”. A common design of 
artificial neuron is given in figure 5.22,3.

Figure 5.2. A common design of a node in an artificial neural network.
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In each hidden layer and output layer the processing unit sums its input form previous 

layer and then applies the sigmoidal function to compute its output to the following layer 

according to the following equation.

y q /L w pq x p (1)

f(yq) 1
l + exp(-ayq)

(2)

Where, wpq is the strength of the connections between unit q in the current layer to unit p 

in the previous layer, xp is the output value from the previous layer, f(yq) is conducted to 

the following layer as an output value, and a is a parameter relating to the shape of the 

sigmoidal function. The advantage of this function is that it can accommodate large 

signal without saturation while allowing small signals to pass without excessive 

attenuation.

Nonlinearity of the sigmoidal function is strengthened with an increase in a. The ANN 

learns an approximate nonlinear relationship by a procedure called “training”, which 

involves varying weight values. Training means a search process for the optimized set of 

weight values, which can minimize the squared error between the estimation and 

experimental data of units in the output layer. A back-propagation method has widely 
been applied for training ANNs3. Training is long iterative process, and an ANN often 

gets stuck in a local minima. Certain empirical techniques have been reported to improve 
the convergence of ANNs in the global minima 4. We can greatly reduce the number of 

iterative training by using the extended Kalman filter algorithm, and also can avoid the 
ANN getting stuck in a local minima using the simulated annealing technique5.

Carpenter and Hoffman introduced an equation relating to the number of units in the 

input layer, the hidden layer and the optimal output layer to enable reasonable prediction 
of each response6:
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°s =PK(ni+i) + n0(nh+l)} (3)

Where, nh is the number of hidden units, n, is the number of input units, no is the number 

of output units, and ns is the number of training data pairs. The constant (3 is the 

parameter relating to the degree of over determination.

A cross-validation technique such as a “leave-one-out (LOO) method” should be applied 
to ensure the optimality of an ANN structure7'9. One data pair is systematically removed 

from the training data set, and the ANN is then trained by using the reduced data set. 
Akaike’s information criterion (AIC)" can be applied to evaluate the optimality of ANN10:

A1C = ns x ln(SS) + 2xn w (4)

Where, ns is the number of data pairs, nw is the number of weights in the ANN, and SS is 

the residual sum of squares between observed and predicted response variables.

A very common approach to select the optimal number of hidden nodes is by trial and 

error method using the aforementioned rules as guidance. Jadid et al. proposed an upper 
limit of number of hidden nodes on an ANN model using the following equation”.

N
N,

hidden [R + (Njnp + N^, )]
(5)

Where, Nhidden is the number of hidden nodes; Ntm is the number of training sample; R is 

a constant with values ranging from 5 to 10, Njnp is the number of inputs and Nom is the 

number of outputs.

The application of back-propagation technique to a problem requires three simple steps- 

network design, learning or training and usage. The number of process variables and 

response units are determined by data of problem after finalizing the number of layers 

and neurons in each layer. Then the network is subjected to learning process. The leaning
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through weight adjustment can be supervised or unsupervised. The network is repeatedly 

presented with an input pattern and a desired output response in supervised learning. The 

training process terminates when error goal is near zero and neural network produces 

correct response for given input patterns. In unsupervised learning, no desired response is 

available to guide system and the learning is through input pattern alone. The neural 

network system itself then decides features to be used for grouping input data and this 

process is called self-organization or adaptation. The speed of learning is actually the rate 

of convergence between the current solution and the global minimum. Momentum helps 

the network to overcome obstacles (local minima) in the error surface and settle down at 

or near the global minimum. The most common training algorithm is based on the Delta 

rule, according to which each training iteration (frequently referred to as “epoch”) is 

described by the following general equation:

New weight change=Learningrule* Error + Momentum + Last weight change (6)

In feed forward step starts with presentation of process variable pattern and continues 

through activation level to propagate through hidden layers. The processing unit sums the 

input and applies sigmoidal function in the hidden layer to compute its response as shown

yi Y2 n

t t 1

t t t
Xl x2 x3

Figure 5.3. A three layered artificial network.
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In feed back step, error values are calculated for all processing units and weight changes 

are calculated for all interconnections. The calculations start at output layer and progress 

backward through the network to input layer. Thus each neuron has one additional weight 

as an input that allows an additional degree of freedom when trying to minimize training 

error. The network is ready for use after design is completed and system is trained.

5.3 APPLICATION OF ANNs MODELING IN PHARMACEUTICAL 

RESEARCH

The potential applications of ANN methodology in the pharmaceutical sciences are 

broad. ANNs application can be summarized into classification or pattern recognition, 

prediction and modeling. The application of ANNs range from interpretation of analytical 

data (modeling the pharmaceutical analysis in quality control, drug modeling (QSAR and 

molecular modeling), protein structure and function prediction, dosage form design 

(optimization of manufacturing processes), and clinical pharmacy through biopharmacy 

(pharmacokinetics and pharmacodynamic modeling, in vitro in vivo correlation).

5.3.1-Pattern Recognition and Interpretation of Analytical Data

The ANNs can recognize patterns from a complex analytical data. The ANNs have 

applied to determine the composition of unknown sample when the spectrum of unknown 

is a superposition of known spectra. It used whole spectrum in identification process 

instead of only the individual peaks. The multiple linear regression (MLR) method is a 

tedious task requiring the specification of a polynomial function for each peak to be 

regressed and requires an iterative process, a spectrum decomposition and regeneration to 

systematically synthesized spectrum closely matching the true spectrum.

The ranitidine hydrochloride, an antihistaminic drug exists in polymorphic forms known 

as Form 1 and Form 2. Ranitidine hydrochloride tablets formulation is a multi-component 

tablet formulation in which there is significant overlap of spectral pattern of ingredients. 
S. Agatonovic-Kustrin et al. compared diffuse reflectance IR spectral analysis12 and X- 

ray diffraction13'14 with ANNs as a data modeling tool to develop a simple, sensitive and
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rapid method for the qualitative and quantitative control of ranitidine-HCl. The ANN was 

trained to recognize specific patterns of constitutes of the formulations from the overall 

spectral pattern. The classification network identified and quantified all components in 

tablets when exposed to complex formulation containing only Form 1 crystals. There was 

no need to extract the active ingredient and Form 1 was successfully quantified in the 

presence of tablets excipients and additives.

Madden et al. have used ANN as the basis of computer-assisted optimization method for 
selection of optimal gradient conditions for anion separations15. The ANNs with 1-10-9 

architecture has been found to be rapid and accurate in predicting retention times for 

anions in linear gradient elution ion chromatography with hydroxide eluents.

5.3.2 Preformulation

ANN model have been used in the preformulatiofi tool to determine the physicochemical 

properties of amorphous polymers such as the hydration characteristics, glass transition 
temperatures and rheological properties by Ebube et al16. The relationships between the 

compositions of polymer blend and the water uptake profiles; the relationship between 

composition of polymers blends and viscosity of polymers solutions; and the relationship 

between moisture content of polymers and their glass transition temperatures were 

learned by the trained ANN model. The results of this study indicated that the ANN 

model accurately predicted the water-uptake, glass transition temperatures and viscosities 

of different hydrophilic polymers and their physical blends with a low prediction error (0- 

8%). It demonstrated the potential of the ANNs as a preformulation tool to evaluate the 

characteristics of amorphous polymers.

5.3.3 Optimization of Pharmaceutical Formulations

The prediction of pharmaceutical responses based on the polynomial equation and 

response surface methodology is often limited to low levels, resulting in the poor 

estimation of optimal formulations. In order to overcome these shortcoming, a multi­

objective simultaneous optimization technique incorporating an ANN has been
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developed17’18. The reliability of ANNs in optimizing controlled release capsules and 

ketoprofen hydrogel ointment has been demonstrated by Hussain et al19. A trained ANN 

model has been successfully employed to predict release profile and optimize formulation 

of various drug formulations such as aspirin extended release tablets ’ , diclofenac 
sodium sustained release matrix tablets22, salbutamol sulfate osmotic pump tablets23 and 

transdermal ketoprofen hydrogel24.

Takayama et al. applied an ANNs model to optimize controlled release theophylline 

tablets prepared with the mixture of hydroxypropylmethy] cellulose with lactose and 
cornstarch25. The plasma concentration profiles were simulated based on the 

pharmacokinetic parameters of theophylline. The results predicted by the trained ANN 

model agreed well with the observed values. Chen et al. has also used artificial neural 

network (ANN) and pharmacokinetic simulations in the design of control!ed-release 
^formulation26. Three out of the four predicted formulations showed very good agreement 

between the ANN predicted and the observed in vitro release profiles based on difference 

factor f2.

Vaithiyalingam et al, used the ANN to model the effect of process and formulation 

variables, viz., coating weight gain, duration of curing, and plasticizer concentration on in 

vitro release profile of verapamil HC1 from multi-particulate beads formulated with a 
novel aqueous-based pseudolatex dispersion27. The observed drug release data of the 

optimized formulations was close to the predicted release pattern, based on the ANN 

model

5.3.4 In Vitro In Vivo Correlations

The in vitro-in vivo correlations (IVIVC) are of great interest for pharmaceutical industry 

to avoid bioequivalence studies that are predicted to produce negative results. ANNs 

applied to in vitro-in vivo correlations have the potential to be a reliable predictive tool 

that overcomes some of the difficulties associated with classical regression methods, 

principally that of providing an a priori specification of the regression equation structure.
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Dowel et al. has developed a number of unique ANN configurations to predict 1VIVC 
from different formulations of same product28. Gobburu et al. has also applied a 

quantitative structure-pharmacokinetic relationship (QSPR) of beta-blockers using 
ANNs29. They reported that the ANN-predicted values that ANNs showed a good 

capability to predict in vivo results from in vitro experiments.

5.3.5 Quantitative Structure-Activity Relationships (QSAR)

Quantitative structure-activity relationships correlate structure or property descriptors of 

compounds with chemical or biological activities. All QSAR studies are based on the 

fundamental concept of interdependence of biological activities on physicochemical 

parameters. The physicochemical descriptors and topological parameters can be 

determined by computational methods.

Jaen-Oltra et al. has developed a new topological method to predict antimicrobial 
property of quinolones derivatives on the basis of their chemical structures30.

An ANN with suitable set of topological descriptors and training algorithms was used to 

determine the minimum inhibitory concentration of quinolones. Gobburu et al. developed 

the neural networks to predict the quantitative structure pharmacokinetic relationships 
(QAPR) of beta adrenoreceptor antagonists in humans31. A neural network with 

congeneric series of ten bet-blockers having well established critical pharmacokinetic 

parameters was constructed and tested for its ability to predict the pharmacokinetic 

parameters from the octanol/water partition coefficient, the pKa, or the fraction bound to 

plasma proteins. Neural networks predicted values showed better agreement with the 

experimental values than those predicted by multiple regression techniques (average 

difference = 47%).

Nestorov et al. compared the predictive performance of a mechanistically based model 

with an empirically ANN based model for the relationship between the tissue distribution 

and the lipophilicity of a homologous series of 5-n-alkyl-5-ethyl barbituric acids in the 

rat. The mean prediction error (ME) of the mechanistic model was 18 % (range, 20 to
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57%), indicating a tendency for overprediction; the Mean squared prediction error (MSE) 
is 32% (range, 6 to 104%)32. The ANN model had almost no bias: the ME was 2% 

(range, 36 to 64) and had greater precision than the mechanistic model, MSE 18% (range, 

4 to 70%).

5.3.6 Quantitative Structure-Property Relationship (QSPR)

Increasing number of neural network models are currently published for predicting 

various physicochemical properties from the molecular structures. In drug discovery 

phase, it would be valuable, if certain physicochemical properties could be calculated 

before synthesizing or purchasing a screening library. Lipophilicity and'water solubility 

are properties, which can be used as rough early ADME screens to reject probable 

development failures as early as possible. Clark and co-workers used a data set 

containing 1085 compounds for developing a neural network model for logP0Ct prediction 
from the results of semi empirical AMI calculations33. Subsequently, they proposed. Eros 

et al. developed neural network models for IogPoci calculation using a database of 625 
molecules, 98% of which are registered drugs showing high structural diversity34. The 

standard deviations of the fitting and prediction errors were s = 0.48 and s = 0.72, 

respectively.

Several research groups have modeled the normal boiling point of hydrocarbons. 
Predictive neural network models have been published for alkanes35, alkenes36 and for 

diverse hydrocarbons37. As expected, the models typically show good fitting and 

prediction statistics with less than ten simple descriptors. In the most recent work, Goll 
and Jurs38 applied artificial neural network to predict the vapor pressures of hydrocarbons 

and halohydrocarbons from molecular structure. The neural network model with 7-3-1 

architecture predicted the test set with a root mean square error of 0.209 (n = 52). Yaffe 

et al. modeled Henry’s law constant using both fuzzy ARTMAP and feed forward neural 

network. The heterogeneous data set (n = 495) included compounds with oxygen, sulphur 
and nitrogen containing functional groups and halogens39. The logH values ranged from 

26.72 to 2.87. Topological descriptors were used as input parameters. The average 

absolute errors for the test set of 74 members were 0.13 and 0.27 logH units for fuzzy
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ARTMAP and the feed forward network, respectively. Liu et al. used five topological 

indices as input descriptors for the neural network with 5-5-3 architecture in predicting 

the refractive index, density and boiling point for alkenes. The training set contained 49 
members36. Standard error of 0.13% was found the refractive index and 0.4% for density 

using a test set of 16 alkenes.

Sild and Karelson developed NN models for predicting dielectric constant and Kirkwood 

function using a data set of 155 organic liquids with extensive structural diversity and a 

range of 1.87-46.5 for the dielectric constant. Separate models with 5-5-1 configuration 
were developed for both dielectric constant and the Kirkwood function40. The average 

prediction error for the dielectric constant was 27.0% and for the Kirkwood function 

4.1%. Tettech et al. have also developed a radial basis forward neural network for 
simultaneous prediction of flash point and boiling point41. The database contained 400 

organic compounds with flash points between -60 °C and 200 °C. The average absolute 

error with for the test set in flash point prediction was 11.9 °C with a 26-36-2 

configuration. Suzuki et al. developed an NN model for predicting liquid viscosity at a 
standard temperature of 20 °C42 and subsequently, a temperature-dependent model43. The 

best model showed a root mean square error of 0.148 log units for the test set of 79 

compounds and 133 data points.

5.3.7 Structure Retention Relationships (SRR) Methodology

Predicting chromatographic behavior from molecular structure is one of the main goals of 

the structure-retention relationships methodology. Tham et al. has applied artificial 

neural network in quantitative structure-gradient elution retention relationship of phenyl 
thiocarbamyl amino acids derivatives44. A five-descriptor nonlinear computational neural 

network model was used for estimation of chromatographic retention time values for a 

data set of 18 amino acids. The training set RMS error was 1.773 and the testing set RMS 

error was 0.8377. Based on the RMS errors of the training and testing sets and high 

correlation of predicted versus experimentally values (R>0.97), it is clear that a link 

exists between structure and chromatographic separation.
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The usefulness of ANNs for modeling retention times in HPLC optimization to correlate 

the chromatographic behavior of solutes (capacity factors) with mobile phase 
composition and pH has been investigated by Agatonovic-Kustrin et al45. Computer 

simulation methods has been used to predict the separation as a function of simultaneous 

change in pH and solvent strength for reversed phase high- performance liquid 
chromatography46,47 and hydrophobicity coefficients for the prediction of peptide elution 

profiles48.

Agatonovic-Kustrin et al. have also developed an ANNs to correlate chromatograms 

retention times with mobile phase composition and pH, and with physical chemical 

properties of amiloride, hydrochloride and methyldopa and created a model for the 
prediction of retention values of unanalyzed molecules49.

5.3.8 Prediction of Protein Structure and Function

ANNs are suitable, for recognition of domains, classification of proteins, prediction of 

enzyme class, sequence classification of DNA/RNA and protein. These results are 

valuable for the further study of the relationship between the structure and function of 

proteins and which may also provide information regarding design and the prediction of 

protein tertiary structure. Murval et al. has developed a feed forward ANN consisting of 

six input and six hidden units with sigmoid transfer function for the recognition of 
domains in protein sequence50. A hierarchical network named PRED-CLASS to classify 

proteins into four classed such as transmembrane, fibrous, globular and mixed proteins 
has been used by Pasquier et al51. The PRED-CLASS trained using 50 protein sequences, 

correctly predicted 371 out of a set of 387 proteins with an accuracy of 96 percent. 

Livingstone at al. has discussed the advantage of networks in the simulation of drug 
molecules and protein structures52. Reidys et al. has applied ANNs with GA training 

algorithms in sequence alignment and assembly for both RNA and DNA molecules and 
in determining the folding and secondary structure of RNA strands53. Dosztanyl et al. has 

applied ANN based algorithms to identify, characterize and predict stabilization center 

elements from primary structure of single proteins and amino acid sequences of 
homologous proteins54. The stabilization center elements present in proteins stabilize
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protein structures by preventing their decay. The prediction of long chain fatty acid 
transport protein FadL topology55+, prediction of secondary structured of clostridial 

neuroprotein-C fragment56, DNA/RNA and protein sequences analysis57 are other 

applications where ANN technology has been exploited. The neural networks have been 
employed to predict eukaryotic protein phosphorylation sites58, to recognize active sites 

and to predict enzyme class with high accuracy for novel protein structures59.

5.3.9 Prediction of Skin Permeability of Drug

Agatonovic-Kustrin et al. have developed a quantitative structure-permeability 
relationship of penetration across polydimethylsiloxane membranes60, which were 

expected to be the model of skin permeation61,62. A set of 254 compounds and their 

maximum steady state flux was collected from the literature64,65. Twelve of 42 molecular 

descriptors were selected for ANN modeling of maximum steady-state flux by the use of 

genetic algorithm, that include molecular shape and size, inter-molecular interactions, 

hydrogen-bonding capacity of drugs, and conformational stability. For the 12-descriptor 

neural network model, the training set relative means square error was 0.36 and the 

testing set relative mean square error was 0.59. When the prediction power was evaluated 

using an external prediction set, the relative mean square error was 0.60, indicating that 

the quality of the model would be ensured.

Lim et al. have also proposed a method for predicting the human skin permeability (log K 

p) of compounds from three-dimensional molecular structure using a combination of 

molecular orbital (MO) calculations and ANN. For 92 compounds that was listed in the 
Flynn’s data66, their molecular descriptors, such as dipole moment, polarizability, sum of 

charges of nitrogen and oxygen atoms (sum (N,0)), and sum of charges of hydrogen 

atoms bonding to nitrogen or oxygen atoms (sum (FI)), were calculated from MO 

calculations. The correlation between these molecular descriptors and log Kp was 

examined using a feed-forward back-propagation neural net work. To improve the 

generalization capability of a neural network, the network was trained with input patterns 
given 5 % random noise67. The neural network model with a configuration of 4-4-1 for 

input, hidden, and output layers was much superior to the conventional multiple linear
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regression model in terms of root mean square errors (0.528 vs. 0.930). Moreover, a 

‘leave-one-out’ cross-validation revealed that the neural network model could predict 

skin permeability with a reasonable accuracy (predictive relative mean square error of 

0.669). The ANN modeling of skin permeability for 45 compounds based on MO- 
calculated descriptors has been performed by Fu et al68. When external validation was 

conducted for eight compounds, the ANN model gave a mean prediction error of 2.6%, 

whereas the prediction error of the multiple linear regression model with the same 

descriptors was 32.09%.

Degim et al. analyzed skin permeability of 40 compounds by an ANN and compared its 
predic-tability with the multiple linear regression model obtained by Pugh et al69,70. 

According to the linear model of Pugh et al., the partial charges of the penetrants, their 

molecular weight, and their calculated octanol-water partition coefficient (log Poct/w) 

were used as molecular descriptors. While the linear equation gave a regression 
coefficient (r2) of 0.672, the ANN produced log Kp values that correlated well with the 

experimental ones (r2 = 0.997). In addition, they experimentally determined human skin 

permeability for some compounds that have not been previously investigated, and found 

that their experimental data can be predicted well from the ANN model developed.

5.3.10 Pharmacokinetic and Pharmacodynamics

Turner et al. used ANNs for the prediction of clearances, fraction bound to plasma 
proteins, and volume of distribution of a series of structurally diverse compounds70. 

Correlations for test compounds ranged from 0.855 to 0.992. Predicted values agreed 

closely with experimental values for total clearance, renal clearance, and volume of 

distribution, while predictions for protein binding were encouraging.

The ANN technology offers an exciting alternative to monitor complex interactions 

between drug substance and physiological system that are usually monitored by 

pharmacodynamics. Haidler et al. reported on a predictive PK/PD model for an oral 

hypoglycemic agent (repaglinide) using ANNs. They concluded that ANNs were a quick 
and simple method for predicting and identifying significant covariates72.

140



Gobburu et al. also applied an ANN to PK/PD analysis and concluded that it is a versatile 

computational tool and exhibits clear advantage over conventional model-independent 

PK/PD analysis. Chow et al. compared the predictive ability of ANNs with that of 

NNMEM for tobramycin plasma levels in pediatric patients and conclude that ANNs 

have the potential to become a useful analytical tool for population pharmacokinetic data 
analysis73. Reports of the prediction of human PK/PD data from physicochemical 

properties of drugs and animal PL/PD data have been published. The feasibility of using 

ANNS to predict human PK parameters from animal PK data was reported by Hussain et 
al74. Ritchel et al. used ANNs to predict human pharmacokinetics parameters (total 

clearance and distribution volume) from a combined data set of physicochemical 

properties of drugs (protein binding, partition coefficient, dissolution constant) and 
animal pharmacokinetic parameters (total clearance and distribution volume)75.

Recently, Moon et al. reported the PD model for dose determination of HMG-Co-A- 
reductase inhibitors using ANNs76. An ANN model for dosing HMG-CoA reductage 

inhibitors demonstrated an ability to predict appropriate dosing, but a larger sample size 

may be necessary for the development of a more accurate model. Corrigan et al. applied 
neural network to predict gentamicin concentration in a genera] hospital population77. 

Their results indicated that neural networks offered some advantages over traditional 

dose prediction methods for gentamicin. Kenji et al. applied an ANN simulator to predict 

the pharmacokinetic of amino glycoside antibiotic using physiological measurement in 
patients with severe illness78. ANN analysis using standardized data showed reasonable 

predictive performance.

5.3.11 Diagnosis of Disease

79
ANNS have been applied in the diagnosis of cancers based on clinical chemical data , 
diagnosis of acute myocardial infarction80, prediction of cardiovascular risk81, prediction 

of the development of pregnancy-induced hypertensive disorders , diagnosis of 
Alzheimer’s disease83, diagnosis of benign focal liver disease84, AIDS research and 

diagnosis85, Parkinsonian tremor86, urologic oncology87, diagnosis of pigmented skin
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lesions88, lung nodule detection89, prediction of outcome in epilepsy surger90 and identify 

the presence of myocardial infarction91.

5.4 CONCLUSIONS

The ANNs modeling are newly developed strategies and an alternative to conventional 

modeling techniques. The utility of ANNs in the pharmaceutical field and drug discovery 

has recently grained enormous due to their ability to model process that can not be 

modeled by classical methods. The ANNs need no special computer as neural nets are 

described using mathematical models and implemented using ordinary computer 

software. Training time for networks is long but the advantages are overwhelming. The 

ANNs is better than response surface methodology because they allow incorporation of 

literature and experimental data to solve common problems in pharmaceutical industry. It 

is capable of solving problems involving complex pattern recognition which is 

advantageous in pharmaceutical product development. The use of artificial neural 

network in pharmaceutical research drug discovery is growing at a fast rate.
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